第2讲 数列问题的题型与方法(二)
高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

第二节 等差数列及其前n 项和突破点一 等差数列的基本运算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -12d =n a 1+a n 2.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 二、填空题1.若m 和2n 的等差中项为4,2m 和n 的等差中项为5,则m 与n 的等差中项是________. 答案:32.在等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6的值为________. 答案:143.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是________. 答案:44.在等差数列{a n }中,已知d =2,S 100=10 000,则S n =________. 答案:n 2[典例感悟]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2019·山东五校联考)已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+da 1+2d =8,∴⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n -4+3n -72=n 3n -112.[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n a 1+a n2=na 1+n n -12d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[针对训练]1.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=( )A .10B .30C .40D .20解析:选B 法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.2.(2018·信阳二模)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( )A.53 B .32 C.43D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎪⎨⎪⎧2a 1+d =52,3a 1+9d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,故甲得43钱,故选C.3.(2018·菏泽二模)已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40.(1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.突破点二 等差数列的性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.(8)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (9)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n. [基本能力]1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意,得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:742.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案:23.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________.答案:26[全析考法]考法一 等差数列的性质[例1] (1)(2019·武汉模拟)若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3-3,则S 9=( )A .25B .27C .50D .54(2)(2019·莆田九校联考)在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( )A .10B .15C .20D .40[解析] (1)设等差数列{a n }的公差为d ,a 1=2a 3-3=2a 1+4d -3, ∴a 5=a 1+4d =3,S 9=9a 5=27.(2)因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10. 由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.故选B. [答案] (1)B (2)B [方法技巧]利用等差数列的性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m ,S 2n -1=(2n -1)a n ,S n =n a 1+a n 2=n a 2+a n -12(n ,m ∈N *)等. [提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n+a m +n =2a m .考法二 等差数列前n 项和最值问题等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用二次函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[例2] (2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. [解] (1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)法一:(二次函数法)由(1)得S n =n a 1+a n2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16. 法二:(通项变号法) 由(1)知a n =2n -9,则S n =n a 1+a n2=n 2-8n .由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92, 又n ∈N *,∴n =4,此时S n 的最小值为S 4=-16. [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)二次函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [集训冲关]1.[考法一]设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于( )A .15B .17C .19D .21解析:选A 因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8.又S 15=a 1+a 2+…+a 15=15a 8,所以S 153a 5=15a 8a 8=15.2.[考法一]在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B ∵等差数列有2n +1项,∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10. 3.[考法二]等差数列{a n }中,S n 为前n 项和,且a 1=25,S 17=S 9,请问:数列前多少项和最大?解:法一:∵a 1=25,S 17=S 9,∴17a 1+17×162d =9a 1+9×82d ,解得d =-2.∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.∴当n =13时,S n 有最大值. 法二:∵a 1=25,S 17=S 9, ∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. 从而S n =25n +n n -12(-2)=-n 2+26n=-(n -13)2+169. 故前13项之和最大.突破点三 等差数列的判定与证明[典例] (2019·济南一中检测)各项均不为0的数列{a n }满足a n +1a n +a n +22=a n +2a n ,且a 3=2a 8=15.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .[解] (1)证明:依题意,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,所以1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2.(2)由(1)可知b n =a n 2n +6=12·1n +2n +3=12( 1n +2-1n +3 ),故S n =12( 13-14+14-15+…+1n +2-1n +3)=n6n +3. [方法技巧]等差数列的判定与证明方法 方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题定中的判问题前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[针对训练](2019·沈阳模拟)已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧2a 1+d =2,3a 1+3×22d =-6,∴⎩⎪⎨⎪⎧a 1=4,d =-6,∴a n =4-6(n -1)=10-6n ,S n =na 1+n n -12d =7n -3n 2.(2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2=-6n 2-4n -6,2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4, 若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列, 则-6n 2-4n -6=-6n 2-6n +4,解得n =5, ∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.。
