高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆的定义和标准方程学案(无答案)湘教版选修1-1

合集下载

高中数学 第二章 圆锥曲线与方程 2.2.1 椭圆的定义及其标准与方程教案 新人教B版选修2-1(

高中数学 第二章 圆锥曲线与方程 2.2.1 椭圆的定义及其标准与方程教案 新人教B版选修2-1(

方程教学过程设计 教材处理师生活动例2。

求适合下列条件的椭圆的标准方程(1)两个焦点的坐标分别是(1,0),(-1,0),椭圆上一点P 与两焦点的距离的和等于6.(2)两个焦点的坐标分别是(0,—2),(0,2),并且椭圆经过点()3,5-。

(3) 已知椭圆的两个焦点的坐标分别是()()120,1,0,1F F -,P 是椭圆上一点,并且1212F F PF PF 是与的等差中项,求椭圆的标准方程.例3.求下列方程表示的椭圆的焦点坐标:(1)221365x y += (2)222312x y +=7。

方程24x -A 2πα-<<22k ππα-<<8。

求过点(3-板书设计:教学过程设计教材处理 师生活动练习:1.方程2211312x y+=上一点P 到两个焦点的距离的和为( )A 26B 24C 2D 213 2. 椭圆22125169x y+=的焦点坐标是( )A ()5,0±B ()0,5±C ()0,12±D ()12,0± 3. 已知椭圆的方程为222116x y m +=,焦点在x 轴上,则m 的范围是( )A 44m -≤≤B 44m -<<C 44m m ><-或D 04m <<4. 6,1a c ==的椭圆的标准方程是( )A 2213635x y +=B 2213635y x +=C 221365x y += D 以上都不对5. 椭圆221259x y +=上的一点P 到一个焦点的距离为5,则P 另一个焦点的距离为( )A 5B 6C 4D 106。

椭圆2214x y m +=的焦距等于2,则m 的值为( )A 5或3B 8C 5D 16辽宁省本溪满族自治县高中数学第二章圆锥曲线与方程 2.2.1 椭圆的定义及其标准与方程教案新人教B版选修2-1教学目标1。

高中数学第二章圆锥曲线与方程2.2.1椭圆的定义及其标准与方程教案新人教B1新人教B数学教案

高中数学第二章圆锥曲线与方程2.2.1椭圆的定义及其标准与方程教案新人教B1新人教B数学教案
2.方程和叫做椭圆的标准方程。
3.椭圆的标准方程中a、b、c之间的关系是。
二、简单应用
例1、已知B,C是两个定点,BC长度等于4,且 的周长等于16,求这个三角形的顶点A的轨迹方程。
椭圆的定义及其标准与方程
教学过程设计
教材处理
师生活动
例2.求适合下列条件的椭圆的标准方程
(1)两个焦点的坐标分别是(1,0),(-1,0),椭圆上一点 与两焦点的距离的和等于6.
8.求过点 且与 有相同焦点的椭圆的方程。
板书设计:
教学日记:
教学过程设计
教材处理
师生活动
练习:
1.方程 上一点P到两个焦点的距离的和为( )
A 26 B24C 2 D
2. 椭圆 的焦点坐标是( )
A B C D 3. 已知椭圆的方程为 ,焦点在 轴上,则 的范围是( )
A B C D
4. 的椭圆的标准方程是( )
教学
目标
1.理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程。
2.通过椭圆概念的引入与椭圆标准方程的推导过程,掌握坐标法。
重点
难点
学习重点:椭圆的定义和椭圆的标准方程
学习难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因。
教法
尝试、变式、互动
教具
教学过程设计
教材处理
师生活动
一、新知探究
1.叫做椭圆,叫做椭圆的焦点,叫做椭圆的焦距
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点 。
(3) 已知椭圆的两个焦点的坐标分别是 , 是椭圆上一点,并且 的等差中项,求椭圆的标准方程。
例3.求下列方程表示的椭圆的焦点坐标:
(1) (2)

