偏导数与高阶偏导数.ppt
合集下载
3.4多元函数的偏导数和全微分ppt课件

类似, 可得三阶, 四阶, …, n 阶偏导数.
如:
若
2z x2
可偏导,
则记
3z x3
x
2z x2
,
3z x2y
y
2z x2
,等等.
26
例1. 设z
x2 y2
x sin
y 3,求全部二阶偏导和
3z . x3
解:
z 2xy2 1 x
z 2x2 y cos y y
2z x2
2y2
2z y2
(x
x, y) x
f
(x,
y)
记作
fx(x, y),
z , x
z , x
fx (x, y). x
称为z 对自变量 x 的偏导函数(简称偏导数)
6
注
1.由偏导数定义知, 所谓 f (x, y) 对x 的偏 导数, 就是将 y 看作常数, 将 f (x, y) 看 作 一 元函数来定义的.因此,在实际计算时,
求 f 'x (x, y)时, 只须将 y 看作常数,用一元 函数求导公式求即可.
求 f 'y (x, y)时, 只须将 x 看作常数,用一元 函数求导公式求即可.
7
2.计算 f xx0 , y0
三种方法: (1) 用定义计算.
(2) 先计算 fxx, y, 再代值得 fxx0 , y0 . (3) 先计算 f x, y0 , 再计算 fxx, y0 , 再
2 。 于是
x
fx(1,0) 2.
10
例2 求z x2 sin 2 y的偏导数.
解 z 2x sin 2 y x
z x2 cos 2 y 2 2x2 cos 2 y y
9-2偏导数

(与求导顺序无关时 应选择方便的求导顺序 与求导顺序无关时, 应选择方便的求导顺序) 与求导顺序无关时
练习
y ∂ 2z ∂ 2z (1)设z = arctan ,求 2 , x ∂x ∂x ∂y
(2)设z = xf ( x 2 − y 2 ),
(3) 已知 u = f ( r ),r =
∂u ∂r x = f ′( r ) ⋅ = f ′( r ), ∂x ∂x r
∂z ∂ f , , zy , ∂y ∂y
′ f y ( x, y) , f y ( x, y)
y= y0
显然有
fx (x0, y0 ) = fx( x, y) x=x0 ,
fy ( x0, y0 ) = f y ( x, y) x=x0 .
y= y0
偏导数的概念可以推广到二元以上的函数
如 三 元函 数 u = f ( x , y , z ) 的 偏导 数为
这两个二阶混合偏导数相等. 这两个二阶混合偏导数相等. 相等
即
∂2z ∂2z ( x, y)∈D. = ∂x∂y ∂y∂x
即二阶混合偏导数在连续的条件下, 即二阶混合偏导数在连续的条件下,求导与次序无关
此定理可以推广. 此定理可以推广. 推广
例8
1 ∂ 2u ∂ 2u ∂ 2u 证明函数u = 满足方程 2 + 2 + 2 = 0, r ∂x ∂y ∂z 其中r = x 2 + y 2 + z 2 ,
注意 思考
∂ 2z ∂ 2z 此时 有 = ∂ x ∂ y ∂ y∂ x
混合偏导数都相等吗? 混合偏导数都相等吗?
(不一定 不一定) 不一定
问题: 具备怎样的条件才能使混合偏导数相等? 问题: 具备怎样的条件才能使混合偏导数相等?
《高阶偏导数》课件

如何计算高阶偏导数?