2020高考数学二轮复习分层设计(全国I卷)学案:第二层提升篇 专题二数列——第2讲第2讲 数列通项与求和

第2讲 数列通项与求和[全国卷3年考情分析] 年份 全国卷Ⅰ 全国卷Ⅱ 全国卷Ⅲ2019 等比数列的求和·T 14 递推公式的应用·T 19 等差数列的前n 项和·T 142018a n 与S n 关系的应用·T 14等差数列前n 项和的最值问题·T 172017等差数列的基本运算、数列求和·T 17等比数列的通项公式、a n 与S n 的关系·T 17三角形问题交替考查且多出现在第17(或18)题的位置,难度中等,2020年高考此内容难度有可能加大,应引起关注.若以客观题考查,难度中等的题目较多,有时也出现在第12、16题的位置,难度偏大.考点一 a n 与S n 关系的应用[例1] (1)(2019·成都第一次诊断性检测)设S n 为数列{a n }的前n 项和,且a 1=4,a n +1=S n ,n ∈N *,则a 5=________.(2)(2019·武汉市调研测试)已知数列{a n }的前n 项和S n 满足S n =3S n -1+2n -3(n ≥2),a 1=-1,则a 4=________.[解析] (1)法一:由a n +1=S n ,得S n +1-S n =S n ,则S n +1=2S n .又S 1=a 1=4,所以数列{S n }是首项为4,公比为2的等比数列,所以S n =4·2n -1=2n +1,则a 5=S 5-S 4=26-25=32.法二:当n ≥2时,由a n +1=S n ,得a n =S n -1,两式相减,得a n +1-a n =a n ,即a n +1=2a n ,所以数列{a n }是从第2项开始,公比为2的等比数列.又a 2=S 1=4,所以a 5=a 2·23=4×23=32.(2)法一:由S n =3S n -1+2n -3(n ≥2)可得S 2=3S 1+1=3a 1+1,即a 2=2a 1+1=-1.根据S n =3S n -1+2n -3(n ≥2),①知S n +1=3S n +2n +1-3,② ②-①可得,a n +1=3a n +2n (n ≥2). 两边同时除以2n+1可得a n +12n +1=32·a n 2n +12(n ≥2),令b n =a n 2n ,可得b n +1=32·b n+12(n ≥2). ∴b n +1+1=32(b n +1)(n ≥2),数列{b n +1}是以b 2+1=a 222+1=1-14=34为首项,32为公比的等比数列.∴b n +1=⎝⎛⎭⎫32n -2·34(n ≥2),∴b n =12·⎝⎛⎭⎫32n -1-1(n ≥2).又b 1=-12也满足上式, ∴b n =⎝⎛⎭⎫32n -1·12-1(n ∈N *),又b n =a n 2n ,∴a n =2n b n ,即a n =3n -1-2n .∴a 4=33-24=11.法二:由S n =3S n -1+2n -3(n ≥2),a 1=-1,知S 2=3S 1+4-3,∴a 2=-1.S 3=3S 2+8-3,∴a 3=1.S 4=3S 3+16-3,∴a 4=11.[答案] (1)32 (2)11 [解题方略](1)给出S n 与a n 的递推关系求a n 的常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .(2)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[多练强化]1.已知数列{a n }满足a 1=1,a n +1-2a n =2n (n ∈N *),则数列{a n }的通项公式a n =________.解析:a n +1-2a n =2n 两边同除以2n +1,可得a n +12n +1-a n 2n =12,又a 12=12,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以12为首项,12为公差的等差数列,所以a n 2n =12+(n -1)×12=n 2,所以a n =n ·2n -1.答案:n ·2n -12.已知数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2,n ∈N *).设b n =a n +1-a n . (1)证明:数列{b n }是等比数列; (2)设c n =b n(4n 2-1)2n,求数列{c n }的前n 项和S n .解:(1)证明:因为a n +1=3a n -2a n -1(n ≥2,n ∈N *),b n =a n +1-a n , 所以b n +1b n =a n +2-a n +1a n +1-a n =(3a n +1-2a n )-a n +1a n +1-a n =2(a n +1-a n )a n +1-a n =2,又b 1=a 2-a 1=2-1=1,所以数列{b n }是以1为首项,2为公比的等比数列. (2)由(1)知b n =1×2n -1=2n -1, 因为c n =b n(4n 2-1)2n, 所以c n =12(2n +1)(2n -1)=14⎝⎛⎭⎫12n -1-12n +1,所以S n =c 1+c 2+…+c n=14⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=14⎝⎛⎭⎫1-12n +1=n 4n +2. 考点二 数列求和 题型一 裂项相消求和[例2] (2019·安徽五校联盟第二次质检)已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)求数列{a n }的通项公式; (2)记b n =2a n(a n +1)(a n +1+1),求数列{b n }的前n 项和T n .[解] (1)当n =1时,a 1=S 1=2a 1-1,得a 1=1.当n ≥2时,有S n -1=2a n -1-1, 所以a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1.所以{a n }是公比为2,首项为1的等比数列,故通项公式a n =2n -1.(2)b n =2a n (a n +1)(a n +1+1)=2n (2n -1+1)(2n +1)=2⎝⎛⎭⎫12n -1+1-12n +1, T n =b 1+b 2+b 3+…+b n =2×⎝⎛⎭⎫120+1-121+1+2×⎝⎛⎭⎫121+1-122+1+2×⎝⎛⎭⎫122+1-123+1+…+2×⎝⎛⎭⎫12n -1+1-12n +1=2n-12n +1. [解题方略](1)裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.题型二 错位相减求和[例3] (2019·福建五校第二次联考)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .[解] (1)因为S n =3n 2+8n ,所以当n ≥2时,a n =S n -S n -1=3n 2+8n -[3(n -1)2+8(n -1)]=6n +5;当n =1时,a 1=S 1=11 所以a n =6n +5,n ∈N * 于是,b n +1+b n =a n =6n +5.因为{b n }是等差数列,所以可设b n =kn +t (k ,t 均为常数),则有k (n +1)+t +kn +t =6n +5,即2kn +k +2t =6n +5对任意的n ∈N *恒成立,所以⎩⎪⎨⎪⎧2k =6,k +2t =5,解得⎩⎪⎨⎪⎧k =3,t =1,故b n =3n +1.(2)因为a n =6n +5,b n =3n +1,所以c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =2n×(6n +6).于是,T n =12×2+18×22+24×23+…+2n ×(6n +6),①所以2T n =12×22+18×23+24×24+…+2n ×6n +2n +1×(6n +6),②①-②得,-T n =24+6(22+23+…+2n )-2n +1×(6n +6)=24+6×22-2n ×21-2-2n +1×(6n +6)=-2n +1×6n ,故T n =2n +1×6n =2n +2×3n . [解题方略](1)求解此类题需掌握三个技巧:一是巧分拆,即把数列的通项转化为等差数列、等比数列的通项的积,并求出等比数列的公比;二是构差式,求出前n 项和的表达式,然后乘以等比数列的公比,两式作差;三是得结论,即根据差式的特征进行准确求和.