八年级数学全套知识点归纳
初二数学知识点大全(中考必备)

初二数学知识点大全(中考必备) 数的拓展与应用有理数1.整数–正整数–负整数2.分数–真分数–假分数–整数部分3.小数–有限小数–无限循环小数–无限不循环小数实数1.无理数–无限不循环小数2.实数定义与性质–实数表示–实数的相反数、绝对值–实数的加法、减法、乘法、除法代数式1.代数式的定义–常数项–变量项–系数2.代数式的运算–合并同类项–提取公因式–去括号–化简图形与运动平面直角坐标系1.平面直角坐标系的引入–原点–横坐标、纵坐标2.平面直角坐标系中点的坐标–坐标轴上的点–非坐标轴上的点直线与角1.直线的表示与性质–直线的表示方法–平行线与垂直线–锐角、钝角、直角2.角的定义与性质–角的概念–锐角、钝角、直角–互补角、补角、对顶角三角形与四边形1.三角形的性质–三角形边长关系–三角形角度关系2.四边形的性质–矩形的性质–正方形的性质–平行四边形的性质–菱形的性质投影与相似1.图形的投影–垂直投影–平行投影2.相似三角形–相似三角形的判定条件–相似三角形的性质数据分析与概率统计与概率1.统计图–条形统计图–折线统计图2.简单概率–试验与事件–概率的定义–两个简单事件的概率3.事件的运算–事件的并、交、差–事件的逆平均数与中位数1.平均数–平均数的概念与计算方法2.中位数–中位数的概念与计算方法解式与方程一元一次方程1.一元一次方程–方程的定义–解的概念2.解一元一次方程–加减法解方程–乘除法解方程–一元一次方程的应用简单方程与多元一次方程1.解简单方程–含绝对值的方程–分式方程2.解多元一次方程–含两个变量的方程–含三个变量的方程几何图形与方程1.图形方程–点的坐标与直线方程–圆的方程2.几何图形与方程的应用–图形方程在几何图形上的应用–方程在实际问题中的应用以上是初二数学的一些重要知识点,这些知识点对于中考来说是必备的基础内容。
掌握了这些知识,将为学生在中考中取得好成绩提供有力的支持和帮助。
在学习过程中,要注重理论与实践的结合,多做习题来加深对知识点的理解和掌握,同时也要注重应用能力的培养,灵活运用所学的知识解决实际问题。
八年级数学内容知识点归纳

八年级数学内容知识点归纳一、有理数有理数是指整数和分数的集合,包括正数、负数和零。
1. 整数的概念和性质2. 有理数的概念和性质3. 有理数的比较大小4. 有理数的加减运算5. 有理数的乘除运算6. 有理数的混合运算二、代数式与方程式代数式是由数、字母、运算符号和括号组成的表达式,方程式是指等式两边的代数式。
1. 代数式的概念和性质2. 代数式的化简与合并3. 代数式的因式分解4. 一元一次方程式的概念和解法5. 一元一次方程式的应用6. 一元二次方程式的概念和解法三、几何与三角形几何是研究空间中图形、大小、位置关系及其变化的学科,三角形是平面上的一种图形。
1. 平面几何和空间几何的概念2. 基本图形的性质与应用3. 直线的性质与应用4. 角的概念和性质5. 三角形的分类和性质6. 三角形的计算和应用四、函数与图像函数是变量之间的一种关系,图像是表示函数关系的一种方式。
1. 函数的概念和性质2. 函数的表示和作图3. 函数的性质及应用4. 直线的斜率和截距5. 二元一次方程组的图像和解法6. 解析几何与向量的应用五、概率与统计概率是研究随机事件发生的可能性,统计是研究数据的收集、分析和解释的学科。
1. 概率的概念和计算2. 概率的应用和实际问题3. 统计的概念和数据的分析4. 统计图的应用和解释5. 样本与总体的概念和比较6. 推断统计和假设检验以上八年级数学知识点的归纳,可以帮助学生复习和总结,同时也为老师备课提供了参考。
学生们应该更加熟练掌握这些知识点,充分理解和应用这些基础数学知识,以便更好地学习和应对高中数学课程的学习。
初二的数学知识点归纳总结