1
一阶偏导数
对每个变量分别求偏导数,得到一阶偏导数。
2ห้องสมุดไป่ตู้
二阶偏导数
对一阶偏导数再次求偏导数,得到二阶偏导数。
3
高阶偏导数
重复以上步骤,求取更高阶的偏导数。
高阶偏导数的应用
泰勒公式
高阶偏导数在泰勒公式中起到了 重要的作用。
极值与拐点
高阶偏导数可以帮助判断函数的 极值和拐点。
曲率半径
高阶偏导数的应用场 景
高阶偏导数在数学和物理等领 域有广泛的应用。
高阶偏导数与曲率半径的计算密 切相关。
案例分析
计算高阶偏导数的例子
以具体函数为例,演示如何计算高阶偏导数。
应用高阶偏导数分析问题的例子
通过实际问题,展示高阶偏导数在应用中的价 值。
总结
高阶偏导数的意义
高阶偏导数描述函数在某点处 的局部行为。
高阶偏导数的计算方 法
通过对一阶偏导数再次求导, 可以计算得到高阶偏导数。
《高阶偏导数》PPT课件
本课件介绍了高阶偏导数的概念、计算方法和应用场景,让你轻松掌握高阶 偏导数的知识。
什么是高阶偏导数?
高阶偏导数是指在多元函数中,对同一个变量求导多次得到的导数。 它的含义是描述函数在某点处各个方向的变化率,反映了函数的曲线在该点的局部形态。 高阶偏导数可以用符号表示,如f''(x)表示二阶偏导数。
2.3偏导数

8
z y
(1, 2)
lim
y 0
f (1, 2 y) f (1, 2) y
12 3(2 y) (2 y) 2 11 lim y 0 y
7
z f ( x x , y) f ( x , y) lim x x 0 x
想想是什么问题 ?
对多元函数来说,函数的偏导数
存在与否与函数的连续性无必然关系.
这是多元函数与一元函数的
一个本质区别.
下面讨论 偏导数的 计算方法
多元函数的偏导数的计算方法的某一个看成变量,其余的 n-1个 自变量均视为常数, 然后按一元函数
f z ( x, y , z ) ?
(请自己写出)
若函数 f ( x , y) 在点 ( x0 , y0 ) 处关于 变量 x 和 y 的偏导数均存在 , 则称函数 f ( x , y) 在点 ( x0 , y0 ) 处可偏导. 若函数 f ( x , y) 在区域 内的任一点 处均可偏导 , 则称函数 f ( x , y) 在区域 内可偏导. 与一元函数的情况类似, 函数在区域上 的偏导数构成一个偏导函数, 一般仍称为函 数在区域上的偏导数.
z y
(1, 2)
(3 x 2 y )
(1,2)
7
例2
解2 定义法
求 z x 2 3xy y 2 在点 (1, 2) 处的偏导数.
z x lim f (1 x, 2) f (1, 2) x
(1, 2)
x 0
(1 x)2 6(1 x) 4 11 lim x 0 x
z f ( x, y ) , , z y , f y ( x, y ) , f 2 y y
new 第二节偏导数

2 2
∂2 f ∂2 f = 。 ∂x∂y ∂y∂x
∂u ∂u ∂u , . 例8 u = x + ln 1 + z ,求 2 , ∂x ∂y∂x ∂z∂y
2 2 2 2y 2
∂u 2 y −1 ∂ u [解] , = 2 x 2 y ln x , = 2 yx ∂x ∂y 1 z z ∂u ∂ 2u 2 y−2 ; = ⋅ = 2 2 = 2 y ( 2 y − 1) x 2 2 1 + z ∂x ∂z 1+ z 1+ z
类似于一元函数的求导 法则, 成立下述求导公式 ur ur uur ur ur r dC d ( A + B) d A d B = 0 (C为常向量 ), = + dt dt dt dt
ur ur r ur d ( A ⋅ B ) d A ur ur d B = ⋅ B + A⋅ dt dt dt ur ur ur ur d ( A × B ) d A ur ur d B = × B + A× dt dt dt
2
∂z xy 2 2 xy 2 [解 ] = e ( xy ) x = e ⋅ y 2 ∂x
2
∂z ∂ 2z ,求 和 . ∂x ∂x∂y
∂ z ∂ ∂z xy 2 xy 2 2 = ( ) = (e ) y ⋅ y + (e )( y 2 ) y ∂ x∂ y ∂ y ∂ x =e