(2)运用错位相减法求和时应注意三点:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错开位置;三是相减时一定要注意最后一项的符号.题型三 分组转化求和[例4] 已知等差数列{a n }的首项为a ,公差为d ,n ∈N *,且不等式ax 2-3x +2<0的解集为(1,d ).(1)求数列{a n }的通项公式a n ;(2)若b n =3a n +a n -1,n ∈N *,求数列{b n }的前n 项和T n .[解](1)易知a ≠0,由题设可知⎩⎨⎧1+d =3a ,1·d =2a ,解得⎩⎪⎨⎪⎧a =1,d =2.故数列{a n }的通项公式为a n =1+(n -1)·2=2n -1. (2)由(1)知b n =32n -1+2n -1-1,则T n =(3+1)+(33+3)+…+(32n -1+2n -1)-n =(31+33+…+32n -1)+(1+3+…+2n -1)-n =31(1-9n )1-9+(1+2n -1)n 2-n=38(9n -1)+n 2-n . [解题方略](1)在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 进行讨论.最后再验证是否可以合并为一个表达式.(2)分组求和的策略:①根据等差、等比数列分组;②根据正号、负号分组.[多练强化]1.(2019·福建五校第二次联考)在数列{a n }中,a 1=13,1a n +1=3a n (a n +3),n ∈N *,且b n =13+a n.记P n =b 1×b 2×…×b n ,S n =b 1+b 2+…+b n ,则3n +1P n +S n =________.解析:因为1a n +1=3a n (a n +3)=1a n -1a n +3,所以b n =13+a n =1a n -1a n +1,所以S n =b 1+b 2+…+b n =⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1=1a 1-1a n +1.因为1a n +1=3a n (a n +3),所以3+a n =3a n +1a n ,所以b n =13+a n =a n 3a n +1,所以P n =b 1×b 2×…×b n =a 13a 2×a 23a 3×…×a n 3a n +1=a 13n a n +1.又a 1=13,故3n +1P n +S n=3a 1a n +1+1a 1-1a n +1=1a 1=3. 答案:32.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn ,求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n . 解:(1)由a n +1=n +1n a n +n +12n ,可得a n +1n +1=a n n +12n, 又b n =a n n ,所以b n +1-b n =12n ,由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,即b n -b 1=12⎝⎛⎭⎫1-12n -11-12=1-12n -1,所以b n =2-12n-1.(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n 2n -1,①12T n =121+222+323+…+n 2n ,② ①-②得12T n =120+121+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-n +22n ,所以T n =4-n +22n -1. 易知数列{2n }的前n 项和为n (n +1), 所以S n =n (n +1)-4+n +22n -1.数学运算——数列的通项公式及求和问题[典例] 设{a n }是公比大于1的等比数列,S n 为其前n 项和,已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =a n +ln a n ,求数列{b n }的前n 项和T n . [解] (1)设数列{a n }的公比为q (q >1). 由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 1(1-6q +q 2)=-7.由q >1,解得⎩⎪⎨⎪⎧a 1=1,q =2,故数列{a n }的通项公式为a n =2n -1. (2)由(1)得b n =2n -1+(n -1)ln 2,所以T n=(1+2+22+…+2n-1)+[0+1+2+…+(n-1)]ln 2=1-2n1-2+n(n-1)2ln 2=2n-1+n(n-1)2ln 2.[素养通路]数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等.本题通过列出关于首项与公比的方程组,并解此方程组得出首项与公比,从而得出通项公式;通过分组分别根据等比数列求和公式、等差数列求和公式求和.。
数列题型及解题方法

数列题型及解题方法题型1:等差数列解题方法:首先确定数列的首项和公差,然后使用递推公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型2:等比数列解题方法:首先确定数列的首项和公比,然后使用递推公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型3:斐波那契数列解题方法:斐波那契数列是指后一项等于前两项之和的数列,即an = an-1 + an-2。
根据题目给出的条件,可以使用递归或循环的方式计算斐波那契数列的第n项。
题型4:数列求和解题方法:对于等差数列和等比数列,可以使用求和公式直接计算数列的和。
等差数列的和用Sn = (n/2)(a1 + an)表示,等比数列的和用Sn = a1(1 - r^n)/(1 - r)表示。
根据题目给出的条件,代入公式计算即可得到所求的和。
题型5:数列拓展解题方法:有时候题目需要在基本的数列模型上进行拓展,可以根据数列的特点和题目的要求进行分析和解答。
可以使用递推公式或者递推关系式进行推导,并根据题目给出的条件计算所求的项或和。
题型6:递推关系式解题方法:有时候数列无法使用基本的递推公式进行求解,需要根据数列的特点建立递推关系式。
递推关系式是指数列的每一项与前面的若干项之间存在某种关系,通过这个关系可以递推求解数列的项或和。
根据题目给出的条件,建立递推关系式,并根据初始条件求解所求的项或和。
2.数列计算-学生版

第2讲 数列计算第一部分:知识介绍1、等差数列三个重要的公式:① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()② 项数公式:项数=(末项-首项)÷公差+1 ③ 求和公式:和=(首项+末项)⨯项数÷22、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.3、公式综合:1) 连续自然数求和(1)1232n n n ⨯+++++=L2) ()()()213572112311321n n n n n +++++-=++++-++-++++=L L L 3) N 个连续自然数的平方和 2222(1)(21)1236n n n n ⨯+⨯+++++=L4) N 个连续自然数的立方和 ()2223333(1)1231234n n n n ⨯+++++=++++=L L 5) 平方差公式:()()22a b a b a b -=+- 完全平方公式()2222a b a ab b ±=±+ 6) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+7) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+4、等比数列:如果一个数列,从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用q 表示()0q ≠。
(或者从第二数开始每一个数都和前面数的倍数都是相同的,这个数列就叫做等比数列。
)一般地,等比数列求和采用“错位相减法”。
(公比不为1)其它复合型数列整数与数列本讲数表应用题找规律计算等差数列应用题求和方法初步认识等比数列第二部分:例题精讲【例 1】(试题汇编)计算11、14、17、20、……、95、98这个等差数列的项数是()【例 1】在等差数列6,13,20,27,…中,从左向右数,第_______个数是1994.【巩固】5、8、11、14、17、20、L,这个数列有多少项?它的第201项是多少?65是其中的第几项?已知数列0、4、8、12、16、20、…… ,它的第43项是多少?【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778L+++++++=⑵13578799L++++++=⑶471013404346L+++++++=【例 2】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是()【例 3】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 4】(试题汇编)有一本50页的书,再把这本书的各页的页码累加起来时,有一张纸的页码错误的多加了一次,得到的和为1302,那么中间多加的页码为()。
高中数学第二课时-数列的递推公式