初二的数学知识点归纳总结数学是一门基础学科,对学生的思维能力和逻辑思维能力的培养非常重要。
而初二数学是学生进入中学后的第一个学年,也是对基础知识进行巩固和扩展的重要阶段。
本文将对初二数学涉及的知识点进行归纳总结,以帮助学生更好地掌握和理解这些知识。
一、数据与代数1. 数与式1.1 四则运算1.2 带字母的数与式1.3 同类项与合并同类项2. 变量与函数2.1 变量的认识2.2 一元一次方程与示例2.3 函数的概念与表示方法3. 数据的统计和分析3.1 数据的搜集3.2 数据的整理与分析3.3 常见的统计图表与解读二、几何与图形1. 直线与角1.1 直线与线段的认识 1.2 角的基本概念1.3 各类角的性质及计算2. 三角形2.1 三角形的分类2.2 三角形的性质与计算2.3 三角形的判定与证明3. 四边形3.1 四边形的分类3.2 四边形的性质与计算3.3 四边形的判定与证明4. 圆的认识与应用4.1 圆的基本性质4.2 圆与圆之间的关系 4.3 圆的应用问题三、函数1. 函数与坐标系1.1 笛卡尔坐标系与直角坐标系 1.2 函数的定义域、值域与图像1.3 一次函数与二次函数的性质2. 图像与运动2.1 直线运动的描述与解答2.2 抛物线运动的描述与解答2.3 线性不等式的解集与图像四、等式与不等式1. 一元一次不等式1.1 一元一次不等式的解集与图像1.2 不等式组的解集与图像2. 二次根式与二次方程2.1 二次根式的性质与计算2.2 完全平方与二次方程2.3 二次方程的解法与判别式3. 分式与分式方程3.1 分式的性质与计算3.2 分式方程的解与图像五、统计与概率1. 数据的统计1.1 算术平均数与加权平均数1.2 中位数、众数与极差1.3 数据的分布图与描述统计2. 概率的认识与计算2.1 试验与事件的概念2.2 概率的计算方法2.3 概率与统计的应用六、应用题与解题方法1. 数学问题的翻译与设方程2. 各类问题的解题方法与策略3. 数学问题的实际应用举例通过对初二数学知识点的归纳总结,我们可以更加清晰地了解到这一年级的数学学习内容。
八年级数学知识点归纳总结

八年级数学知识点归纳总结一、数与式整数与有理数定义:整数包括正整数、零、负整数;有理数包括整数和分数。
运算:加、减、乘、除四则运算,注意运算的优先级和括号的使用。
例子:计算(-3) + 5 - (-2) × 4 = -3 + 5 + 8 = 10。
实数与数轴定义:实数包括有理数和无理数,数轴上的每一个点都对应一个实数。
性质:实数具有顺序性、稠密性、完备性。
例子:在数轴上标出√2 和-π的位置。
代数式与整式定义:代数式是由数、字母通过有限次加、减、乘、除(除数不为0)和乘方运算所得的式子;整式是代数式中不含除法运算或分母不含字母的式子。
运算:合并同类项、乘法分配律等。
例子:化简代数式3x^2 - 2x + 5 + x^2 - 3x = 4x^2 - 5x + 5。
分式定义:一般地,如果A、B表示两个整式,且B中含有字母,那么式子A/B 就叫做分式。
基本性质:分式的基本性质是分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
运算:分式的加、减、乘、除运算。
例子:计算分式(x + 1) / (x - 2) 与(x - 3) / (x + 1) 的乘积。
二、方程与不等式一元一次方程定义:只含有一个未知数,并且未知数的次数是1的等式。
解法:通过移项、合并同类项、系数化为1等步骤求解。
例子:解方程3x + 5 = 20。
二元一次方程组定义:含有两个未知数,并且含有未知数的项的次数都是1的方程组。
解法:消元法(代入法或加减法)。
例子:解方程组{ x + y = 5, 2x - y = 7 }。
一元一次不等式与不等式组定义:用不等号连接的式子叫不等式;含有一个未知数,并且未知数的次数是1的不等式叫一元一次不等式;由几个一元一次不等式组成的不等式组叫一元一次不等式组。
解法:与一元一次方程类似,但注意解集的确定。
例子:解不等式2x - 3 > 5,并找出其解集。
三、函数函数的概念与性质定义:对于数集A中的每一个数x,按照某种确定的对应关系f,数集B中都有唯一确定的数y与之对应,则这样的对应f叫做从A到B的一个函数。
八年级数学知识点梳理

八年级数学知识点梳理一、数与式1.实数•实数的概念:理解实数包括有理数和无理数,其中无理数不能表示为两个整数的商。
•实数的性质:掌握实数的四则运算性质,了解实数的顺序关系,会进行实数的大小比较。
•实数的运算:熟练进行实数的加、减、乘、除四则运算,理解运算顺序(先乘除后加减,同级运算从左到右)。
2.二次根式•二次根式的概念:理解二次根式是形如√a(a≥0)的数学表达式,知道它表示a的非负平方根。
•二次根式的性质:掌握二次根式的性质,如√a² = |a|,√ab = √a * √b(a≥0, b≥0)等。
•二次根式的运算:学会进行二次根式的加、减、乘、除运算,理解运算规则。
3.分式•分式的概念:理解分式是两个整式的商,其中分母不为零。
•分式的基本性质:掌握分式的基本性质,如分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
•分式的运算:熟练进行分式的加、减、乘、除运算,理解运算顺序和运算法则。
二、方程与不等式1.一元二次方程•一元二次方程的概念:理解一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。
•一元二次方程的解法:学习一元二次方程的解法,如因式分解法、配方法、公式法等。
•一元二次方程的应用:理解一元二次方程在实际问题中的应用,如面积、速度、时间等问题。
2.分式方程•分式方程的概念:理解分式方程是含有分式的方程。
•分式方程的解法:学习分式方程的解法,如去分母法、换元法等。
•分式方程的应用:理解分式方程在实际问题中的应用,如比例、百分比等问题。
3.不等式与不等式组•不等式的概念:理解不等式是表示两个数之间大小关系的数学式子,用不等号连接。
•一元一次不等式的解法:学习一元一次不等式的解法,包括移项、合并同类项、化系数为1等步骤。
•不等式组:理解不等式组是由几个一元一次不等式组成的,学习不等式组的解法。
三、函数及其图像1.函数的概念•函数的定义:理解函数是一种特殊的对应关系,其中每一个输入值(自变量)只对应一个输出值(因变量)。
初二数学知识点全总结梳理