xy 2
⋅ 2 xy ⋅ y + e
r ∂A( x , y , z , t ) ∂Ax ∂Ay ∂Az , , 类似地, 有 = ∂y ∂y ∂y ∂y ur ur ∂ A ∂Ax ∂Ay ∂Az ∂ A ∂Ax ∂Ay ∂Az , , , , = = , ∂z ∂ z ∂ z ∂z ∂ t ∂t ∂ t ∂t r ur 特别地,若向量函数A = A( t )仅依赖于一个自变量t , ur r r u r A( t ) = Ax ( t )i + Ay ( t ) j + Az ( t )k , 则 ur r dAx r dA y r dAz u d A r′ i+ j+ k = A (t ) = dt dt dt dt
∂2 f ∂2 f = 。 ∂x∂y ∂y∂x
∂u ∂u ∂u , . 例8 u = x + ln 1 + z ,求 2 , ∂x ∂y∂x ∂z∂y
2 2 2 2y 2
∂u 2 y −1 ∂ u [解] , = 2 x 2 y ln x , = 2 yx ∂x ∂y 1 z z ∂u ∂ 2u 2 y−2 ; = ⋅ = 2 2 = 2 y ( 2 y − 1) x 2 2 1 + z ∂x ∂z 1+ z 1+ z
类似于一元函数的求导 法则, 成立下述求导公式 ur ur uur ur ur r dC d ( A + B) d A d B = 0 (C为常向量 ), = + dt dt dt dt
ur ur r ur d ( A ⋅ B ) d A ur ur d B = ⋅ B + A⋅ dt dt dt ur ur ur ur d ( A × B ) d A ur ur d B = × B + A× dt dt dt
2
∂z xy 2 2 xy 2 [解 ] = e ( xy ) x = e ⋅ y 2 ∂x
2
∂z ∂ 2z ,求 和 . ∂x ∂x∂y
∂ z ∂ ∂z xy 2 xy 2 2 = ( ) = (e ) y ⋅ y + (e )( y 2 ) y ∂ x∂ y ∂ y ∂ x =e
xy 2
⋅ 2 xy ⋅ y + e
r ∂A( x , y , z , t ) ∂Ax ∂Ay ∂Az , , 类似地, 有 = ∂y ∂y ∂y ∂y ur ur ∂ A ∂Ax ∂Ay ∂Az ∂ A ∂Ax ∂Ay ∂Az , , , , = = , ∂z ∂ z ∂ z ∂z ∂ t ∂t ∂ t ∂t r ur 特别地,若向量函数A = A( t )仅依赖于一个自变量t , ur r r u r A( t ) = Ax ( t )i + Ay ( t ) j + Az ( t )k , 则 ur r dAx r dA y r dAz u d A r′ i+ j+ k = A (t ) = dt dt dt dt
偏导数的概念

f ( x x, y ) f ( x, y ) lim , ( x, y ) D x 0 x
存在,显然这个偏导数仍是x,y的函数,称它为函数
z=f(x,y)对x的偏导函数,记作
z f , , f x ( x, y )或z x ( x, y ). x x
类似地,可以定义函数z=f(x,y)在区域D内对自变
求导.
若求函数z=f(x,y)在点(x0,y0)处对x的偏导数,只需 先求偏导函数fx(x,y),然后再求fx(x,y)在点(x0,y0)处的函 数值,即 f x ( x, y ) |( x0 , y0 ) f x ( x0 , y0 ),这样就得到了函数
z =f(x,y)在点(x0,y0)处对x的偏导数.也可以先将y=y0代入
z f ( x, y ), y y0 .
上式表示y=y0平面上的一条 曲线z=f(x,y0).根据导数的几
何意义可知:fx(x0,y0)就是这
条曲线在点M0(x0,y0,z0)处的
切线关于x轴的斜率.
同样,fy(x0,y0)是这条曲线z=f(x,y)与平面x=x0的交 线
z f ( x, y ), x x0
f xy ( x, y, z ) 2 y, f xyz ( x, y, z ) 0, f xyz (1,1,1) 0.