第二课时数列的递推公式课标要求素养要求1.理解数列的递推公式是数列的表示方法的一种形式.2.掌握由数列的递推公式求数列的通项公式的方法. 通过由数列的递推公式归纳或者推导数列的通项公式,提升学生的数学运算素养和逻辑推理素养.新知探究历史上有一个有名的关于兔子的问题:假设有一对兔子(一雄一雌),长两个月它们就算长大成年了.然后每个月都会生出1对兔子,生下来的兔子也都是长两个月就算成年,然后每个月也都会生出1对兔子.这里假设兔子不会死,且每次都是只生1对兔子.第一个月,只有1对兔子;第二个月,小兔子还没长成年,还是只有1对兔子;第三个月,兔子长成年了,同时生了1对小兔子,因此有两对兔子;第四个月,成年兔子又生了1对兔子,加上自己及上月生的小兔子,共有3对兔子;第五个月,成年兔子又生了1对兔子,第三月生的小兔子现在已经长成年了且生了1对小兔子,加上本身两只成年兔子及上月生的小兔子,共5对兔子;问题1过了一年之后,会有多少对兔子?提示 我们可以把这些兔子的数量以对为单位列出数字就能得到一组数字:1,1,2,3,5,8,13,21,34,55,89,144,233.所以,过了一年之后,总共会有233对兔子.问题2 兔子的对数所组成的数列为1,1,2,3,5,8,13,…这个数列的第n 项a n ,第n +1项a n +1,第n +2项a n +2有何关系? 提示 a n +a n +1=a n +2.1.数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式. 2.数列的前n 项和(1)数列{a n }的前n 项和:把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =a 1+a 2+…+a n .(2)数列的前n 项和公式:如果数列{a n }的前n 项和S n 与它的序号n 之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的前n 项和公式. 3.a n 与S n 的关系式 a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.拓展深化[微判断]1.数列{a n }中,若a n +1=2a n ,n ∈N *,则a 2=2a 1.(√)2.利用a n +1=2a n ,n ∈N *可以确定数列{a n }.(×) 提示 只有给出a 1的值,才可以确定数列{a n }.3.设数列{a n }的前n 项和为S n ,则a n =S n -S n -1.(×) 提示 a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.[微训练]1.已知数列{a n }满足a 1=3,a n +1=2a n +1,则数列的第5项a 5=________,由此归纳出{a n }的一个通项公式为________,可以求得a 8=________.解析 ∵a 1=3,∴a 2=2a 1+1=7,a 3=2a 2+1=15,a 4=2a 3+1=31,a 5=2a 4+1=63,∴a 5=63.可以看出a n =2n +1-1,∴a 8=29-1=511. 答案 63 a n =2n +1-1 5112.设数列{a n }的前n 项和为S n =2n -3,则a n =________.解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =⎩⎨⎧-1,n =1,2,n ≥2.答案 ⎩⎨⎧-1,n =1,2,n ≥2.[微思考]1.利用数列的递推公式确定一个数列,必须给出哪些条件? 提示 (1)“基础”,即第1项(或前几项); (2)递推关系,即递推公式.2.数列的递推公式与其通项公式有何异同? 提示相同点不同点通项公式均可确定一个数列,求出数列中的任意一项给出n 的值,可求出数列中的第n 项a n 递推公式由前一项(或前几项),通过一次(或多次)运算,可求出第n 项a n题型一 由数列的递推公式求数列的项【例1】 若数列{a n }满足a 1=2,a n +1=1+a n1-a n ,n ∈N *,求a 2 021.解 a 2=1+a 11-a 1=1+21-2=-3,a 3=1+a 21-a 2=1-31+3=-12,a 4=1+a 31-a 3=1-121+12=13, a 5=1+a 41-a 4=1+131-13=2=a 1, ∴{a n }是周期为4的数列, ∴a 2 021=a 4×505+1=a 1=2.规律方法 递推公式反映的是相邻两项(或n 项)之间的关系.对于通项公式,已知n 的值即可得到相应的项,而递推公式则要已知首项(或前几项),才可依次求得其他的项.若项数很大,则应考虑数列是否具有规律.【训练1】 (多选题)已知数列{a n }中,a 1=3,a n +1=-1a n +1,能使a n =3的n可以为( ) A.22 B.24 C.26D.28解析 由a 1=3,a n +1=-1a n +1,得a 2=-14,a 3=-43,a 4=3.所以数列{a n }是周期为3的数列,故a 22=a 28=3. 答案 AD题型二 由递推公式求数列的通项【例2】 (1)对于任意数列{a n },等式:a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n (n ≥2,n ∈N *)都成立.试根据这一结论,完成问题:已知数列{a n }满足:a 1=1,a n +1-a n =2,n ∈N *,求通项a n ;(2)若数列{a n }中各项均不为零,则有a 1·a 2a 1·a 3a 2·…·a na n -1=a n (n ≥2,n ∈N *)成立.试根据这一结论,完成问题:已知数列{a n }满足:a 1=1,a n a n -1=n -1n (n ≥2,n ∈N *),求通项a n .解 (1)当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)a 1=1也符合上式,所以数列{a n }的通项公式是a n =2n -1,n ∈N *. (2)当n ≥2时,a n =a 1·a 2a 1·a 3a 2·…·a na n -1=1×12×23×…×n -1n =1n . a 1=1也符合上式,所以数列{a n }的通项公式是a n =1n ,n ∈N *.规律方法 形如a n +1-a n =f (n )的递推公式,可以利用a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n (n ≥2,n ∈N *)求通项公式;形如a n +1a n =f (n )的递推公式,可以利用a 1·a 2a 1·a 3a 2·…·a n a n -1=a n (n ≥2,n ∈N *)求通项公式.以上方法分别叫累加法和累乘法. 【训练2】 设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.解析 法一 (累乘法):把(n +1)a 2n +1-na 2n +a n +1a n =0分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0. ∵a n >0,∴a n +1+a n >0, ∴(n +1)a n +1-na n =0, ∴a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ,∴a n a 1=1n .又∵a 1=1,∴a n =1n a 1=1n .法二 (迭代法):同法一,得a n +1a n =nn +1,∴a n +1=nn +1a n,∴a n =n -1n ·a n -1=n -1n ·n -2n -1·a n -2=n -1n ·n -2n -1·n -3n -2·a n -3…=n -1n ·n -2n -1·n -3n -2·…·12a 1=1n a 1. 又∵a 1=1,∴a n =1n .法三 (构造特殊数列法):同法一,得a n +1a n =nn +1,∴(n +1)a n +1=na n ,∴数列{na n }是常数列, ∴na n =1·a 1=1,∴a n =1n . 答案 1n题型三 由S n 与a n 的关系求a n【例3】 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式. 解 根据S n =a 1+a 2+…+a n -1+a n 可知 S n -1=a 1+a 2+…+a n -1(n >1,n ∈N *), 当n >1时,a n =S n -S n -1=n 2+12n -⎣⎢⎡⎦⎥⎤(n -1)2+12(n -1)=2n -12, ①当n =1时,a 1=S 1=12+12×1=32,也满足①式. ∴数列{a n }的通项公式为a n =2n -12,n ∈N *.【迁移1】 把例3中数列{a n }的前n 项和改为S n =n 2+12n +1,求数列{a n }的通项公式.解 当n ≥2时,a n =S n -S n -1=⎝ ⎛⎭⎪⎫n 2+12n +1-⎣⎢⎡⎦⎥⎤(n -1)2+12(n -1)+1=2n -12.①当n =1时,a 1=S 1=12+12+1=52不符合①式. ∴a n =⎩⎪⎨⎪⎧52,n =1,2n -12,n ≥2,n ∈N *.【迁移2】 把例3中数列{a n }的前n 项和改为S n =2n -1,求数列{a n }的通项公式.解 ∵S n =2n -1,∴当n =1时,a 1=S 1=2-1=1;当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1.