高中数学 第二章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆及其标准方程导学案 北师大版选修11

高中数学 第二章 圆锥曲线与方程 2.1 椭圆 2.1.1 椭圆及其标准方程导学案 北师大版选修11

2.1.1 椭圆及其标准方程学习目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.知识点一椭圆的定义思考1 给你两个图钉、一根无弹性的细绳、一张纸板能画出椭圆吗?答案固定两个图钉,绳长大于图钉间的距离是画出椭圆的关键.思考2 在上述画出椭圆的过程中,你能说出笔尖(动点)满足的几何条件吗?答案笔尖(动点)到两定点(绳端点的固定点)的距离之和始终等于绳长.梳理把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆,这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.知识点二椭圆的标准方程思考1 椭圆方程中,a、b以及参数c有什么几何意义,它们满足什么关系?答案椭圆方程中,a表示椭圆上的点M到两焦点间距离之和的一半,可借助图形帮助记忆,a、b、c(都是正数)恰构成一个直角三角形的三条边,a是斜边,c是焦距的一半.a、b、c始终满足关系式a2=b2+c2.思考2 椭圆定义中,为什么要限制常数|PF1|+|PF2|=2a>|F1F2|?答案只有当2a>|F1F2|时,动点M的轨迹才是椭圆;当2a=|F1F2|时,点的轨迹是线段F1F2;当2a<|F1F2|时,满足条件的点不存在.梳理焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) a,b,c的关系c2=a2-b2类型一 求椭圆的标准方程命题角度1 焦点位置已知求椭圆的方程 例1 求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,a ∶b =2∶1,c =6; (2)经过点(3,15),且与椭圆x 225+y 29=1有共同的焦点. 解 (1)∵c =6,∴a 2-b 2=c 2=6.①又由a ∶b =2∶1,得a =2b ,代入①,得4b 2-b 2=6,解得b 2=2,∴a 2=8. 又∵焦点在x 轴上,∴椭圆的标准方程为x 28+y 22=1.(2)方法一 椭圆x 225+y 29=1的焦点为(-4,0)和(4,0),由椭圆的定义可得 2a =3+42+15-02+3-42+15-02,∴2a =12,即a =6.∵c =4,∴b 2=a 2-c 2=62-42=20, ∴椭圆的标准方程为x 236+y 220=1.方法二 由题意可设椭圆的标准方程为x 225+λ+y 29+λ=1, 将x =3,y =15代入上面的椭圆方程,得 3225+λ+1529+λ=1, 解得λ=11或λ=-21(舍去), ∴椭圆的标准方程为x 236+y 220=1.反思与感悟 用待定系数法求椭圆的标准方程的基本思路:首先根据焦点的位置设出椭圆的方程,然后根据条件建立关于待定系数的方程(组),再解方程(组)求出待定系数,最后写出椭圆的标准方程.跟踪训练1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点(-32,52);(2)焦点在x 轴上,且经过两个点(2,0)和(0,1).解 (1)∵椭圆的焦点在y 轴上,∴设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由椭圆的定义知, 2a = -322+52+22+-322+52-22=210,即a =10.又c =2, ∴b 2=a 2-c 2=6.∴所求椭圆的标准方程为y 210+x 26=1.(2)∵椭圆的焦点在x 轴上,∴设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).又椭圆经过点(2,0)和(0,1),∴⎩⎪⎨⎪⎧4a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=1.∴所求椭圆的标准方程为x 24+y 2=1.命题角度2 焦点位置未知求椭圆的方程 例2 求经过(2,-2)和⎝ ⎛⎭⎪⎫-1,142两点的椭圆的标准方程. 解 方法一 若焦点在x 轴上,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由已知条件得⎩⎪⎨⎪⎧4a 2+2b2=1,1a 2+144b 2=1,解得⎩⎪⎨⎪⎧a 2=8,b 2=4.故所求椭圆的标准方程为x 28+y 24=1.若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).同理,得a 2=4,b 2=8,而a 2<b 2,与焦点在y 轴上矛盾. 综上可知,所求椭圆的标准方程为x 28+y 24=1.方法二 设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将点(2,-2),⎝ ⎛⎭⎪⎫-1,142代入, 得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎪⎨⎪⎧A =18,B =14.故所求椭圆的标准方程为x 28+y 24=1.反思与感悟 如果不能确定焦点的位置,那么求椭圆的标准方程有以下两种方法:一是分类讨论,分别就焦点在x 轴上和焦点在y 轴上设出椭圆的标准方程,再解答;二是设出椭圆的一般方程Ax 2+By 2=1(A >0,B >0,A ≠B ),再解答.跟踪训练2 求经过A (0,2)和B (12,3)两点的椭圆的标准方程.解 方法一 当焦点在x 轴上时,可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∵A (0,2),B (12,3)在椭圆上,∴⎩⎨⎧4b 2=1,122a 2+32b2=1,解得⎩⎪⎨⎪⎧a 2=1,b 2=4,这与a >b 相矛盾,故应舍去.当焦点在y 轴上时,可设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0), ∵A (0,2),B (12,3)在椭圆上,∴⎩⎨⎧4a 2=1,32a 2+122b2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴椭圆的标准方程为y 24+x 2=1,综上可知,椭圆的标准方程为y 24+x 2=1.方法二 设椭圆的标准方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵A (0,2),B (12,3)在椭圆上,∴⎩⎪⎨⎪⎧4n =1,14m +3n =1,∴⎩⎪⎨⎪⎧m =1,n =14,∴椭圆的标准方程为x 2+y 24=1.类型二 椭圆方程中参数的取值范围 例3 “方程x 2m -1+y 23-m=1表示焦点在y 轴上的椭圆”的充分不必要条件是( )A.1<m <32B.1<m <2C.2<m <3D.1<m <3答案 A 解析 要使方程x 2m -1+y 23-m=1表示焦点在y 轴上的椭圆,则m 应满足⎩⎪⎨⎪⎧m -1>0,3-m >0,3-m >m -1,解得1<m <2, ∵A 选项中{m |1<m <32}{m |1<m <2},故选A.反思与感悟 (1)利用椭圆方程解题时,一般首先要化成标准形式.(2)x 2m +y2n=1表示椭圆的条件是⎩⎪⎨⎪⎧ m >0,n >0,m ≠n ;表示焦点在x 轴上的椭圆的条件是⎩⎪⎨⎪⎧ m >0,n >0,m >n ;表示焦点在y 轴上的椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,n >m .跟踪训练3 已知x 2sin α+y 2cos α=1(0≤α≤π)表示焦点在x 轴上的椭圆.求α的取值范围.解 x 2sin α+y 2cos α=1, 可化为x 21sin α+y 21cos α=1, 由题意知⎩⎪⎨⎪⎧1sin α>1cos α,1sin α>0,1cos α>0,0≤α≤π,解得0<α<π4.∴α的取值范围是⎝⎛⎭⎪⎫0,π4.类型三 椭圆定义的应用例4 如图所示,点P 是椭圆x 25+y 24=1上的一点,F 1和F 2是焦点,且∠F 1PF 2=30°,求△F 1PF 2的面积.解 在椭圆x 25+y 24=1中,a =5,b =2,∴c =a 2-b 2=1. 又∵P 在椭圆上,∴|PF 1|+|PF 2|=2a =25, ①由余弦定理知,|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 30° =|F 1F 2|2=(2c )2=4, ②①式两边平方,得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=20, ③③-②,得(2+3)|PF 1|·|PF 2|=16, ∴|PF 1|·|PF 2|=16(2-3).∴12F PF S △=12|PF 1|·|PF 2|·sin 30°=8-4 3.引申探究在例4中,若图中的直线PF 1与椭圆相交于另一点B ,连接BF 2,其他条件不变,求△BPF 2的周长.解 由椭圆的定义,可得△BPF 2的周长为|PB |+|PF 2|+|BF 2| =(|PF 1|+|PF 2|)+(|BF 1|+|BF 2|) =2a +2a =4a =4 5.反思与感悟 (1)对于求焦点三角形的面积,结合椭圆定义,建立关于|PF 1|(或|PF 2|)的方程求得|PF 1|(或|PF 2|);有时把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出,这样可以减少运算量.(2)焦点三角形的周长等于2a +2c .设∠F 1PF 2=θ,则焦点三角形的面积为b 2tan θ2.跟踪训练 4 已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足∠PF 1F 2=90°(如图).求△PF 1F 2的面积.解 由已知得a =2,b =3, 所以c =a 2-b 2=4-3=1. 从而|F 1F 2|=2c =2.在△PF 1F 2中,由勾股定理可得 |PF 2|2=|PF 1|2+|F 1F 2|2, 即|PF 2|2=|PF 1|2+4.又由椭圆定义知|PF 1|+|PF 2|=2×2=4, 所以|PF 2|=4-|PF 1|.从而有(4-|PF 1|)2=|PF 1|2+4. 解得|PF 1|=32.所以△PF 1F 2的面积S =12·|PF 1|·|F 1F 2|=12×32×2=32,即△PF 1F 2的面积是32.1.已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( ) A.椭圆 B.直线 C.圆 D.线段答案 D解析 ∵|MF 1|+|MF 2|=8=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2.2.已知椭圆4x 2+ky 2=4的一个焦点坐标是(0,1),则实数k 的值是( ) A.1 B.2 C.3 D.4 答案 B解析 由题意得,椭圆标准方程为x 2+y 24k=1,又其一个焦点坐标为(0,1),故4k-1=1,解得k =2.3.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案 C解析 方程可化为x 21m+y 21n=1.若m >n >0,则0<1m <1n,可得方程为焦点在y 轴上的椭圆.若方程表示焦点在y 轴上的椭圆,则1n >1m>0,可得m >n >0.4.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________. 答案y 216+x 2=1 解析 由已知得2a =8,2c =215, ∴a =4,c =15, ∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为y 216+x 2=1.5.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则|PF 1|·|PF 2|=________. 答案 48解析 依题意知,a =7,b =26,c =49-24=5, 所以|F 1F 2|=2c =10. 由于PF 1⊥PF 2,所以由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=100.又由椭圆定义知|PF 1|+|PF 2|=2a =14, 所以(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=100, 即196-2|PF 1|·|PF 2|=100. 解得|PF 1|·|PF 2|=48.1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a ,当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解,也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论,达到了简化运算的目的.40分钟课时作业一、选择题1.已知两定点F 1(-1,0),F 2(1,0),且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹方程是( ) A.x 216+y 29=1 B.x 216+y 212=1C.x 24+y 23=1 D.x 23+y 24=1 答案 C解析 ∵|F 1F 2|是|PF 1|和|PF 2|的等差中项, ∴|PF 1|+|PF 2|=2|F 1F 2|=2×2=4>|F 1F 2|. ∴点P 的轨迹应是以F 1,F 2为焦点的椭圆. ∵c =1,a =2.∴动点P 的轨迹方程为x 24+y 23=1.2.设α∈(0,π2),方程x 2sin α+y2cos α=1是表示焦点在y 轴上的椭圆,则α的取值范围为( ) A.(0,π4]B.(π4,π2)C.(0,π4)D.[π4,π2)答案 C解析 ∵焦点在y 轴上,∴cos α>sin α, 即sin(π2-α)>sin α,又α∈(0,π2),∴π2-α>α,即α∈(0,π4).3.曲线x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系是( ) A.有相等的焦距,相同的焦点 B.有相等的焦距,不同的焦点C.有不等的焦距,不同的焦点D.以上都不对答案 B解析 曲线x 225+y 29=1的焦点在x 轴上. 对于曲线x 29-k +y 225-k=1, ∵0<k <9,∴25-k >9-k >0, ∴焦点在y 轴上,故两者的焦点不同.∵25-9=(25-k )-(9-k )=16=c 2,∴2c =8,即两者焦距相等.故选B.4.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( ) A.2B.4C.8D.32 答案 B解析 如图,F 2为椭圆右焦点,连接MF 2,则ON 是△F 1MF 2的中位线,∴|ON |=12|MF 2|,又|MF 1|=2,|MF 1|+|MF 2|=2a =10,∴|MF 2|=8,∴|ON |=4.5.设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),则点P 的轨迹是( )A.椭圆B.线段C.不存在D.椭圆或线段 答案 D解析 ∵a +9a ≥2 a ·9a =6, 当且仅当a =9a,即a =3时取等号,∴当a =3时,|PF 1|+|PF 2|=6=|F 1F 2|,点P 的轨迹是线段F 1F 2;当a >0且a ≠3时,|PF 1|+|PF 2|>6=|F 1F 2|,点P 的轨迹是椭圆.6.已知椭圆x 24+y 2=1的焦点为F 1,F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则点M 到x 轴的距离为( )A.233B.263C.33D. 3 答案 C解析 ∵MF 1→·MF 2→=0,∴MF 1→⊥MF 2→,由|MF 1|+|MF 2|=4,① 又|MF 1|2+|MF 2|2=(23)2=12,②由①与②可得,|MF 1|·|MF 2|=2,设M 到x 轴的距离为h ,则|MF 1|·|MF 2|=|F 1F 2|h , h =223=33. 二、填空题7.若椭圆的两个焦点为F 1(-3,0),F 2(3,0),椭圆的弦AB 过点F 1,且△ABF 2的周长等于20,该椭圆的标准方程为________________.答案 x 225+y 216=1 解析 如图,∵△ABF 2的周长等于20,∴4a =20,即a =5,又c =3,∴b 2=a 2-c 2=52-32=16.∴椭圆的标准方程为x 225+y 216=1. 8.已知椭圆x 210-m +y 2m -2=1的焦距为4,则m =________________________________. 答案 4或8解析 (1)当焦点在x 轴上时,10-m -(m -2)=4,解得m =4.(2)当焦点在y 轴上时,m -2-(10-m )=4,解得m =8,∴m =4或8.9.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是____________. 答案 (8,25)解析 依题意有⎩⎪⎨⎪⎧25-m >0,m +9>0,m +9>25-m ,解得8<m <25. 10.已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3 解析 由椭圆定义,得|PF 1|+|PF 2|=2a , ∴|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=4a 2.又∵PF 1→⊥PF 2→,∴|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,即4c 2+2|PF 1|·|PF 2|=4a 2,∴|PF 1|·|PF 2|=2b 2,∴12PF F S V =12·|PF 1|·|PF 2|=12×2b 2=b 2=9, 又∵b >0,∴b =3.三、解答题 11.P 是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,求动点Q 的轨迹方程.解 由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=2PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=-12(x ,y ) =⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y 2,又P 点在椭圆上, ∴⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1, ∴动点Q 的轨迹方程为x 24a 2+y 24b2=1 (a >b >0). 12.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解 设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 设焦点F 1(-c ,0),F 2(c ,0)(c >0). ∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c ,3),F 2A →=(-4-c ,3), ∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2|=-4+52+32+-4-52+32 =10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.13.已知椭圆y 2a 2+x 2b 2=1(a >b >0)的焦点分别为F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值. 解 (1)由题意得椭圆焦点在y 轴上,且c =1. 又∵3a 2=4b 2,∴a 2-b 2=14a 2=c 2=1,∴a 2=4,b 2=3,∴椭圆的标准方程为y 24+x 23=1.(2)如图所示,|PF 1|-|PF 2|=1.又由椭圆定义知,|PF 1|+|PF 2|=4, ∴|PF 1|=52,|PF 2|=32,|F 1F 2|=2,∴cos ∠F 1PF 2=522+322-222×52×32=35.。

