概率分布函数
概率分布函数

概率分布函数u 分布的概念例如学生人数按年龄的分布 年龄15 ~1617 ~ 1819 ~20 21~22 人数按年龄的分布 200030004000 1000 人数比率按 年龄的分布20%30%40%10%速率v 1 ~ v 2 v 2 ~ v 3… v i ~ v i +Δv …分子数按速率的分布ΔN 1ΔN 2 … ΔN i … 分子数比率按速率的分布ΔN 1/NΔN 2/N…ΔN i /N…例如气体分子按速率的分布{P i =ΔN i /N }就是分子数按速率的概率分布∑=iii u P u实际中有很多变量是连续变化的,例如粒子的空间位置或粒子的速度。
在随机变量取连续值时,上述求平均值公式中P i 的也是连续分布的。
v到v+d v的概率分布但是因为测量仪器总有一定误差,在测量分子速率时,我们测不出分子速率恰好为100m/s的分子数是多少,若仪器的误差范围为1m/s,则我们只能测出分子速率从99.5m/s到100.5m/s的分子数是多少。
我们也不能讲分子速率恰好处于100m/s的概率,而只能讲分子速率介于某一范围(例如99m/s~101m/s)内的概率。
有关打靶试验的例子:图(a )是用直角坐标来表示靶板上的分布;图(b )则是用极坐标来表示其分布的。
现以靶心为原点,以直角坐标x 、y 来表示黑点的空间位置,把靶板平面沿横轴划分出很多宽为Δx 的窄条,Δx 的宽度比黑点的大小要大得多。
只要数出在x 到x +Δx 范围内的那条窄条中的黑点数ΔN ,把它除以靶板上总的黑点数N (N 应该足够大),则其百分比就是黑点处于x~x+Δx 范围内这一窄条的概率。
1. 直角坐标表示然后以 为纵坐标,以x 为横坐标,画出图。
若令Δx →0,就得到一条连续曲线。
x N N∆⋅∆21()d x x f x x ⎰=()d 1f x x +∞-∞⎰=d ()d Nf x N x=⋅ 这时的纵坐标 称为黑点沿x 方向分布的概率密度,表示黑点沿x 方向的相对密集程度。
常用分布函数及特征函数

常用分布函数及特征函数常用的分布函数及特征函数主要包括正态分布、伯努利分布、二项分布、泊松分布、指数分布和卡方分布等。
下面将分别对这些分布函数及其特征函数进行介绍。
1. 正态分布(Normal Distribution)正态分布是以均值μ和方差σ²为参数的连续概率分布。
其概率密度函数为:f(x)=1/(σ*√(2π))*e^(-(x-μ)²/(2σ²))正态分布的特征函数为:φ(t) = e^(itμ - (σ²t²)/2),其中i为虚数单位。
2. 伯努利分布(Bernoulli Distribution)伯努利分布是一种离散概率分布,用于描述只有两种结果(成功或失败)的随机试验。
其概率函数为:P(X=k)=p^k*(1-p)^(1-k),k=0或1伯努利分布的特征函数为:φ(t) = 1-p + pe^(it)3. 二项分布(Binomial Distribution)二项分布是描述n重伯努利试验中成功次数的离散概率分布。
其概率函数为:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),k=0,1,...,n二项分布的特征函数为:φ(t) = (p*e^(it) + 1-p)^n4. 泊松分布(Poisson Distribution)泊松分布是用于描述单位时间(或单位空间)内随机事件发生次数的离散概率分布。
其概率函数为:P(X=k)=(λ^k*e^(-λ))/k!泊松分布的特征函数为:φ(t) = e^(λ*(e^(it)-1))5. 指数分布(Exponential Distribution)指数分布是描述连续随机事件发生时间间隔的概率分布。
其概率密度函数为:f(x)=λ*e^(-λx),x>=0指数分布的特征函数为:φ(t) = λ/ (λ-it)6. 卡方分布(Chi-square Distribution)卡方分布是描述标准正态分布随机变量平方和的概率分布。
概率分布函数