1 例9 证明函数 u t
u 证 t 2
x2 3 1 2 4t t e
3 1 2 t
x2 e 4t
u 2u 满足方程 2. t x
f(x0,y0).
同样还可以举出函数在(x0,y0)点连续,而在该点 的偏导数不存在的例子. 例如,二元函数 f ( x, y ) x 2 y 2 ,在点(0,0)处 是连续的,但在(0,0)点偏导数不存在. 事实上,f ( x, y ) x 2 y 2 是初等函数,(0,0)点是 定义区域内的一点,故f(x,y)在点(0,0)点是连续的. 固定y=0,让x→0,考察在(0,0)点处对x的偏导 数.此时 f ( x,0) x 2 0 | x |,已知函数|x|在x=0处是 不可导的,即f(x,y)在点(0,0)处对x的偏导数不存在, 同样可证f(x,y)在(0,0)点对y偏导数也不存在.
第二偏导数-PPT课件

在点(x0,y0)处z关于x的斜率。 x 同理可知函数关于y的偏导数的几何意义。
பைடு நூலகம்
x0
二、高阶偏导数
z z 数仍然是x,y的二元函数,如果函数 x , y 的偏导数
,y ) 我们已经知道,二元函数 zf(x 的两个偏导
存在,还可以举行讨论偏导函数对x,y的偏导数。 这种偏导函数的偏导数称为二阶偏导数,简称二阶 偏导数。它有四个:
xy 例3 求 u x y 的偏导数。 z u 2 x y x y 解: 2 2 2 2 x 2x y z x y z
2 2
u 2 y x y x 2 2 2 2 y 2x y z x y z
u xy 2 z z
例4 设一定量的气体状态方程为PV=RT(R为常数)
z f , , z ( x , y ) , f ( x , y ) y 0 0 y 0 0 x x x x y y 0 0
y y 0 y y 0
实际上,当二元函数中的一个变量看成为一个 常数时,函数也就是一个一元函数了。 此时求二元函数的偏导数就是一元函数的求导 问题。 ,y) 在区域D内每一点对x的偏导 如果函数 zf(x 数都存在, 则这个偏导数同样是x,y的二元函数, ,y)对自变量x的偏导函数,记作 称为 zf(x z f , , z ( x , y ) , f ( x , y ) x x x x 类似地, z f , , z ( x , y ) , f ( x , y ) y y y y 称为函数对自变量y的偏导函数,简称偏导数。
其中
2z 2z , x y y x称为混合偏导数,显然求偏导数的
次序不同。 类似地,可以定义三阶偏导数、n阶偏导数, 二阶以及二阶以上的偏导数统称为高阶偏导数。 3 2 3 例5 求函数 z x y 3 x y的二阶偏导数。 解:
偏导数与高阶导数

解
将点(1,3)代入上式,得
可得
所以
在求定点处的导数时,
先代入固定变量取值,
然后再求导,可简化求导计算。
或
2.偏导数的计算
例4 设
求
解
所以
二元以上多元函数的偏导数可类似地定义和计算
例 求函数 的偏导数.
对x求偏导数就是视y, z为常数,对x求导数
曲线
即
fx (x0, y0),
第二节 偏导数与高阶偏导数
4.偏导数与连续的关系
对于二元函数偏导数与连续的关系如何?
连续
解
一元函数可导与连续的关系:
可导
由偏导数定义
例
所以,函数在(0, 0) 处对变量 x,y 的偏导数存在.
让 沿直线 而趋于(0,0),
这里 为常数,
当劳动力投入不变时,产量对资本投入的变化率为
当资本投入不变时,产量对劳动力投入的变化率
该问题说明有时需要求二元函数在某个变量不变的条件下,
Q表示产量.
别表示投入的劳动力数量和资本数量,
分
数为
引例
对另一个变量的变化率.
第二节 偏导数与高阶偏导数
此时沿着平行坐标轴的方向
偏导数存在 连续.