高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程(1)教案 新人教B版选修2-1-新人

高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程(1)教案 新人教B版选修2-1-新人
椭圆及其标准方程
课题
椭圆及其标准方程1
课时
第一课时
课型
新授
教学
重点
1、椭圆的定义
2、椭圆方程
依据:2018年高考大纲分析:认识命题,准确判断命题的真假
教学
难点
椭圆方程的推倒
依据:学生的计算能力较差积累、归纳总结规律不够。
自主
学习
目标
一、知识目标:懂得椭圆的实际背景,椭圆标准方程的推导与化简过程.2.说出椭圆的定义、标准方程及几何图形
1、学生先独立完成例题,然后以小组为单位统一答案。
2、小组讨论并展示自己组所写的过程
3、其他组给予评价〔主要是找错,纠错〕
在具体问题中,记住椭圆方程的形式,挖掘内在规律、发现数学的本质。
加深对 椭圆方程的记忆。
10分钟
4.
总结提 升
1、椭圆定义。
2、椭圆方程。
1、提问:本节课学习目标是否达成?
1、讨论思考3 提出的问题。
1探究焦点三角形的有关结论册34页
2完成课后练习册35页1-6、8同桌检查并签字〕,思考练习B组题〔要求有痕迹〕。
让学生明确下节课所学,有的放矢进行自主学习。
4分钟
7
板书设 计
椭圆及其标准方程 例题展示:
例1:
1、椭圆定义: 例2:
2、椭圆方程 例3:
8
课 后反 思
反复记背椭圆定义,加深理解。
焦点在哪个轴上的判断。
二、能力目标:
能从具体情境中抽象出椭圆的过程,推倒出椭圆方程。
教具
多媒体课件、教材,教辅
教学
环节
教学内容
教师行为
学生行为
设计意图
时间
1.

高中数学 第2章 圆锥曲线与方程 2.1.1 椭圆定义及其标准方程教案 湘教版选修11

高中数学 第2章 圆锥曲线与方程 2.1.1 椭圆定义及其标准方程教案 湘教版选修11

椭圆定义及其标准方程一、背景介绍解读大纲,结合新一轮课程改革的精神,我们不难发现数学教学“不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索,动手实践、合作交流、阅读自学等学习数学的方式,使学生的学习过程成为教师引导下的‘再创造’过程,要设立‘数学探索’教学建模等学习活动,让学生体验数学发现和创造的历程。

”二、教学过程1、创设情景,引出课题——椭圆定义及其标准方程。

教师:我们以前学习过圆,请同学们回忆一下圆的定义。

学生1:平面上到定点的距离等于定长的点的轨迹。

教师:我们是怎么画圆的呢?(课前要求学生每人准备一块硬纸板,两颗图钉及一根定长绳子)谁上黑板来演示呢?学生2:(上黑板来演示)教师:“圆是动点P到定点O的距离为常数的点的轨迹”说成“圆是动点P到定点O的来回距离之和为常数的点的轨迹”,行吗?学生:(齐声地)行。

教师:现在把这根绳子的两端分别系在两颗图钉上,并分开固定在两个点F1、F2上,并保持拉紧状态移动铅笔,请你们再画一画会是什么样的曲线?学生:(动手画椭圆)教师:(演示几位学生所画的椭圆)我们看到这个曲线的形状正是一个压扁了的圆,我们称为椭圆。

(黑板上写出课题:椭圆定义及其标准方程)大家看,椭圆是一个很美的图形,生活中你在哪里见过椭圆的这种曲线,能否举例呢?学生:地球运动轨迹,……等等。

2、通过实验,自主探究,椭圆的定义以及椭圆的扁圆与焦距定线段长之间的关系。

教师:刚才大家对椭圆有了形象上的认识,我们不仅作出了椭圆这个曲线,而且还在生活实践中找到它的应用,下面我们能否给出它的定义呢?学生3:椭圆是平面上到两个定点的距离之和为常数的点的轨迹。