第三章 几种重要的概率分布
例 4 一页书上印刷错误的个数 X 是一个离散型随机变量,它服从参数 为 的泊松分布,一本书共有 300 页,有 21 个印刷错误,求任取 1 页 书上没有印刷错误的概率。 21 7 解:由于 300 页中有 21 个印刷错误,从而平均每页有 个印刷
300 100 7 错误,即离散型随机变量 X 的数学期望 E ( X ) , 100 又由于离散型随机变量 X 服从参数为 的泊松分布,因此数学期望
由概率加法公式得:
n
m m nm b(m; n, p) C n p q , 其中m 0,1,2,, n; q 1 p
m m nm 且 b(m; n, p) Cn p q ( p q) n 1 n
概率 b(m; n, p) 实际上是二项式 ( p q) n 的展开式中的通项公式。
2 2
返回主目录
第三章 几种重要的概率分布
小结与提问: 本次课,我们介绍了贝努里概型与二项公式、二项分布。 二项分布是离散型随机变量的概率分布中的重要分布,我们 应掌握二项分布及其概率计算,能够将实际问题归结为贝努
里概型,然后用二项分布计算有关事件的概率、数学期望与
方差。。 课外作业:P150 习题三 3.01,3.02,3.03,3.04,3.05
m m nm b(m; n, p) C n p q , 其中m 0,1,2,, n; q 1 p
m 0
m 0
称为概率计算的二项公式。
返回主目录
第三章 几种重要的概率分布
二、二项分布
定义 如果随机变量 X 的概率分布为
i PX i C n p i q n i
(0 p 1, p q 1)
概率论-分布函数

r.v的分布函数必满足性质
满足性质
的必F (是x ) 某r.v的分布函数
概率论与数理统计
设随机变量X的分布函数为
F (x ) A B arx ( c t x a n ) ,
试求 (1)系数A,B;(2)X取值落在(-1,1]中的概率。
(1)由
F () li(A m B arx ) c A t aB n 0 ,
若xr,{X x}为必然事件,F(x) = P{X x} =1;
若0 x < r,由几何概型知
F(x)P{Xx}x r2 2rx2
概率论与数理统计
0,
从而X的分布函数为
F(
x)
x r
2
,
1,
且
x0 0 xr xr
P{X 2r} 1 P{X 2r}
1 8
;
当 1x2时 ,
F (x ) P {X x }P{X0}P{X1}
1 3 1; 88 2
概率论与数理统计
当 2x3时 ,
o
1
2
3
x
F (x ) P {X x }
P {X0}P{X1}P{X2}
1337; 888 8
当x3时,
1 2141 21(4)
1 2
.
概率论与数理统计
例 将一枚硬币连, X掷表三示次“三次中正 出现的次 ” ,求 数X的分布律及分,并 布求 函下 数 列概率P{值 1X3},P{X5.5},P{1X3}.
解 设 H 正,T 面 反, 面 则
2
当x0时 ,
0
常用的分布函数公式

常用的分布函数公式
常用的分布函数公式分布函数是概率论和统计学中重要的概念,用于描述随机变量的概率分布。
在实际应用中,我们经常需要使用一些常用的分布函数公式来计算概率或进行统计推断。
以下是一些常见的分布函数公式:1. 正态分布函数:正态分布是自然界中许多现象的模型,其分布函数可以用以下公式表示:
F(x) = 1/2 [1 + erf((x-μ)/(σ√2))] 其中,μ是正态分布的均值,σ是标准差,erf是误差函数。
2. 二项分布函数:二项分布是一种离散概率分布,用于描述在n次独立重复试验中成功次数的概率。
其分布函数可以用以下公式表示:
F(x) = Σ(i=0 to x) [C(n, i) * p^i * (1-p)^(n-i)] 其中,C(n, i)是组合数,p是每次试验成功的概率。
3. 泊松分布函数:泊松分布是一种离散概率分布,用于描述单位时间或空间内随机事件发生的次数。
其分布函数可以用以下公式表示:
F(x) = Σ(i=0 to x) [e^(-λ) * λ^i / i!] 其中,λ是单位时间或空间内随机事件的平均发生率。
4. t分布函数:t分布是用于小样本情况下进行统计推断的概率分布。
其分布函数可以用以
下公式表示:
F(x) = 1/2 + 1/2 * I(x/√(n-1), (n-1)/2, 1/2) 其中,n是样本容量,I是不完全贝塞尔函数。
以上是一些常用的分布函数公式,它们在概率论和统计学中具有广泛的应用。
通过了解和掌握这些公式,我们可以更好地理解和分析随机变量的概率分布,从而进行相应的统计推断和决策。
概率论分布函数