一元函数中在某点可导 连续,
可见,多元函数的理论除了与一元函数的理论有许多类似之处,也是还有一些本质的差别。
二、高阶偏导数
设函数 z = f (x, y) 在区域 D内有偏导函数 与
则称此极限值为z=f (x,y)在点(x0,y0)处对x的
记为
一元函数导数
如果极限存在,
函数有增量
相应
(1)定义
当y 固定在y0 , 而 x 在x0 处有增量△x时,
将点(1,3)代入上式,得
可得
所以
在求定点处的导数时,
先代入固定变量取值,
然后再求导,可简化求导计算。
或
2.偏导数的计算
例4 设
求
解
所以
二元以上多元函数的偏导数可类似地定义和计算
例 求函数 的偏导数.
对x求偏导数就是视y, z为常数,对x求导数
曲线
即
fx (x0, y0),
第二节 偏导数与高阶偏导数
4.偏导数与连续的关系
对于二元函数偏导数与连续的关系如何?
连续
解
一元函数可导与连续的关系:
可导
由偏导数定义
例
所以,函数在(0, 0) 处对变量 x,y 的偏导数存在.
让 沿直线 而趋于(0,0),
这里 为常数,
当劳动力投入不变时,产量对资本投入的变化率为
当资本投入不变时,产量对劳动力投入的变化率
该问题说明有时需要求二元函数在某个变量不变的条件下,
Q表示产量.
别表示投入的劳动力数量和资本数量,
分
数为
引例
对另一个变量的变化率.
第二节 偏导数与高阶偏导数
此时沿着平行坐标轴的方向
偏导数存在 连续.
一元函数中在某点可导 连续,
可见,多元函数的理论除了与一元函数的理论有许多类似之处,也是还有一些本质的差别。
二、高阶偏导数
设函数 z = f (x, y) 在区域 D内有偏导函数 与
则称此极限值为z=f (x,y)在点(x0,y0)处对x的
记为
一元函数导数
如果极限存在,
函数有增量
相应
(1)定义
当y 固定在y0 , 而 x 在x0 处有增量△x时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
z 2x 3y ; x
z y
3x 2y .
z x
x 1 y2
2132 8 ,
z y
x 1 y2
3122 7 .
例 2 设z x y ( x 0, x 1), 求证 x z 1 z 2z . y x ln x y
证
z yx y1,
x
z x y ln x, y
x z 1 z x yx y1 1 x y ln x
如果 lim f ( x0 x, y0 ) f ( x0 , y0 )存在,则称
x0
x
此极限为函数z f ( x, y)在点( x0 , y0 )处对 x的
偏导数,记为
z x
,f x x0 x
z ,
x x0
x
x x0 y y0
或
f x ( x0 ,
y0 ).
y y0
y y0
同理可定义函数z f ( x, y)在点( x0 , y0 )处对 y
fx(x, y,z)
lim
x0
f(x
x, y, z) x
f (x, y,z),
fy(x, y,z)
lim
y0
f ( x, y y, z) y
f (x, y,z),
f ( x, y, z z) f ( x, y, z)
fz
(
x,
y,
z)
lim
z0
z
.
例 1 求 z x2 3xy y2在点(1,2) 处的偏导数.
但函数在该点处并不连续. 偏导数存在 连续.
4、偏导数的几何意义 设 M0( x0 , y0 , f ( x0 , y0 )) 为曲面 z f ( x, y) 上一点, 如图
几何意义:
偏导数 f x ( x0 , y0 )就是曲面被平面 y y0 所截得的曲线在点 M0处的切线 M0Tx 对 x轴的
y x ln x y y
ln x
x y x y 2z.
原结论成立.
例 3 设z arcsin x ,求z ,z . x2 y2 x y
解
z x
1
1 x2
x2
y2
x x2
y2
x
x2 y2
y2
| y|
( x2 y2 )3
| x2
y
| y
2
.
( y2 | y |)
z y
相等?
定理 如果函数z f ( x, y)的两个二阶混合偏导数 2z 及 2z 在区域 D 内连续,那末在该区域内这 yx xy
两个二阶混合偏导数必相等.