(教师在黑板上写出学生总结的椭圆定义)教师:很好。

(教师拿起两个学生所画的椭圆展示)同学们画椭圆时,线段是一样长的,为什么我们所画出的椭圆不一样,有扁有圆呢?学生4:这与两定点F1、F2的位置有关。

教师:很好。

我们改变一下F1、F2的位置,大家画一画椭圆,看一看到底有何关系?学生5:F1、F2位置越近椭圆愈圆,F1、F2位置越远椭圆愈扁。

高中数学第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程1数学教案

高中数学第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程1数学教案

2.1.1 椭圆及其标准方程预习课本P32~36,思考并完成以下问题1.平面内满足什么条件的点的轨迹为椭圆?椭圆的焦点、焦距分别是什么?2.椭圆的标准方程是什么?[新知初探]1.椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.[点睛] 定义中的条件2a>|F1F2|>0不能少,这是根据三角形中的两边之和大于第三边得出来的.否则:①当2a=|F1F2|时,其轨迹为线段F1F2;②当2a<|F1F2|时,其轨迹不存在.2.椭圆的标准方程焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形焦点坐标(-c,0),(c,0)(0,-c),(0,c) a,b,c的关系c2=a2-b2(1)几何特征:椭圆的中心在坐标原点,焦点在x 轴或y 轴上.(2)代数特征:方程右边为1,左边是关于x a 与yb的平方和,并且分母为不相等的正值.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)平面内到两定点距离之和等于定长的点的轨迹为椭圆( )(2)已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,则动点Q 的轨迹为圆( )(3)方程x 2a 2+y 2b2=1(a >0,b >0)表示的曲线是椭圆( )答案:(1)× (2)√ (3)×2.若椭圆x 25+y 2m=1的一个焦点坐标为(1,0),则实数m 的值为( )A .1B .2C .4D .6答案:C3.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10 答案:D4.若椭圆的焦距为6,a -b =1,则椭圆的标准方程为________________.答案:x 225+y 216=1或y 225+x 216=1求椭圆的标准方程[典例](1)椭圆的两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点距离的和等于10;(2)椭圆的两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝ ⎛⎭⎪⎫-32,52;(3)椭圆的焦点在x 轴上,a ∶b =2∶1,c = 6.[解] (1)椭圆的焦点在x 轴上,故设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,c =4,∴b 2=a 2-c 2=9. ∴椭圆的标准方程为x 225+y 29=1. (2)椭圆的焦点在y 轴上,故设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由椭圆的定义,知2a =⎝ ⎛⎭⎪⎫-32-02+⎝ ⎛⎭⎪⎫52+22+ ⎝ ⎛⎭⎪⎫-32-02+⎝ ⎛⎭⎪⎫52-22=3102+102=210,∴a =10.又∵c =2,∴b 2=a 2-c 2=10-4=6. ∴椭圆的标准方程为y 210+x 26=1. (3)∵c =6,∴a 2-b 2=c 2=6.①又由a ∶b =2∶1,得a =2b ,代入①得4b 2-b 2=6, ∴b 2=2,∴a 2=8.又∵椭圆的焦点在x 轴上, ∴椭圆的标准方程为x 28+y 22=1.[活学活用]求适合下列条件的椭圆的标准方程: (1)经过两点(2,-2),⎝⎛⎭⎪⎪⎫-1,142; (2)过点(3,-5),且与椭圆y 225+x 29=1有相同的焦点. 解:(1)法一:(分类讨论法)若焦点在x 轴上,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由已知条件得⎩⎪⎨⎪⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎪⎨⎪⎧a 2=8,b 2=4.所以所求椭圆的标准方程为x 28+y 24=1.若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由已知条件得⎩⎪⎨⎪⎧4b 2+2a 2=1,1b 2+144a 2=1,解得⎩⎪⎨⎪⎧b 2=8,a 2=4.则a 2<b 2,与题设中a >b >0矛盾,舍去. 综上,所求椭圆的标准方程为x 28+y 24=1. 法二:(待定系数法)设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).将两点(2,-2),⎝⎛⎭⎪⎪⎫-1,142代入,得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎪⎨⎪⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.(2)因为所求椭圆与椭圆y 225+x 29=1的焦点相同,所以其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). 因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.① 又点(3,-5)在椭圆上,所以-52a2+32b2=1,即5a 2+3b2=1.②由①②得b 2=4,a 2=20,所以所求椭圆的标准方程为 y 220+x 24=1. 椭圆的定义及其应用[典例] (1)已知椭圆的方程为x 2a 2+y 225=1(a >5),它的两个焦点分别为F 1,F 2,且|F 1F 2|=8,弦AB 过点F 1,则△ABF 2的周长为( )A .10B .20C .241D .441(2)如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,则△PF 1F 2的面积为________.[解析] (1)∵a >5,∴椭圆的焦点在x 轴上.又c =4, ∴a 2-25=42,∴a =41.由椭圆的定义知△ABF 2的周长=|BA |+|F 2B |+|F 2A |=|BF 1|+|BF 2|+|AF 1|+|AF 2|=4a =441.(2)由已知得a =2,b =3,所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2. 在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1|·|F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|.① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|.② 将②代入①解得|PF 1|=65.所以S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335, 即△PF 1F 2的面积是335.[答案] (1)D (2)335[活学活用]1.如图所示,已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|,则椭圆的标准方程为____________.解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,则由已知得c =1,|F 1F 2|=2,所以4=|PF 1|+|PF 2|=2a ,所以a =2,所以b 2=a 2-c 2=4-1=3,所以椭圆的标准方程为x 24+y 23=1.答案:x 24+y 23=12.已知椭圆x 29+y 22=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2=________.解析:由题意,得a 2=9,∴a =3,c 2=a 2-b 2=9-2=7,∴c =7,∴|F 1F 2|=27.∵|PF 1|=4,∴|PF 2|=2a -|PF 1|=2. ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1||PF 2|=42+22-2722×4×2=-12,∴∠F 1PF 2=120°. 答案:120°与椭圆有关的轨迹问题[典例] (1)已知P 是椭圆x 24+y 28=1上一动点,O 为坐标原点,则线段OP 中点Q 的轨迹方程为________.(2)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,求C 的方程.[解析] (1)设P (x P ,y P ),Q (x ,y ),由中点坐标公式得⎩⎪⎨⎪⎧x =x P2,y =yP2,所以⎩⎪⎨⎪⎧x P =2x ,y P =2y ,又点P 在椭圆x 24+y 28=1上,所以2x24+2y 28=1,即x 2+y 22=1.答案:x 2+y 22=1(2)解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .动圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).解决与椭圆有关的轨迹问题的两种方法求过点P (3,0)且与圆x 2+6x +y 2-91=0相内切的动圆圆心的轨迹方程.解:圆方程配方整理得(x +3)2+y 2=102,圆心为C 1(-3,0),半径为R =10.设所求动圆圆心为C (x ,y ),半径为r ,依题意有⎩⎪⎨⎪⎧|PC |=r ,|CC 1|=R -r ,消去r 得R -|PC |=|CC 1|⇒|PC |+|CC 1|=R ,即|PC |+|CC 1|=10.又P (3,0),C 1(-3,0),且|PC 1|=6<10.可见C 点是以P ,C 1为两焦点的椭圆,且c =3,2a =10,所以a =5,从而b =4,故所求的动圆圆心的轨迹方程为x 225+y 216=1.层级一 学业水平达标1.若椭圆x 225+y 24=1上一点P 到焦点F 1的距离为3,则点P 到另一焦点F 2的距离为( )A .6B .7C .8D .9解析:选B 根据椭圆的定义知,|PF 1|+|PF 2|=2a =2×5=10,因为|PF 1|=3,所以|PF 2|=7.2.若椭圆x 2m +y 24=1的焦距为2,则m 的值为( )A .5B .3C .5或3D .8解析:选C 由题意得c =1,a 2=b 2+c 2.当m >4时,m =4+1=5;当m <4时,4=m +1,∴m =3.3.命题甲:动点P 到两定点A ,B 的距离之和|PA |+|PB |=2a (a >0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选B 利用椭圆定义.若P 点轨迹是椭圆,则|PA |+|PB |=2a (a >0,常数),∴甲是乙的必要条件.反过来,若|PA |+|PB |=2a (a >0,常数)是不能推出P 点轨迹是椭圆的.这是因为:仅当2a >|AB |时,P 点轨迹才是椭圆;而当2a =|AB |时,P 点轨迹是线段AB ;当2a <|AB |时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.4.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a的取值范围是( )A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2解析:选D 由a 2>a +6>0得⎩⎪⎨⎪⎧a 2-a -6>0,a +6>0,所以⎩⎪⎨⎪⎧a <-2或a >3,a >-6,所以a >3或-6<a <-2.5.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A.x 212+y 29=1B.x 212+y 29=1或x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或x 245+y 248=1 解析:选B 由已知2c =|F 1F 2|=23,∴c = 3.∵2a =|PF 1|+|PF 2|=2|F 1F 2|=43, ∴a =2 3.∴b 2=a 2-c 2=9. 故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1. 6.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.解析:由直线AB 过椭圆的一个焦点F 1,知|AB |=|F 1A |+|F 1B |,∴在△F 2AB 中,|F 2A |+|F 2B |+|AB |=4a =20,又|F 2A |+|F 2B |=12,∴|AB |=8.答案:87.已知椭圆C 经过点A (2,3),且点F (2,0)为其右焦点,则椭圆C 的标准方程为________________.解析:法一:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的标准方程为x 216+y 212=1.法二:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),则⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4,解得b 2=12或b 2=-3(舍去),从而a 2=16.所以椭圆C 的标准方程为x 216+y 212=1.答案:x 216+y 212=18.椭圆的两焦点为F 1(-4,0),F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为__________.解析:如图,当P 在y 轴上时 △PF 1F 2的面积最大, ∴12×8b =12,∴b =3. 又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1. 答案:x 225+y 29=19.求符合下列条件的椭圆的标准方程.(1)过点⎝⎛⎭⎪⎪⎫63,3和⎝ ⎛⎭⎪⎪⎫223,1; (2)过点(-3,2)且与椭圆x 29+y 24=1有相同的焦点.解:(1)设所求椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ).∵椭圆过点⎝⎛⎭⎪⎪⎫63,3和⎝ ⎛⎭⎪⎪⎫223,1, ∴⎩⎪⎨⎪⎧m ·⎝⎛⎭⎪⎪⎫632+n ·32=1,m ·⎝ ⎛⎭⎪⎪⎫2232+n ·12=1,解得⎩⎪⎨⎪⎧m =1,n =19.∴所求椭圆的标准方程为x 2+y 29=1.(2)由题意得已知椭圆x 29+y 24=1中a =3,b =2,且焦点在x 轴上,∴c 2=9-4=5.∴设所求椭圆方程为x 2a ′2+y 2a ′2-5=1.∵点(-3,2)在所求椭圆上,∴9a ′2+4a ′2-5=1.∴a ′2=15或a ′2=3(舍去). ∴所求椭圆的标准方程为x 215+y 210=1. 10.已知椭圆y 2a 2+x 2b 2=1(a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的标准方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值.解:(1)依题意,知c 2=1,又c 2=a 2-b 2,且3a 2=4b 2,所以a 2-34a 2=1,即14a 2=1,所以a 2=4,b 2=3,故椭圆的标准方程为y 24+x 23=1.(2)由于点P 在椭圆上,所以|PF 1|+|PF 2|=2a =2×2=4.又|PF 1|-|PF 2|=1,所以|PF 1|=52,|PF 2|=32.又|F 1F 2|=2c =2,所以由余弦定理得cos ∠F 1PF 2=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫322-222×52×32=35. 故∠F 1PF 2的余弦值等于35.层级二 应试能力达标1.下列说法中正确的是( )A .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于8的点的轨迹是椭圆B .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于6的点的轨迹是椭圆C .平面内到点F 1(-4,0),F 2(4,0)两点的距离之和等于点M (5,3)到F 1,F 2的距离之和的点的轨迹是椭圆D .平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆解析:选C A 中,|F 1F 2|=8,则平面内到F 1,F 2两点的距离之和等于8的点的轨迹是线段,所以A 错误;B 中,到F 1,F 2两点的距离之和等于6,小于|F 1F 2|,这样的轨迹不存在,所以B 错误;C 中,点M (5,3)到F 1,F 2两点的距离之和为5+42+32+5-42+32=410>|F 1F 2|=8,则其轨迹是椭圆,所以C 正确;D 中,轨迹应是线段F 1F 2的垂直平分线,所以D 错误.故选C.2.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1―→·PF 2―→=0,则△F 1PF 2的面积为( ) A .9 B .12 C .10D .8解析:选A ∵PF 1―→·PF 2―→=0,∴PF 1⊥PF 2.∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a . 又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=64, ①|PF 1|+|PF 2|=10. ②②2-①,得2|PF 1|·|PF 2|=36, ∴|PF 1|·|PF 2|=18,∴△F 1PF 2的面积为S =12·|PF 1|·|PF 2|=9.3.若α∈⎝ ⎛⎭⎪⎫0,π2,方程x 2sin α+y 2cos α=1表示焦点在y轴上的椭圆,则α的取值范围是( )A.⎝ ⎛⎭⎪⎫π4,π2B.⎝⎛⎦⎥⎤0,π4C.⎝ ⎛⎭⎪⎫0,π4D.⎣⎢⎡⎭⎪⎫π4,π2解析:选A 易知sin α≠0,cos α≠0,方程x 2sin α+y 2cosα=1可化为x 21sin α+y 21cos α=1.因为椭圆的焦点在y 轴上,所以1cos α>1sin α>0,即sin α>cos α>0.又α∈⎝ ⎛⎭⎪⎫0,π2,所以π4<α<π2.4.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心:且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.5.若椭圆2kx 2+ky 2=1的一个焦点为(0,-4),则k 的值为________.解析:易知k ≠0,方程2kx 2+ky 2=1变形为y 21k +x 212k=1,所以1k-12k =16,解得k =132. 答案:1326.已知椭圆C :x 29 +y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则 |AN |+|BN |=________.解析:取MN 的中点G ,G 在椭圆C 上,因为点M 关于C 的焦点F 1,F 2的对称点分别为A ,B ,故有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.答案:127.已知点P 在椭圆上,且P 到椭圆的两个焦点的距离分别为5,3.过P 且与椭圆的长轴垂直的直线恰好经过椭圆的一个焦点,求椭圆的标准方程.解:法一:设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,2c2=52-32,解得⎩⎪⎨⎪⎧a =4,c =2,所以b 2=a 2-c 2=12.于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1.法二:设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0),两个焦点分别为F 1,F 2.由题意知2a =|PF 1|+|PF 2|=3+5=8,所以a =4.在方程x 2a 2+y 2b 2=1中,令x =±c ,得|y |=b 2a ;在方程y 2a 2+x 2b 2=1中,令y =±c ,得|x |=b 2a .依题意有b 2a=3,得b 2=12.于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1.8. 如图在圆C :(x +1)2+y 2=25内有一点A (1,0).Q 为圆C 上一点,AQ 的垂直平分线与C ,Q的连线交于点M ,求点M 的轨迹方程.解:如图,连接MA .由题意知点M 在线段CQ 上,从而有|CQ |=|MQ |+|MC |.又点M 在AQ 的垂直平分线上,则|MA |=|MQ |,故|MA |+|MC |=|CQ |=5.又A (1,0),C (-1,0),故点M 的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a =5,故a =52,c =1,b 2=a 2-c 2=254-1=214.故点M的轨迹方程为x2254+y2214=1.。