概率论分布函数概率论分布函数是概率论中的重要概念,它描述了一个随机变量取值的概率分布情况。
在统计学和概率论中,有许多常见的概率分布函数,如正态分布、均匀分布、泊松分布等。
本文将针对这些常见的概率分布函数进行介绍和解释。
一、正态分布(Normal Distribution)正态分布是自然界中最常见的分布之一。
它以钟形曲线形式展现,其分布函数描述了随机变量在不同取值上的概率密度。
正态分布的特点是对称且呈现出标准差的影响,标准差越大,曲线越平缓。
正态分布广泛应用于自然科学、社会科学等领域,用于描述各种现象的分布情况。
二、均匀分布(Uniform Distribution)均匀分布是最简单的概率分布之一,它描述了随机变量在一定范围内各个取值出现的概率是相等的。
均匀分布的分布函数是一个常数函数,其特点是在一定范围内的取值概率是相等的。
均匀分布常用于模拟随机事件或生成随机数,广泛应用于数值计算和概率统计等领域。
三、泊松分布(Poisson Distribution)泊松分布是用于描述单位时间(或空间)内随机事件发生次数的概率分布。
泊松分布的分布函数可以表示在一段时间或空间内发生某种事件的次数的概率。
泊松分布的特点是具有独立性和稀有性,适用于描述稀有事件的发生情况,如电话交换机接听电话的次数、汽车在某路段通过的次数等。
四、指数分布(Exponential Distribution)指数分布是一种连续概率分布函数,描述了随机事件发生的时间间隔的概率分布。
指数分布的分布函数具有单峰性,随着时间的推移,事件发生的概率逐渐减小。
指数分布常用于描述随机事件的间隔时间,如人们等待公交车的时间、网络传输数据包到达的时间等。
五、二项分布(Binomial Distribution)二项分布是描述在一次试验中成功次数的概率分布函数。
二项分布的分布函数描述了在一定次数的独立重复试验中成功次数的概率分布情况。
二项分布的特点是具有两个参数,成功概率和试验次数,常用于描述二元随机事件的发生情况,如硬币正反面的次数、投篮命中的次数等。
常用概率分布函数

– 则f(x)为X的概率密度函数(PDF)
– f(x)满足:
(1) f (x) 0
(2) f (x)dx 1
常用概率分布函数
• 连续型随机变量
– F(x)为连续型随机变量的累积分布函数(CDF)
F(x) P(X x) x f (x)dx
– 连续型随机变量X均值和方差分别为:
E(X ) xf (x)dx
常用概率分布函数
二项分布 泊松分布 均匀分布 正态分布 指数分布 伽马分布
常用概率分布函数
• 离散型随机变量
– 若随机变量的取值为有限个或可以逐一列举的无穷多个 数值,则称此类随机变量为离散型随机变量。
– 设离散随机变量X有:P( X xi ) p( xi )
– 将P={p1,p2,…pn…}称为X的概率密度函数 (Probability Density Function,PDF)
– 泊松分布是二项分布的特殊情况(n趋近无穷大,令 np->λ),当一个固定时间间隔内有大量事件以恒定的 速率发生,且事件之间相互独立时,可以用泊松分布描 述,并称这样的随机事件为泊松流。
– 泊松分布的概率密度函数: P(x k) k e k {0,1, 2..., n}
k!
– 累积分布函数:
– x=0:0.001:5;
0.4
– n=10;
0.35
– p=0.1;
0.3
– y=binopdf(x,n,p); 0.25
– plot(x,y);
0.2
0.15
0.1
0.05
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
常用概率分布函数
• 泊松分布( Poisson Distribution )
高中数学学习中的概率分布与分布函数推导