初二数学知识点全总结梳理在人类历史开展和社会生活中,数学发挥着不行替代的作用,同时也是学习和探究现代科学技术必不行少的根本工具。
下面我为大家带来初二数学学问点全总结梳理,盼望大家喜爱!初二数学学问点全总结梳理(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
假如把乘法公式反过来就是把多项式分解因式。
于是有:a2—b2=(a+b)(a—b)a2+2ab+b2=(a+b)2a2—2ab+b2=(a—b)2假如把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子.a2—b2=(a+b)(a—b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项假如有公因式应先提公因式,再进一步分解。
2.因式分解,必需进展到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b..(a—b)2=a2—2ab+b2反过来,就可以得到:a2+2ab+b.=(a+b)2a2—2ab+b.=(a—b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号一样。
③有一项为哪一项这两个数的积的两倍。
(3)当多项式中有公因式时,应当先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必需分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am.an.bm.bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
最全八年级数学重点知识点(全)

- 1 -初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫- 2 -做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.- 3 -11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.- 4 -3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)- 5 -- 6 -- 7 -- 8 -几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,- 10 -- 11 -而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD是角平分线)(3)已知三角形中线(若AD是BC的中线)(4) 已知等腰三角形ABC中,AB=AC- 12 -(5)其它- 13 -。
八年级上下册数学知识点总结

数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。
2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。
3.乘方:乘方的概念,乘方的性质,乘方的运算法则。
4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。
5.分数:分数的概念,分数的性质,分数的加减法运算法则。
6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。
7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。
9.角:角的概念,角的分类,角的性质,角的度量。
10.平行线:平行线的概念,平行线的性质,平行线的判定。
二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。
2.勾股定理:勾股定理的概念,勾股定理的应用。
3.多边形:多边形的概念,多边形的分类,多边形的性质。
4.圆:圆的概念,圆的性质,圆的度量。
5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。
6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。
7.百分数:百分数的概念,百分数的性质,百分数的计算。
8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。
9.概率:概率的概念,概率的计算。
10.函数与图像:函数的概念,函数的性质,函数的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学全套知识点归纳
八年级数学全套知识点归纳
一.定义
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数。
2.一般地,如果一个数的平方等于a,那么这个数叫做a 的平方根或二次方根,求一个数a的平方根的运算,叫做开平方。
3.一般地,如果一个数的立方等于a,那么这个数叫做a 的立方根或三次方根,求一个数的立方根的运算,叫做开立方。
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数。
5.无限不循环小数又叫无理数。
6.有理数和无理数统称实数。
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的。
二.重点
1.平方与开平方互为逆运算。
2.正数的平方根有两个,它们互为相反数,其中正的平
方根就是这个数的算术平方根。
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位。
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位。
5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0。
三.注意
1.被开方数一定是非负数。
2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0。
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式。
初二数学必考知识点总结
(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;
(2)正比例函数图像特征:一些过原点的直线;
(3)图像性质:
①当k0时,函数y=kx的图像经过第一、三象限,从左
向右上升,即随着x的增大y也增大;②当k0时,函数y=kx 的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;
(4)求正比例函数的解析式:已知一个非原点即可;
(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)
(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;
(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)
(8)一次函数图像特征:一些直线;
(9)性质:
①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)
②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;
③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;
④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);
⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);
(10)求一次函数的解析式:即要求k与b的值;
(11)画一次函数的图像:已知两点;
初二下册每一章数学知识点总结
1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。
2.其他形式xy=k (k为常数,k≠0)都是。
3.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和y=-x。
对称中心是:原点
3.性质:当k0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。
当k0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴
所作的垂线段与两坐标轴围成的矩形的面积。
第十八章勾股定理
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)
第十九章四边形
平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;
平行四边形的对角相等。
平行四边形的对角线互相平分初二下册每一章数学知识点总结初二下册每一章数学知识点总结。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;
矩形的对角线平分且相等。
AC=BD
矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰
梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。
平行四边形的重心是它的两条对角线的交点。
三角形的三条中线交于疑点,这一点就是三角形的重心。
宽和长的比是(约为0.618)的矩形叫做黄金矩形初二下册每一章数学知识点总结初中辅导。
第二十章数据的分析
1.算术平均数:
2.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
而是以比的或百分比的形式出现及频数分布表求加权平均数的方法
3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据2.整理数据3.描述数据4.分析数据5.撰写调查报告6.交流
7. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。