高中数学第二章圆锥曲线与方程2.1.1椭圆及其标准方程预习导学案新人教B版选修1_1201711014141

2.1.1 椭圆及其标准方程
预习导航
课程目标 学习脉络
1.掌握椭圆的定义,掌握椭圆标准方程的两种形式
及其推导过程.
2.能根据条件确定椭圆的标准方程,掌握待定系
数法求椭圆的标准方程.
1.椭圆的定义
思考 1椭圆的定义中去掉限制条件后,动点 M 的轨迹还是椭圆吗?
提示:不一定是.当 2a <|F 1F 2|时,动点 M 的轨迹不存在.当 2a =|F 1F 2|时,动点 M 的轨 迹为线段 F 1F 2.
2.椭圆的标准方程
焦点在 x 轴上
焦点在 y 轴上 x 2 y 2 标准方程 + =1(a >b >0)
a 2
b 2 y 2 x 2 + =1(a >b >0) a 2 b 2 焦点坐标 F 1(-c,0),F 2(c,0)
F 1(0,-c ),F 2(0,c ) a ,b ,c 的关系
a 2=
b 2+
c 2 a 2=b 2+c 2 思考 2椭圆的标准方程具有怎样的特征?
提示:椭圆的标准方程的几何特征是中心在坐标原点,焦点在坐标轴上.椭圆的标准方程 的代数特征是方程的右边为 1,左边是平方和的形式,并且分母为不相等的正数. 思考 3如何根据椭圆的标准方程确定焦点的位置?
提示:依据分母的大小来判断.焦点所在轴的对应分母大.
特别提醒 在已知椭圆的标准方程解题时,应特别注意 a >b >0这个条件.
1。

《椭圆的定义及其标准方程》教学设计

课题:§ 2.1.1椭圆的定义及其标准方程鹿城中学田光海一、教案背景:1. 面向对象:高中二年级学生2. 学科:数学3. 课时:2课时4. 教学内容:高中新课程标准教科书《数学》北师大版选修1-1 第二章圆锥曲线与方程§ 2.1.1椭圆及其标准方程二.教材分析本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。

椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。

因此这节课有承前启后的作用,是本章的重点内容之一。

1. 教法分析结合生活经验观察发现、启发引导、探究合作。

在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。

利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识, 体验成功。

主要采用探究实践、启发与讲练相结合。

2. 学法分析从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。

从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述?如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。