当n =1时,a 1=1符合上式,∴a n =2n -1.规律方法 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求得a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示,不符合则分段表示.【训练3】 已知数列{a n }的前n 项和为S n =2n 2+n +3,求数列{a n }的通项公式. 解 ∵S n =2n 2+n +3,∴当n =1时,a 1=S 1=2×12+1+3=6;当n ≥2时,a n =S n -S n -1=2n 2+n +3-[2(n -1)2+(n -1)+3]=4n -1. 当n =1时,a 1不符合上式, ∴a n =⎩⎨⎧6,n =1,4n -1,n ≥2.一、素养落地1.通过学习由数列的递推公式求数列的项或通项公式,提升逻辑推理素养和数学运算素养.2.由数列的递推公式求数列的通项公式的方法有:(1)归纳法;(2)累加法;(3)累乘法;(4)迭代法.3.利用a n 与S n 的关系求通项所应用公式为a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2,注意其步骤有三:①求n =1时的项,即a 1;②求n ≥2时a n 的表达式;③验证a 1是否满足n ≥2时的表达式. 二、素养训练1.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,则此数列的第三项是( ) A.1 B.12 C.34D.58解析 由题知a 2=12×1+12=1,a 3=12×1+14=34. 答案 C2.数列2,4,6,8,10,…的递推公式是( ) A.a n =a n -1+2(n ≥2) B.a n =2a n -1(n ≥2)C.a 1=2,a n =a n -1+2(n ≥2)D.a 1=2,a n =2a n -1(n ≥2)解析 A ,B 中没有说明某一项,无法递推;D 中a 1=2,a 2=4,a 3=8,不合题意. 答案 C3.已知数列{a n }中,a n +1=2a n 对∀n ∈N *成立,且a 3=12,则a 1=________. 解析 ∵a 3=2a 2=12,∴a 2=6,a 2=2a 1=6,∴a 1=3. 答案 34.已知数列{a n }的首项a 1=1,a n +1=a n1+a n (n =1,2,3,…),则a 4=________,猜想其通项公式是________.解析 ∵数列{a n }的首项a 1=1,a n +1=a n 1+a n (n =1,2,3,…),∴a 2=a 11+a 1=12,同理可得a 3=13,a 4=14.猜想其通项公式是a n =1n . 答案 14 a n =1n5.设数列{a n }的前n 项和为S n =3n ,求a n . 解 当n ≥2时,a n =S n -S n -1=3n -3(n -1)=3,又a 1=S 1=3,所以a n =3.基础达标一、选择题1.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2,n ∈N *),则a 5=( )A.32B.53C.85D.23解析 由题知,a 1=1,a 2=2,a 3=12,a 4=3,a 5=23. 答案 D2.已知数列{a n },a 2=1,a n +a n +1=2n ,n ∈N *,则a 1+a 3的值为( ) A.4 B.5 C.6D.8解析 由a 2=1,a n +a n +1=2n ,n ∈N *,可得a 1+a 2=2,a 2+a 3=4,解得a 1=1,a 3=3,a 1+a 3=4. 答案 A3.已知数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *).若数列{a n }是常数列,则a =( )A.-2B.-1C.0D.(-1)n解析 ∵数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *),∴a 2=a 2-2a +1.∵数列{a n }是常数列,∴a =a 2-2a +1,解得a =-2.故选A.答案 A4.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18等于( ) A.36 B.35 C.34D.33解析 a 2=S 2-S 1=(22-2×2)-(12-2×1)=1,a 18=S 18-S 17=182-2×18-(172-2×17)=33,a 2+a 18=34. 答案 C5.设S n 为数列{a n }的前n 项和.若2S n =3a n -3,则a 4=( ) A.27 B.81 C.93D.243解析 根据2S n =3a n -3,可得2S n +1=3a n +1-3,两式相减得2a n +1=3a n +1-3a n ,即a n +1=3a n .当n =1时,2S 1=3a 1-3,解得a 1=3,则a 4=3a 3=32a 2=33a 1=81. 答案 B 二、填空题6.数列{a n }中,a 1=2,a n =a n +1-3,则14是{a n }的第________项.解析 a 1=2,a 2=a 1+3=5,a 3=a 2+3=8,a 4=a 3+3=11,a 5=a 4+3=14. 答案 57.已知数列{a n }中,a 1a 2…a n =n 2(n ∈N *),则a 9=________. 解析 a 1a 2…a 8=82,① a 1a 2…a 9=92,② ②÷①得,a 9=9282=8164. 答案 81648.数列{a n }中,a 1=2,a n =2a n -1(n ∈N *,2≤n ≤10),则数列{a n }的最大项为________.解析 ∵a 1=2,a n =2a n -1, ∴a n ≠0,∴a na n -1=2>1,∴a n >a n -1,即{a n }单调递增,∴{a n }的最大项为a 10=2a 9=4a 8=…=29·a 1=29×2=210=1 024. 答案 1 024 三、解答题9.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式. (1)a 1=0,a n +1=a n +2n -1(n ∈N *); (2)a 1=1,a n +1=a n +a n n +1(n ∈N *);(3)a 1=-1,a n +1=a n +1n (n +1)(n ∈N *).解 (1)a 1=0,a 2=1,a 3=4,a 4=9. 猜想a n =(n -1)2(n ∈N *).(2)a 1=1,a 2=32,a 3=42=2,a 4=52. 猜想a n =n +12(n ∈N *).(3)a 1=-1,a 2=-12,a 3=-13,a 4=-14. 猜想a n =-1n (n ∈N *).10.已知数列{a n }的前n 项和为S n ,求数列{a n }的通项公式. (1)S n =3n +2;(2)S n =n 2-n . 解 (1)当n =1时,a 1=S 1=5;当n ≥2时,a n =S n -S n -1=(3n +2)-(3n -1+2) =2·3n -1,故a n =⎩⎨⎧5,n =1,2×3n -1,n ≥2.(2)当n ≥2时,a n =S n -S n -1=(n 2-n )-[(n -1)2-(n -1)]=2n -2,又a 1=0满足a n =2n -2,故a n =2n -2.能力提升11.已知各项不为0的数列{a n }满足a 1=12,a n a n -1=a n -1-a n (n ≥2,n ∈N *),则a n =________.解析 ∵a n a n -1=a n -1-a n ,且各项均不为0, ∴1a n -1a n -1=1. ∴当n ≥2时,1a n =1a 1+⎝ ⎛⎭⎪⎫1a 2-1a 1+⎝ ⎛⎭⎪⎫1a 3-1a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n -1 =2+1+1+1+…+1(n -1)个1 =n +1.∴1a n =n +1,∴当n ≥2时,a n =1n +1.∵a 1=12也符合上式,∴a n =1n +1(n ∈N *).答案1n +112.已知数列{a n }满足a 1=-1,a n +1=a n +1n -1n +1,n ∈N *,求数列的通项公式a n .解 ∵a n +1-a n =1n -1n +1,∴a 2-a 1=11-12, a 3-a 2=12-13, a 4-a 3=13-14, …,a n -a n -1=1n -1-1n (n ≥2),将以上n -1个式子相加,得∴(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n , 即a n -a 1=1-1n (n ≥2,n ∈N *).∴a n =a 1+1-1n =-1+1-1n =-1n (n ≥2,n ∈N *), 又当n =1时,a 1=-1也符合上式. ∴a n =-1n ,n ∈N *.创新猜想13.(多选题)已知数列{x n }满足x 1=a ,x 2=b ,x n +1=x n -x n -1(n ≥2),则下列结论正确的是( ) A.x 2 020=a B.x 2 022=a -b C.x 11=x 2 021D.x 1+x 2+…+x 2 020=2b -a解析 x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=-a ,x 5=x 4-x 3=-b ,x 6=x 5-x 4=a -b , x 7=x 6-x 5=a =x 1,x 8=x 7-x 6=b =x 2, ∴{x n }是周期数列,周期为6, ∴x 2 020=x 4=-a ,A 不正确; x 2 022=x 6=a -b ,B 正确; x 2 021=x 5=x 11,C 正确;x 1+x 2+…+x 2 020=x 1+x 2+x 3+x 4=2b -a ,D 正确. 