高中数学学习中的概率分布与分布函数推导在高中数学学习中,概率分布与分布函数是重要的概念,它们被广泛应用于统计学和概率论中。
本文将介绍概率分布与分布函数的概念,并推导一些常见的概率分布和分布函数。
概率分布,也被称为分布律或分布函数,是用来描述随机变量各个取值的概率的函数。
假设随机变量X的取值集合为{x1, x2, ..., xn},则概率分布可以表示为P(X=xi) = pi,其中pi为Xi取值的概率。
对于离散随机变量,概率分布可以表示为概率质量函数pmf,对于连续随机变量,概率分布可以表示为概率密度函数pdf。
常见的离散概率分布有伯努利分布、二项分布、泊松分布等。
伯努利分布是指只有两个可能结果的试验,例如抛硬币的结果可以是正面或反面。
对于伯努利分布,概率分布函数可以表示为P(X=x) = p^x * (1-p)^(1-x),其中p为正面的概率。
二项分布适用于多次独立的伯努利试验,例如抛硬币多次或投掷骰子多次的结果。
对于二项分布,概率分布函数可以表示为P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中n为试验次数,p为正面或成功的概率,k为成功的次数。
泊松分布适用于描述单位时间内某事件发生次数的概率分布。
对于泊松分布,概率分布函数可以表示为P(X=k) = (e^-λ * λ^k) / k!,其中λ为单位时间内事件的平均发生率,k为具体的发生次数。
对于连续概率分布,常见的有均匀分布、正态分布、指数分布等。
均匀分布是指随机变量在一段区间内各个取值的概率相等,概率密度函数为f(x) = 1/(b-a),其中a和b分别为区间的上下界。
正态分布,也被称为高斯分布,是自然界中常见的分布形态,概率密度函数可以表示为f(x) = (1/sqrt(2πσ^2)) * exp(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
指数分布适用于描述随机事件之间的时间间隔,概率密度函数可以表示为f(x) = λ * exp(-λx),其中λ为事件发生率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率分布函数
概率分布函数(Probability Distribution Function)是在概率论与数理统计中用来描述随机变量的分布规律的函数。
它可以提供随机变量取某个值的概率。
一、定义与性质
概率分布函数通常表示为 F(x),其中 x 是随机变量的取值,F(x) 表示该变量小于等于 x 的概率。
概率分布函数具有以下性质:
1. 非减性:随着 x 增大,F(x) 逐渐增大或保持不变。
2. 有界性:0 ≤ F(x) ≤ 1,对于任意的 x。
3. 右连续性:在所有的实数 x0,F(x) 在 x ≥ x0 时连续。
二、常见1. 均匀分布函数(Uniform Distribution Function):
均匀分布函数是一种简单且常见的概率分布函数。
在一个区间 [a, b] 内,每个数值的概率密度相等,即 f(x) = 1 / (b - a),其中a ≤ x ≤ b。
其概率分布函数为:
F(x) = (x - a) / (b - a),其中a ≤ x ≤ b。
2. 正态分布函数(Normal Distribution Function):
正态分布函数也被称为高斯分布函数。
它是一种常见的连续概率分布函数,通常用于描述自然界中的现象。
其概率密度函数为:
f(x) = (1 / (σ * √(2π))) * exp(-(x - μ)² / (2 * σ²)),其中μ 是均值,σ 是标准差。
其概率分布函数无法用简单的公式表示,常用统计软件进行计算。
3. 二项分布函数(Binomial Distribution Function):
二项分布函数用于描述在 n 个独立的 Bernoulli 试验中成功的次数的概率分布。
其中成功的概率为 p,失败的概率为 q = 1 - p。
其概率质量函数为:
f(x) = C(n, x) * p^x * q^(n-x),其中 C(n, x) 表示组合数。
其概率分布函数通常写为累积形式,无法用简单的公式表示。
三、应用场景
概率分布函数广泛应用于各个领域,例如:
1. 金融领域:用于描述股票或市场收益的分布规律,帮助投资者做出合理的决策。
2. 自然科学:用于描述实验测量误差、粒子的能量分布等。
3. 工程学:用于描述信号传输中的噪声,电路元件的故障概率等。
4. 人文社科研究:用于描述人群的身高、体重、智力分数等。
总结:
概率分布函数是描述随机变量分布规律的函数,它能够提供随机变量取某个值的概率。
常见的概率分布函数有均匀分布、正态分布、二
项分布等。
不同的概率分布函数适用于不同的场景,帮助我们理解和分析实际问题。