他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

3. 教学目标知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。

高中数学第二章圆锥曲线与方程2.1.1椭圆及其标准方程导学案新人教A版选修1_1

椭圆及其标准方程1.了解椭圆的实际背景,从具体情境中抽象出椭圆的过程和其标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形,会用待定系数法求椭圆的标准方程.重点:椭圆的定义和椭圆标准方程的两种形式.难点:椭圆标准方程的建立和推导.方法:合作探究一新知导学椭圆的定义1.我们已知平面内到两定点距离相等的点的轨迹为____________________,那么平面内到两定点距离的和(或差)等于常数的点的轨迹是什么呢?2.平面内与两个定点F1、F2的距离的________等于常数(大于|F1F2|)的点的轨迹(或集合),叫做椭圆.这两个定点叫做椭圆的________,__________间的距离叫做椭圆的焦距.当常数等于| F1 F2|时轨迹为____________,当常数小于| F1 F2 |时,轨迹__________.牛刀小试11.已知F1、F2是两点,|F1F2|=8,1)动点M满足|MF1|+|MF2|=10,则点M的轨迹是______________.2)动点M满足|MF1|+|MF2|=8,则点M的轨迹是____________.椭圆标准方程若椭圆的焦点在x轴上,可设它的标准方程为(a>b>0)若椭圆的焦点在y轴上,椭圆的标准方程为(a>b>0)若不能确定焦点的位置,就需分类讨论;或避免讨论利用椭圆方程的一般形式(通常设为Ax2+By2=1(A>0,B>0,A≠B));牛刀小试21.椭圆x225+y2169=1的焦点坐标是()A(±5,0)B.(0,±5) C.(0,±12) D.(±12,0)2.椭圆x216+y27=1的左、右焦点分别为F1、F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为()A.32 B.16 C.8 D.43.求适合下列条件的椭圆的标准方程:1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P与两焦点的距离的课堂随笔:和等于8;2)两个焦点的坐标分别为(0,-4),(0,4),并且椭圆经过点(3,-5).(一)椭圆的定义【例一】1)椭圆x 225+y 216=1上一点M 到一个焦点的距离为4,则M 到另一个点的距离为( ) A .4 B .6 C .8 D .22)如果方程x 24-m +y 2m -3=1表示焦点在x 轴上的椭圆,则m 的取值范围为( )A.3<m <4 B .m >72 C .3<m <72 D .72<m <4跟踪训练11)对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2)椭圆x225+y29=1的两焦点为F 1、F 2,一直线过F 2交椭圆于P 、Q 两点,则△PQF 1的周长为__________.(二)求椭圆的标准方程【例二】 求适合下列条件的椭圆的标准方程:1)两个焦点的坐标分别为F1(-4,0),F2(4,0),并且椭圆上一点P 与两焦点的距离的和等于10;2)焦点分别为(0,-2),(0,2),经过点(4,32); 3)经过两点(2,-2),(-1,142).跟踪训练21)已知椭圆的两个焦点坐标分别是(0,-2)和(0,2),且过点(-32,52),则椭圆的标准方程为__________.2)已知椭圆经过点(3,12),(152,-14),求其标准方程.(三)焦点三角形问题【例3】如图所示,已知点P 是椭圆y 25+x 24=1上的点,F 1和F 2是焦点,且∠F 1PF 2=30°,求△F 1PF 2的面积.如图所示,已知点P 是椭圆y25+x24=1上的点,F 1和F 2是焦点,且∠F 1PF 2=30°,求△F 1PF 2的面积.分析:解焦点三角形问题常用 几何法、代数法跟踪训练3已知椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则△F 1PF 2的面积为( )A .9B .12C .10D 、8 A (四)定义法解决轨迹问题【例4】、已知B 、C 是两个定点,|BC |=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程.跟踪训练4后记与感已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆和圆C 1内切,和圆C 2外切,求动圆圆心的轨迹方程.课时小结:课后作业:一、选择题1.椭圆2x 2+3y 2=12的两焦点之间的距离是( )A .210B .10C . 2D .2 2.2.(2015·广东文)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .93.(2015·海南中学期中考试)已知F 1,F 2是椭圆x 216+y 29=1的两个焦点,过点F 2的直线交椭圆于点A ,B ,若|AB |=5,则|AF 1|+|BF 1|=( )A .11B .10C .9D .164.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为__________ ________. 5.已知方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则m 的取值范围是__________ ________. 三、解答题6.根据下列条件,求椭圆的标准方程.(1)经过两点A (0,2),B (12,3);(2)经过点(2,-3)且与椭圆9x 2+4y 2=36有共同的焦点.悟:答案 牛刀小试11)以F 1、F 2为焦点,焦距为8的椭圆 2)线段F 1F 2牛刀小试2 1、C 2、B 3、1)x 216+y 27=1 2)y 220+x 24=1例一B C 跟踪训练1 B 20 例二答案1)由题意可知椭圆的焦点在x 轴上,且c =4,2a =10, ∴a =5,b 2=a 2-c 2=25-16=9. ∴椭圆的标准方程为x 225+y 29=1.2)解法一:∵椭圆的焦点在y 轴上,∴可设它的标准方程为x 2a 2+y 2b2=1(a >b >0).由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12, 所以a =6.又c =2,所以b 2=a 2-c 2=32. ∴椭圆的标准方程为y 236+x 232=1.3)解法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将两点(2,-2),(1,142)代入, 得⎩⎪⎨⎪⎧4A +2B =1A +144B =1,解得⎩⎪⎨⎪⎧A =18B =14.跟踪训练2(1)(定义法)由椭圆的定义知, 2a =-322+52+22+-322+52-22=210,∴a =10. 又c =2,∴b 2=6. 又∵椭圆的焦点在y 轴上, ∴所求椭圆的标准方程为y 210+x 26=1.(2)(待定系数法)设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ),把点(3,12),(152,-14)分别代入方程,列方程组为⎩⎪⎨⎪⎧3A +B4=1,15A 4+B16=1,解得A =14,B =1,∴椭圆标准方程为x 24+y 2=1.例三分析: 在椭圆y 25+x 24=1中,a =5,b =2,∴c =a 2-b 2=1,又∵点P 在椭圆上,∴|PF 1|+|PF 2|=2a =2 5①由余弦定理知|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos30°=|F 1F 2|2=(2c )2=4② ①式两边平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=20 ③③-②得(2+3)|PF 1|·|PF 2|=16, ∴|PF 1|·|PF 2|=16(2-3),∴S △PF 1F 2=12|PF 1|·|PF 2|·sin30°=8-4 3跟踪训练3 A例4 以过B 、C 两点的直线为x 轴,线段BC 的垂直平分线为y 轴,建立直角坐标系xOy ,如图所示.由|BC |=8,可知点B (-4,0),C (4,0),c =4.由|AB |+|AC |+|BC |=18,|BC |=8,得|AB |+|AC |=10.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之和2a =10,但点A 不在x 轴上.由a =5,c =4,得b 2=a 2-c 2=25-16=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).跟踪训练4如图所示,设动圆圆心为M (x ,y ),半径 由题意得动圆M 和内切于圆C 1, ∴|MC 1|=13-r . 圆M 外切于圆C 2, ∴|MC 2|=3+r .∴|MC 1|+|MC 2|=16>|C 1C 2|=8,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆, 且2a =16,2c =8,b 2=a 2-c 2=64-16=48, 故所求椭圆方程为x 264+y 248=1.[答案] D B A x 24+y 23=1 8<m <256 、 1)x 2+y 24=1. 2) x 210+y 215=1。