答案 BCD14.(多选题)已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧12a n ,a n 为偶数,3a n +1,a n 为奇数,若a 4=4,则m 所有可能的取值为( ) A.4 B.5 C.21D.32解析 若a 3为奇数,则3a 3+1=4,a 3=1,若a 2为奇数,则3a 2+1=1,a 2=0(舍去),若a 2为偶数,则a 22=1,a 2=2.若a 1为奇数,则3a 1+1=2,a 1=13(舍去), 若a 1为偶数,则a 12=2,a 1=4; 若a 3为偶数,则a 32=4,a 3=8;若a 2为奇数,则3a 2+1=8,a 2=73(舍去). 若a 2为偶数,则a 22=8,a 2=16. 若a 1为奇数,则3a 1+1=16,a 1=5. 若a 1为偶数,则a 12=16,a 1=32. 故m 所有可能的取值为4,5,32.答案ABD高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
第2讲 由Sn和an的关系求通项公式

第二讲 由S n 和a n 的关系求通项公式题型一 已知n S 的表达式,求n an S 与n a 的关系:(1)已知n a 求n S . n n a a a S +++= 21 (2)已知n S 求n a . 即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n 。
特别要注意的是,若1a 适合由1n --=n n S S a (n ≥2)可得到的表达式,则n a 不必表达成分段形式,可化统一为一个式子。
规律:如果bn an S n +=2,则}{n a 不用分段,是等差数列如果A Aq S nn -=, 则}{n a 不用分段,是等比数列另外一种快速判断技巧是利用S 0是否为0来判断:若S 0=0,则a 1=S n -S n -1,否则不符合,这在解小题时比较有用.(1)n a 的表达式不分段例1 (2014·湖南)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.求数列{a n }的通项公式;解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n . (2)n a 的表达式分段例2 (2020·山东青岛模拟)数列{a n }的前n 项和S n =n 2+n +1,则数列{a n }的通项公式是______. 【解析】 (1)当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=(n 2+n +1)-[(n -1)2+(n -1)+1]=2n ,又a 1=3≠2×1,∴a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.题型二 由n S 和n a 的混合关系式求通项公式 (1)变形转化成n a 的递推关系例1(2020福建高三模拟)各项均为正数的数列{}n a 的首项11a λ=,前n 项和为n S ,且211n n n S S a λ+++=.求数列{}n a 的通项公式. 【解析】 因为211n n n S S a λ+++=,①所以当2n ≥时,21n n nS S a λ-+=, ②-①②得:2211n n n n a a a a λλ+++=-,即111()()n n n n n n a a a a a a λ++++=+-,因为{}n a 的各项均为正数,所以10n n a a ++>,且0λ>,所以11n n a a λ+-=.由①知,2212S S a λ+=,即21222a a a λ+=,又因为11a λ=,所以22a λ=.所以211a a λ-=.(2)变形转化成n S 的递推关系例2 (2019•钟祥市一模)已知正数数列{}n a 满足11()2n n nS a a =+,*n N ∈,其中n S 为数列{}n a 的前n 项的和,求数列}{n a 的通项公式n a .解:由11()2n n nS a a =+,令1n =,得11111()2a a a =+,0n a >,得11a =.当2n 时,1111()2n n n n n S S S S S --=-+-,即2211n n S S --=.因此,数列2{}n S 是首项为1,公差为1的等差数列,∴2n S n =,即n S =.⎩⎨⎧≥--==2,11n 1n n n a n ,变式:对于实数x ,定义[]x 表示不超过x 大整数,已知正数数列n a 满足:1111,()2n n na S a a ==+,其中n S 为数列n a 的前n 项的和,则12121111[]S S S ++⋯+= . 解:由11()2n n nS a a =+,令1n =,得11111()2a a a =+,0n a >,得11a =.当2n 时,1111()2n n n n n S S S S S --=-+-,即2211n n S S --=.因此,数列2{}n S 是首项为1,公差为1的等差数列,∴2n S n =,即n S =.得-=<<=,令12121111S S S S =++⋯+,1n S =,1)20S ∴>+⋯+=>.12121111()111)21S S S S =++⋯+<++⋯+=+=. 12121111[][]20S S S S ∴++⋯+==.故答案为:20. (3)由n s 与1+n a 的递推关系,由于n 的限制,n a 需分段表示例3.设数列}{n a 的前n 项和为n S ,已知14a =,13nn n a s +=+,*n ∈N .求数列{}n a 的通项公式. 【解析】因为13n n n a s +=+,*n ∈N ,当2n ≥时,113n n n a s --=+,所以11223n n n a a -+=+⨯,变形为11232(23)n n n n a a -+-⨯=-⨯,21237,61a a a =+=-=.所以数列1{23}n n a --⨯从第二项开始是等比数列,公比为2.所以122312n n n a ---⨯=⨯ ,即12232n n n a --=⨯+,所以124, 1.232, 2.n n n n a n --=⎧=⎨⨯+≥⎩课后练习:一 已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n . 1.S n =n 2-10n , 求n a 2. S n =2n +1 ,求n a3.(2015新课标II 改) 设n S 是数列{}n a 的前n 项和,且1111,n n n a a S S ++=-=,求n S 的表达式.4. 已知21=a ,1-=n n n S S a ,求n a5. 已知21=a ,n n S a 31=+,求n a 二 已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n . 1.S n =n 2-10n ,解:(1)当n =1时,a 1=S 1=1-10=-9;当n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11. 当n =1时,2×1-11=-9=a 1.∴a n =2n -11.(2)S n =2n +1解:(2)当n =1时,a 1=S 1=21+1=3;当n ≥2时,a n =S n -S n -1=(2n+1)-(2n -1+1)=2n -2n -1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).3.(2015新课标II 改) 设n S 是数列{}n a 的前n 项和,且1111,n n n a a S S ++=-=,求n S 的表达式. 【解析】由已知得111n n n n n a S S S S +++=-=,两边同时除以1n n S S +得,1111n n S S +-=, 即1111n n S S +-=-.又111S =-,所以1n S ⎧⎫⎨⎬⎩⎭是首项为1-,公差为1-的等差数列, 4. 已知21=a ,1-=n n n S S a ,求n a ⎪⎩⎪⎨⎧≥-⋅-==225223212n nn n a n 5. 已知21=a ,n n S a 31=+,求n a ⎩⎨⎧≥⋅==-246122n n a n n 6.数列{}n a 满足*12211125,222n n a a a n n N ++⋯+=+∈,则n a = .【答案】114,12,2n n n +=⎧⎨≥⎩【解析】这类问题类似于()n n S f a =的问题处理方法,在122111 (25222)n n a a a n +++=+中用1n -代换n 得12121111...2(1)5222n n a a a n --+++=-+(2n ≥),两式相减得122n n a =,12n n a +=,又1172a =,即114a =,故114,12,2n n n a n +=⎧=⎨≥⎩7.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =______________ 【答案】132n【解析】由题意,122n n n S S S +=-,所以132n n S S +=,11S =,所以132n n S -⎛⎫= ⎪⎝⎭. 8.设数列{}n a 前n 项的和为n S ,若14a =,且()*13n n a S n N +=∈,则n S =______.【答案】4n【解析】1113,3,4n n n n n n n a S S S S S S +++=∴-==,11140,0,4n n nS S a S S +==≠∴≠∴=, {}n S ∴是以4为首项,公比为4的等比数列, 4n n S ∴=.故答案为:4n。