例 6 验证函数u( x, y) ln x2 y2 满足拉普拉
就是 x、 y的函数,它就称为函数z f ( x, y)对
自变量 x的偏导数,
记作
z x
,
f x
,
z
x
或
f
x
(
x,
y).
同理可以定义函数z f ( x, y)对自变量 y 的偏
导数,记作
z y
,
f y
,
z
y
或
f
y
(
x,
y
).
偏导数的概念可以推广到二元以上函数
如 u f (x, y,z) 在 (x, y,z) 处
的偏导数, 为
lim f ( x0 , y0 y) f ( x0 , y0 )
y0
y
记为 z y
,f x x0 y
,zy
x x0
或 x x0
y y0
f y ( x0 ,
y0 ).
y y0
y y0
如果函数z f ( x, y)在区域 D内任一点
( x, y)处对 x的偏导数都存在,那么这个偏导数
例 6 设u eax cosby ,求二阶偏导数.
解 u aeax cos by, x
2u x 2
a
2e ax
cos
by,
u beax sin by; y
2u y2
b2eax
cos
by,
2u abeax sin by, 2u abeax sin by.
xy
yx
问题:混合偏导数都相等吗?具备怎样的条件才
1
1 x2
x2
y2
x x2
y2
y
x2 y2 ( xy)
| y|
( x2 y2 )3
x2
x
y2
sgn
1 y
( y 0)
z 不存在. y x0
y0
例 4 已知理想气体的状态方程 pV RT (R为常数),求证: p V T 1.
V T p
证
p
RT V
p V
RT V2
;
V RT V R; T pV T V ;
解
f
x
(0,0)
lim
x0
|
x0|0 x
0
f y (0,0).
3、偏导数存在与连续的关系
一元函数中在某点可导 连续,
多元函数中在某点偏导数存在
连续,
例如,函数
f
(
x,
y)
x
2
xy
y
2
,
0,
x2 y2 0
,
x2 y2 0
依定义知在(0,0)处, f x (0,0) f y (0,0) 0.
斜率.
偏导数 f y ( x0 , y0 )就是曲面被平面 x x0 所截得的曲线在点 M0 处的切线 M0Ty 对 y 轴
的斜率.
二、高阶偏导数
函数z f ( x, y)的二阶偏导数为
x
z x
2z x 2
f xx ( x, y),
y
z y
2z y 2
f yy ( x, y)
纯偏导
第二节 偏导数与高阶偏导数
• 一、偏导数的定义及其计算法 • 二、高阶偏导数
一、偏导数的定义及其计算法
定义 设函数z f ( x, y)在点( x0 , y0 )的某一邻 域内有定义,当 y 固定在 y0而 x在 x0处有增量 x 时,相应地函数有增量
f ( x0 x, y0 ) f ( x0 , y0 ),
x
y
2z x 2
6
xy2
,
3z x 3
6
y2,
2z y 2
2x3
18xy;
2z xy 6x2 y 9 y2 1,
2z yx 6x2 y 9 y2 1.
观察上例中原函数、偏导函数与二阶混合偏导 函数图象间的关系:
原 函 数 图 形
偏 导 函 数 图 形
偏 导
导二 函阶
函
数混
数
图合
图 形
形偏
y
z x
2z xy
f
xy
(
x,
y),
x
z y
2z yx
f yx ( x, y)
混合偏导
定义:二阶及二阶以上的偏导数统称为高阶 偏导数.
例 5 设z x3 y2 3xy3 xy 1,
求2z x 2
、 2z yx
、 2z xy
、 2z y 2
及 3z x 3
.
解 z 3x2 y2 3 y3 y, z 2x3 y 9xy2 x;
p T p
R p R
p V
V T
T p
RT V2
R V RT p R pV
1.
有关偏导数的几点说明:
1、 偏导数u是一个整体记号,不能拆分; x
2、 求分界点、不连续点处的偏导数要用 定义求;
例如, 设z f ( x, y) xy , 求fx (0, 0), f y (0, 0).