高二数学人教A版选修1-1学案第二章2-12-1-1椭圆及其标准方程Word版含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)椭圆的定义用集合语言叙述为:P={M||MF1|+|MF2|=2a,2a>|F1F2|}.定义中的常数不满足2a>|F1F2|时点的轨迹是什么?提示:(1)当|PF1|+|PF2|=2a<|F1F2|时,P的轨迹不存在.(2)当|PF1|+|PF2|=2a=|F1F2|时,P的轨迹为以F1,F2为端点的线段.2.椭圆的标准方程椭圆标准方程的两种形式焦点位置标准方程焦点焦距焦点在x轴上x2a2+y2b2=1(a>b>0)F1(-c,0),F2(c,0)2c焦点在y轴上y2a2+x2b2=1(a>b>0)F1(0,-c),F2(0,c)2c(1)从椭圆的标准方程如何判断椭圆焦点的位置?提示:判断椭圆焦点在哪个轴上就要判断椭圆标准方程中x2项和y2项的分母哪个更大一些,即“谁大在谁上”.(2)在椭圆的标准方程中a>b>c一定成立吗?提示:不一定,只需a>b,a>c即可,b,c的大小关系不确定.1.辨析记忆(对的打“√”,错的打“×”)(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.()提示:(1)×.因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆.(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.( )提示:(2)×.2a<|F 1F 2|,动点的轨迹不存在.(3)平面内到点F 1(-4,0),F 2(4,0)两点的距离之和等于点M(5,3)到F 1,F 2的距离之和的点的轨迹是椭圆.( ) 提示:(3)√.符合椭圆的定义.(4)平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆.( ) 提示:(4)×.平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是线段F 1F 2的垂直平分线.2.椭圆x 216 +y 225 =1的焦点为F 1,F 2,P 为椭圆上一点,若||PF 1 =2,则||PF 2 =( )A .2B .4C .6D .8【解析】选D.由题意a =5,||PF 1 +||PF 2 =2a , 所以||PF 2 =2a -||PF 1 =10-2=8.3.(教材二次开发:例题改编)设F 1,F 2为定点,||F 1F 2 =6,动点M 满足||MF 1 +||MF 2 =10,则动点M 的轨迹是________.(从以下选择:椭圆.直线.圆.线段)【解析】动点M 满足||MF 1 +||MF 2 =10>6=|F 1F 2|,所以点M 的轨迹是以F 1,F 2为焦点的椭圆. 答案:椭圆类型一 求椭圆的标准方程(数学运算)1.(2021·昆明高二检测)已知椭圆的两个焦点是⎝⎛⎭⎫-3,0 ,⎝⎛⎭⎫3,0 ,且点⎝⎛⎭⎫0,2 在椭圆上,则椭圆的标准方程是( )A .x 213 +y 24 =1 B .x 29 +y 24 =1 C .x 24 +y 213 =1D .x 213 -y 24 =1【解析】选A.由题意,因为椭圆的两个焦点是(-3,0),(3,0),所以c =3,且焦点在x 轴上,又因为椭圆过点⎝⎛⎭⎫0,2 ,所以b =2,根据a 2=b 2+c 2,可得a =13 ,故椭圆的标准方程为x213+y 24 =1.2.已知椭圆C :x 2a 2 +y 2b 2 =1(a>b>0)的左焦点为F(- 3 ,0),且椭圆C 上的点与长轴两端点构成的三角形面积最大值为3 2 ,则椭圆C 的方程为( ) A .x 23 +y 2=1 B .x 24 +y 2=1 C .x 26 +y 23 =1D .x 29 +y 26 =1【解析】选C.因为椭圆C 的左焦点为F(- 3 ,0),所以c = 3 , 又因为椭圆C 上的点与长轴两端点构成的三角形面积的最大值为3 2 ,即12 ×2a×b =ab =3 2 ①又因为a 2=b 2+c 2,即a 2=b 2+3② 由①②解得:a = 6 ,b = 3 , 椭圆C 的方程为x 26 +y 23 =1.3.求中心在原点,焦点在坐标轴上,且经过两点P ⎝ ⎛⎭⎪⎫13,13 ,Q ⎝ ⎛⎭⎪⎫0,-12的椭圆的标准方程.【解析】方法一:(1)当椭圆焦点在x 轴上时,可设椭圆的标准方程为x 2a 2 +y 2b 2 =1(a>b>0).依题意,有⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫132a 2+⎝ ⎛⎭⎪⎫132b 2=1,0+⎝ ⎛⎭⎪⎫-122b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=14.由a>b>0,知不合题意,故舍去.(2)当椭圆焦点在y 轴上时,可设椭圆的标准方程为y 2a 2 +x 2b 2 =1(a>b>0).依题意,有⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫132a 2+⎝ ⎛⎭⎪⎫132b 2=1,⎝ ⎛⎭⎪⎫-122a2+0=1,解得⎩⎪⎨⎪⎧a 2=14,b 2=15.所以所求椭圆的标准方程为y 214 +x 215=1.方法二:设椭圆的方程为mx 2+ny 2=1(m>0,n>0,m≠n).则⎩⎨⎧⎝ ⎛⎭⎪⎫132m +⎝ ⎛⎭⎪⎫132n =1,⎝ ⎛⎭⎪⎫-122n =1,解得⎩⎨⎧m =5,n =4.所以所求椭圆的方程为5x 2+4y 2=1, 故椭圆的标准方程为y 214 +x 215=1.1.求曲线方程首先考虑比较简单的定义法,也可以用待定系数法. 2.待定系数法求椭圆标准方程的步骤(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上,还是在两个坐标轴上都有可能. (2)设方程.①依据上述判断设方程为x 2a 2 +y 2b 2 =1(a>b>0)或y 2a 2 +x 2b 2 =1(a>b>0); ②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m>0,n>0且m≠n).(3)找关系:依据已知条件,建立关于a ,b 或m ,n 的方程组.(4)得方程:解方程组,将a ,b 或m ,n 代入所设方程即为所求. 提醒:焦点所在坐标轴不同,其标准方程的形式也不同. 类型二 椭圆中的焦点三角形问题(数学运算)【典例】(1)椭圆x 29 +y 22 =1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,求∠F 1PF 2的大小.(2)已知椭圆x 24 +y 23 =1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积. 【思路导引】【解析】(1)由x 29 +y 22 =1,知a =3,b = 2 , 所以c =7 ,|PF 2|=2a -|PF 1|=2, 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2| =-12 ,所以∠F 1PF 2=120°.(2)由x 24 +y 23 =1,知a =2,b = 3 ,所以c =a 2-b 2 =1,|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos ∠PF 1F 2, 即|PF 2|2=|PF 1|2+4+2|PF 1|.① 由椭圆定义得|PF 1|+|PF 2|=2a =4.② 由①②联立得|PF 1|=65 .所以12PFF S =12 |PF 1||F 1F 2|sin ∠PF 1F 2 =12 ×65 ×2×32 =335 .1.椭圆定义的应用(1)实现椭圆上的点与两个焦点连线长度之间的相互转化. (2)将椭圆上的点与两焦点连线的和看成一个整体,求解定值问题. 2.椭圆定义解题的整体思想对于椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2,如果已知∠F 1PF 2,可利用S =12 |PF 1||PF 2|sin ∠F 1PF 2把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出|PF 1|和|PF 2|,这样可以减少运算量.1.已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左,右焦点为F 1,F 2,离心率为33 ,过点F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3 ,则C 的方程为________.【解析】由题意及椭圆的定义知4a =4 3 , 则a = 3 .又c a =c 3 =33 ,所以c =1.所以b 2=2. 所以C 的方程为x 23 +y 22 =1. 答案:x 23 +y 22 =12.已知P 是椭圆y 25 +x 24 =1上的一点,F 1,F 2是椭圆的两个焦点且∠F 1PF 2=30°,则△F 1PF 2的面积是________. 【解析】由椭圆方程知a =5 ,b =2, 所以c =a 2-b 2 =1,所以|F 1F 2|=2,又由椭圆定义知|PF 1|+|PF 2|=2a =2 5 . 在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2- 2|PF 1|·|PF 2|·cos ∠F 1PF 2, 即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+ 3 )|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=16(2- 3 ),12PFF S=12 |PF 1|·|PF 2|sin ∠F 1PF 2=12 ×16(2- 3 )×12 =8-43 . 答案:8-4 3【拓展延伸】椭圆中的焦点三角形:椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解. 【拓展训练】在椭圆C :x 2a 2 +y 2b 2 =1(a>b>0)的焦点三角形PF 1F 2中,∠F 1PF 2=α,点P 的坐标为(x 0,y 0),求证:△PF 1F 2的面积S △PF 1F 2=c|y 0|=b 2tan α2 .【证明】12PFF SS △PF 1F 2=12 |F 1F 2||y 0|=c|y 0|.在△PF 1F 2中,根据椭圆定义,得|PF 1|+|PF 2|=2a. 两边平方,得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2.① 根据余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2| cos α=4c 2.②, ①-②,得(1+cos α)|PF 1||PF 2|=2b 2, 所以|PF 1||PF 2|=2b 21+cos α.根据三角形的面积公式得12PFF S =12 |PF 1||PF 2|sin α =12 ·2b 21+cos α ·sin α=b 2·sin α1+cos α. 又因为sin α1+cos α =2sin α2cos α22cos 2α2 =sin α2cos α2=tan α2 , 所以12PFF S =b 2tan α2 . 类型三 与椭圆有关的轨迹问题(直观想象、数学运算)定义法【典例】一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.【思路导引】由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹.【解析】由已知,得两定圆的圆心和半径分别为Q 1(-3,0),R 1=1;Q 2(3,0),R 2=9.设动圆圆心为M(x ,y),半径为R ,如图.由题设有|MQ 1|=1+R ,|MQ 2|=9-R ,所以|MQ 1|+|MQ 2|=10>|Q 1Q 2|=6.由椭圆的定义知点M在以Q1,Q2为焦点的椭圆上,且a=5,c=3. 所以b2=a2-c2=25-9=16,故动圆圆心的轨迹方程为x225+y216=1.若将“圆Q1:(x+3)2+y2=1”改为“圆Q1:(x+3)2+y2=9”,试求这个动圆圆心的轨迹方程.【解析】由已知,得两定圆的圆心和半径分别为Q1(-3,0),R1=3;Q2(3,0),R2=9.设动圆圆心为M(x,y),半径为R.由题设有|MQ1|=3+R,|MQ2|=9-R,所以|MQ1|+|MQ2|=12>|Q1Q2|=6.由椭圆的定义知点M在以Q1,Q2为焦点的椭圆上,且a=6,c=3.所以b2=a2-c2=36-9=27,椭圆方程为x236+y227=1,又当M在点(-6,0)时,不存在圆符合题意,所以x≠-6,故动圆圆心的轨迹方程为x236+y227=1(x≠-6).代入法(相关点法)【典例】已知P是椭圆x24+y28=1上一动点;O为坐标原点,则线段OP的中点Q的轨迹方程为________.【思路导引】点Q为OP的中点⇒点Q与点P的坐标关系⇒代入法求解.【解析】设Q(x ,y),P(x 0,y 0),由点Q 是线段OP 的中点知x 0=2x ,y 0=2y , 又x 20 4 +y 20 8 =1,所以(2x )24 +(2y )28 =1,即x 2+y 22 =1.答案:x 2+y 22 =11.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.2.代入法(相关点法)若所求轨迹上的动点P(x ,y)与另一个已知曲线C :F(x ,y)=0上的动点Q(x 1,y 1)存在着某种联系,可以把点Q 的坐标用点P 的坐标表示出来,然后代入已知曲线C 的方程 F(x ,y)=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).1.已知动圆M 过定点A(-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.【解析】设动圆M 的半径为r ,则|MA|=r ,|MB|=8-r ,所以|MA|+|MB|=8,且8>|AB|=6,所以动点M 的轨迹是椭圆,且焦点分别是A(-3,0),B(3,0),且2a =8,所以a =4,c =3,b 2=a 2-c 2=16-9=7.所以所求动圆圆心M 的轨迹方程是x 216 +y 27 =1.2.(2021·洛阳高二检测)已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且||F 1F 2 是||PF 1 与||PF 2 的等差中项.(1)求此椭圆方程;(2)若点P 满足∠F 1PF 2=60°,求△PF 1F 2的面积.【解析】(1)设所求椭圆方程为x 2a 2 +y 2b 2 =1(a>0,b>0),根据已知可得||F 1F 2 =2,所以||PF 1 +||PF 2 =4=2a ,所以a =2,b 2=a 2-c 2=4-1=3,所以此椭圆方程为x 24 +y 23 =1;(2)在△PF 1F 2中,设||PF 1 =m ,||PF 2 =n ,由余弦定理得4=m 2+n 2-2mn·cos 60°,所以4=(m +n)2-2mn -2mn·cos 60°=16-3mn ,mn =4,所以12PFF S S △PF 1F 2=12 mn·sin 60°=12 ×4×32 =3 .1.若方程x 220+a +y 24-a =1表示椭圆,则实数a 的取值范围是() A .⎝⎛⎭⎫-20,4B .⎝⎛⎭⎫-20,-8 ∪⎝⎛⎭⎫-8,4C .⎝⎛⎭⎫-∞,-20 ∪⎝⎛⎭⎫4,+∞D .⎝⎛⎭⎫-∞,-20 ∪⎝⎛⎭⎫-8,+∞【解析】选B.因为方程x 220+a +y 24-a=1表示椭圆, 所以有⎩⎪⎨⎪⎧20+a>0,4-a>0,20+a≠4-a ⇒⎩⎪⎨⎪⎧a>-20,a<4,a≠-8⇒-20<a<-8或-8<a<4.2.椭圆的两个焦点坐标分别为F 1(0,-8),F 2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A .x 2100 +y 236 =1B .y 2400 +x 2336 =1C .y 2100 +x 236 =1D .y 220 +x 212 =1【解析】选C.由已知c =8,2a =20,所以a =10,b 2=a 2-c 2=36,故椭圆的方程为y 2100 +x 236 =1. 3.若方程x 2m +y 21-m=1表示焦点在y 轴上的椭圆,则实数m 的取值范围为________.【解析】由题可知,方程x 2m +y 21-m=1表示焦点在y 轴上的椭圆,可得1-m>m>0,解得:0<m<12 ,所以实数m 的取值范围为⎝⎛⎭⎪⎫0,12 . 答案:⎝ ⎛⎭⎪⎫0,12 4.如果方程x 2a 2 +y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.【解析】由于椭圆的焦点在x 轴上,所以⎩⎨⎧a 2>a +6,a +6>0,即⎩⎨⎧(a +2)(a -3)>0,a>-6. 解得a>3或-6<a<-2. 答案:(3,+∞)∪(-6,-2)关闭Word 文档返回原板块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的定义和标准方程
● 知识点整理
1.掌握椭圆的定义,会用定义解题;
2.掌握椭圆的标准方程及其简单的几何性质,熟练地进行基本量间,,,a b c e 的互求,会根据所给的方程画出图形;
3.掌握求椭圆的标准方程的基本步骤——①定型(确定它是椭圆);②定位(判断它的中心在原点、焦点在哪条坐标轴上);③定量(建立关于基本量的方程或方程组,解基本量,a b )。