第二讲:等差数列及其前n项和
第二讲:等差数列及其前n 项和知识体系:一、等差数列1、等差数列的概念:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
定义的表达式为1,n n a a d d +-=为常数。
2、等差中项:若a 、A 、b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
3、等差数列的通项公式及其变形: 通项公式:,其中1a 是首项,d 是公差。
通项公式的变形:(),n m a a n m d n m =+-≠注意:等差数列通项公式的应用:(1)由等差数列的通项公式1(1)n a a n d =+-,可知: ① 已知等差数列的首项和公差,可以求得这个数列的任何一项; ② 已知1,,,n a d n a ,这四个量中的任意三个,可以求得另一个量;(2)由等差数列通项公式变形可知,已知等差数列中的任意两项就可以确定等差数列中的任何一项。
4、等差数列和一次函数的关系由等差数列的通项公式1(1)n a a n d =+-可得1()n a dn a d =+-,如果设1,p d q a d ==-那么n a pn q =+,其中p ,q 是常数。
当p ≠0时,(n ,a )在一次函数y=px+q 的图像上,即公差不为零的等差数列的图像是直线y=px+q 上的均匀排开的一群孤立的点。
当p=0时,n a q =,等差数列为常数列,此时数列的图像是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点。
等差数列的单调性:当d >0时,数列{}n a 为递增数列;当d <0时,数列{}n a 为递减数列;当d =0时,数列{}n a 为常数列; 二、等差数列的前n 和:1、等差数列的前n 项和:等差数列的前n 项和公式11()(1)22n n n a a n n S na d +-==+; 等差数列前n 项和公式与函数的关系:由1(1)2n n n S na d -=+可得21()22n d dS n a n =+-,设1,22d da b a ==-,则有2n S an bn =+。
第2讲 等差数列及其前n项和 讲义
1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.3.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.4.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 60解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.(2)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20解析 (1)∵a 1+a 7=a 2+a 6=3+11=14, ∴S 7=7(a 1+a 7)2=49.(2)设等差数列{a n }的公差为d ,由题意可得 ⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑nk =1 (a k +1-a k )=∑nk =1(2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( )A .-2 018B .-2 016C .-2 019D .-2 017答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727 B.3828 C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值, 且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱 B.53钱 C.32钱 D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6, 得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设数列{a n }的前n 项和为S n ,若S n S 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1 DD .b n =2n +1答案 B解析 设等差数列{b n }的公差为d (d ≠0),S n S 2n=k ,因为b 1=1, 则n +12n (n -1)d =k [2n +12×2n (2n -1)d ], 即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,又公差d ≠0,解得d =2,k =14. 所以数列{b n }的通项公式为b n =2n -1.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 9.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 10.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212, 解得k =13.11.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2. 由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.12.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.解 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8, 解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3. 所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3. 记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10. 当n =2时,满足此式,当n =1时,不满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2. *13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.。
数列通项公式的求法第2课时-累加法累乘法ppt课件
.
四、总结并区分(灵丹妙药)
1、累加法的适用条件:已 a 1 且 知 a n-a n -1f(n )( 2 n) 2、累乘法的适用条件:已知 a1且aann-1 f(n)(n2) 3、倒数法的适用条件:已a知 1且 anpanan-1-11(n2)
.
五、过关斩将
1、已{ 知 an}满 数 a1 足 列 1.anan-1n n -1 1(n2)求其通项公
.
三、倒数法
1、倒数法适用题型:已a知 1且 anpanan-1-11(n2) 分式的形式
2、例题: 已知{a 数 n}满 列 a足 n3aa n-n1-11(n2)a ,11,求其通项公
解:将原式两边同时取倒数得:
1 1 (n -1) 3 3n - 2
1 3an-113 1
an
an
an-1
2、已知 {an}数 满列 a足 11,an1a2nan2,求其通项公式。 3、已{ 知 an}满 数 a1 足 列 1,anan-12( n n2) ,求其通项
4、设{an数 }的列 n项 前和 sn,a1为 1{ , snnna}为常数列, 求其通项公式。
.
五、过关斩将答案
1、 ann22n(提示:本 法题 的在 时用 候累 , 算 乘 等 结式 果右 是边 保 前两项的分 项子 的与 分最 母后 )两
有问题随时欢迎大家提问
.
.
.
.
2、an
2(提示:倒数同法时,取两倒边数) n1
3、 an2n1-( 3 提示:累 右加 边法 是, 一等 个 前 n-1式 等 项比 的
4、 ann21n (提示:先 和 a1根 求{据 s出 nn常 na}的 数 通 列 项公 然后利 sn求 a用 n,最 由 后用累 . 乘法求得)
(完整版)数列题型及解题方法归纳总结
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第二轮复习教案第2讲 数列问题的题型与方法(二)(3课时)例9.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈ (1)求数列{}n a 的通项公式;(2)设||||||21n n a a a S +++= ,求n S ;(3)设n b =)12(1n a n -)(),(*21*N n b b b T N n n n ∈+++=∈ ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m 成立?若存在,求出m 的值;若不存在,请说明理由。