● 双基练习
1.椭圆22
143x y +=的长轴位于 轴,长轴长等于 ;短轴位于 轴,短轴长等于 ;焦点在 轴上,焦点坐标分别为 ,离心率e = ,准线方程是 ,焦点到相应准线的距离(焦准距)等于 ;左顶点坐标是 ;下顶点坐标是 ,椭圆上的点P
00(,)x y 的横坐标0x 的范围是 ,纵坐标0y 的范围是 ,00x y +的取值范围是 。

2.椭圆1
361002
2=+y x 上的点P 到左准线的距离是10,那么P 到其右焦点的距离是 ( )
A.15
B.12
C.10
D.8
3.⊿ABC 中,已知B 、C 的坐标分别是(-3,0)、(3,0),且⊿ABC 的周长等于16,则顶点A 的轨迹方程是 。

4.若椭圆短轴一端点到椭圆一焦点的距离是该焦点到同侧长轴一端点距离的3倍,则椭圆的离心率是 ;若椭圆两准线之间的距离不大于长轴长的3倍,则它的离心率e 的取值范围是 。

● 典型例题
例1 已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,且过点P (3,2),
求椭圆的方程。

例2 从椭圆22
221(0)x y a b a b +=>>上一点P 向x 轴作垂线,垂足恰好为椭圆的左焦点F 1,A
是椭圆的右顶点,B 是椭圆的上顶点,且(0)AB OP λλ=⋅>u u u r u u u r。

(1)求该椭圆的离心率;(2)
若该椭圆的准线方程是x=± 课后作业
1.椭圆
1
9
25
2
2
=
+
y
x
上一点M到左焦点F1的距离为2,N是MF1的中点,O为坐标原点,则
|ON|= .。

2.若以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则此椭圆长轴的长的最小值是 .
3.设椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两个端点的连线互相垂直,且此焦点与长轴较近的端点的距离为5
10-,求此椭圆的方程。

4.已知椭圆的中心在原点,焦点F1(0,-1)、F2(0,1),直线y=4是椭圆的一条准线,(1)求椭圆的方程;(2)设P点在这个椭圆上,且|PF1|-|PF2|=1,求tan∠F1PF2.
5.椭圆
1
20
45
2
2
=
+
y
x
的焦点分别为F1和F2,过中心O作直线与椭圆交于A、B,若⊿ABF2的面积
是20,求直线的方程。

6.求经过点(2,0)与圆(x+2)2+y2=36内切的圆的圆心M的轨迹方程。

相关文档
最新文档