解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2382-=⇒+=d d ,n n a n 210)1(28-=--=∴。
(2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤ 时21281029,2n na a a n n n +-=+++=⨯=-6n ≥时,n n a a a a a a S ---+++= 76521 4092)(2555+-=-=--=n n S S S S S n n故=nS ⎪⎩⎪⎨⎧+--409922n n n n 65≥≤n n(3))111(21)1(21)12(1+-=+=-=n n n n a n b n n ∴n T )]111()111()4131()3121()211[(21+-+--++-+-+-=n nn n .)1(2+=n n若32m T n >对任意*N n ∈成立,即161m n n>+对任意*N n ∈成立,)(1*N n n n ∈+ 的最小值是21,,2116<∴m m ∴的最大整数值是7。
即存在最大整数,7=m 使对任意*N n ∈,均有.32m T n >说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题。
例10.如图,在y 轴的正半轴上依次有点 ,,,,21n A A A 其中点)10,0(),1,0(21A A ,且||3||11+-=n n n n A A A A ),4,3,2( =n ,在射线)0(≥=x x y 上依次有点 ,,,,21n B B B 点1B 的坐标为(3,3),且22||||1+=-n n OB OB ),4,3,2( =n(1)用含n 的式子表示||1+n n A A ; (2)用含n 的式子表示n n B A ,的坐标; (3)求四边形n n n n B B A A 11++面积的最大值。
解:(1)9110||,31||||2111=-==-+A A A A A A n n n n 且 ,311211)31()31(9)31(||||---+===∴n n n n n A A A A (2)由(1)得4413221)31(21227)31(139||||||----=++++=+++n n n n A A A A A An A 点∴的坐标))31(21227,0(4--n ,23||22||||11==--OB OB OB n n 且 |}{|n OB 是以23 为首项,22 为公差的等差数列)12,12(2)12(22)1(23||++∴+=-+=∴n n B n n OB n n 的坐标为(3)连接1+n n B A ,设四边形11++n n n B A A n B 的面积为n S ,则22])31(227229[2221)32(])31[(2113111--∆∆-⋅⋅++⋅=+=+++n n A B B B A A n n S S S n n n n n n ,392291-+=n n ,036311<-=-∴-+n n n n S S ,1n n S S <+即}{n S ∴单调递减。
n S ∴的最大值为24792291=+=S 。
说明:本例为数列与几何的综合题。
由题意知|}{|1+n n A A 为等比,|}{|n OB 为等差,(3)利用函数单调性求最值。
例11.设正数数列{a n }为一等比数列,且a 2=4,a 4=16。
说明:这是2000年全国高考上海试题,涉及对数、数列、极限的综合题,主要考查等比数列的定义及通项公式,等差数列前n 项和公式,对数计算,求数列极限等基础知识,以及综合运用数学知识的能力。
例12.已知抛物线24x y =,过原点作斜率1的直线交抛物线于第一象限内一点1P ,又过点1P 作斜率为12的直线交抛物线于点2P ,再过2P 作斜率为14的直线交抛物线于点3P , ,如此继续,一般地,过点n P 作斜率为12n的直线交抛物线于点1n P +,设点(,)n n n P x y 。
(Ⅰ)令2121n n n b x x +-=-,求证:数列{}n b 是等比数列。
(Ⅱ)设数列{}n b 的前n 项和为n S ,试比较314n S +与1310n +的大小。
解:(1)因为(,)n n n P x y 、111(,)n n n P x y +++在抛物线上,故24,n n x y =①2114n n x y ++=②,又因为直线1n n P P +的斜率为12n,即1112n n n ny y x x ++-=-,①②代入可得221121111422n nn n nn n nx xx x x x ++-+-=⇒+=-2121212221()()n n n n n n n b x x x x x x +-+-∴=-=+-+222322111222n n n ---=-=-,故11{}4n n nb b b +=⇒是以14为公比的等比数列;(2)4131(1)13444n n nnS S =--⇒+=,故只要比较4n与310n +的大小。
方法(一)1222(1)4(13)133133139310(3)2n n n n n n C C n n n n -=+=+⋅+⋅+>++>++=+≥ ,当1n =时,3114310n S n +>+;当2n =时3114310n S n +=+;当*3,n n N ≥∈时,3114310n S n +<+。
方法(二)用数学归纳法证明,其中假设(3,)n k k k N =≥∈时有4310k k >+, 则当1n k =+时,14444(310)[3(1)10]9273(1)10k kk k k k +=⋅>+=++++>++。
例13 在数列{a n }中,a 1 =185,312=a ,且log 2(3a 2-a 1)、……、log 2(3a n +1-a n )是公差为-1的等差数列,又2a 2-a 1,2a 3-a 2,…,2a 1n +-a n ,…是等比数列,公比为q ,|q|<1,这个等比数列的所有项之和等于31(1)求数列{a n }的通项公式;(2)计算(a 1+a 2+…+a n )。
分析:由于题设中的等差数列和等比数列均由数列{an }的相关项构成,分别求出它们的通项公式构造关于a n 的方程组。
解:(1)设b n =l og 2(3a 1n +-a n ),因为{bn }是等差数列,d =-1,b 1=l og 23a 1n +-a n =2n - ① 设c n =2 a 1n +-a n ,{c n }是等比数列,公比为q ,|q |<1,c 1=2a 2-a 1=例14.等比数列{an }中,已知a1≠0,公比q>0,前n项和为Sn,自然数b,c,d,e满足b<c≤d<e,且b+e=c+d。
求证:Sb ·Se<Sc·Sd。
分析:凡是有关等比数列前n项S n的问题,首先考虑q=1的情况,证明条件不等式时,正确适时地应用所给的条件是成败的关键。
(证明不等式首选方法是差比较法,即作差—变形—判定符号,变形要有利于判定符号.)b e-c d=(c+d-e)e-c d=ce+d e-e2-c d=(c-e)(e-d)。
因为c<e,d<e,所以c-e<0,e-d>0,于是(c-e)(e-d)<0.又同理(要比较Sb ·Se与Sc·Sd的大小,只要比较(1-qb)(1-q e)与(1-q c)(1-qd)的大小,仍然运用差比较法.)(1-qb)(1-q e)-(1-q c)(1-qd)=q c+qd-qb-q e=(q c-qb)-(q e-qd)。
(能否将q c-qb用q e-qd表示是上式化成积的关键,利用给定的c+d=b+e,寻求变形的途径,c=b+e-d,d、e出现了,于是q c-qb=qb+e-d-qb=qb(q e-d-1)=qbq-d(q e-qd).恒等变形只有目标明确,变形才能有方向.)上式=qbq-d(q e-qd)-(q e-qd)=(q e-qd)(qbq-d-1)=q-d(q e-qd)(qb-qd).因为q>0.所以q-d >0。
(运用函数的思想将问题转化为根据指数函数的单调性判别乘积的符号)事实上,由b<d<e,q>0,①当0<q<1时,y=qx是减函数,q e<qd,qb>qd,即q e-qd<0,qb-qd>0;②当q>1时,y=qx是增函数,q e>qd,qb<qd,即q e-qd>0,qb-qd<0。
所以无论0<q<1还是q>1,都有q e-qd与qb-qd异号,即(q e-qd)(qb-qd)<0。
综上所述,无论q=1还是q≠1,都有Sb ·Se<Sc·Sd。
说明:复习课的任务在于对知识的深化,对能力的提高、关键在落实.根据上面所研究的问题,进一步提高运用函数的思想、方程的思想解决数列问题的能力.例15.(2003年北京春季高考)如图,在边长为l的等边△ABC中,圆O1为△ABC的内切圆,圆O2与圆O1外切,且与AB,BC相切,…,圆O n+1与圆O n外切,且与AB,BC相切,如此无限继续下去. 记圆O n的面积为.(Ⅰ)证明是等比数列;(Ⅱ)求的值.(Ⅰ)证明:记r n为圆O n的半径,则所以故成等比数列.(Ⅱ)解:因为所以说明:本小题主要考查数列、数列极限、三角函数等基本知识,考查逻辑思维能力。
七、强化训练1.设Sn 和Tn分别为两个等差数列的前n项和,若对任意n∈N,( )A .4∶3B .3∶2C .7∶4D .78∶712.一个首项为正数的等差数列中,前3项的和等于前11项的和,当这个数列的前n 项和最大时,n 等于 ( )A .5B .6C .7D .83.若数列{}n a 中,13a =,且21n n a a += *()n N ∈,则数列的通项n a = 。