一个200W开关电源的功率级设计总结
200w开关稳压电源设计原理

200w开关稳压电源设计原理
200瓦开关稳压电源是一种常见的电源设计,它可以将输入电压转换为稳定的输出电压,适用于各种电子设备和电路。
下面我将从多个角度来解释这种电源的设计原理。
首先,开关稳压电源的设计原理涉及到几个关键部分,输入滤波电路、整流电路、滤波电容、开关变换电路、控制电路和输出稳压电路。
输入滤波电路用于滤除输入电源中的高频噪声和干扰,通常采用电感和电容组成的滤波网络来实现。
整流电路将交流输入电压转换为脉冲电压,常见的整流电路有单相桥式整流电路或全波整流电路。
接下来是开关变换电路,它使用开关管(如MOSFET)来控制输入电压的开关,通过周期性地切换开关管的导通和关断状态,将输入电压转换为脉冲电压。
这种脉冲电压经过滤波电容后得到平稳的直流电压。
控制电路则用来控制开关管的导通和关断,以保持输出电压的
稳定。
常见的控制方式包括脉宽调制(PWM)和脉冲频率调制(PFM),通过调节开关管的导通时间和频率来实现输出电压的稳定
控制。
最后是输出稳压电路,它通常由稳压管、反馈电路和输出滤波
电路组成,用于提供稳定的输出电压并滤除残余的高频噪声。
稳压
管通过反馈电路监测输出电压并调节开关管的工作状态,以保持输
出电压的稳定。
总的来说,开关稳压电源的设计原理涉及到输入滤波、整流、
开关变换、控制和输出稳压等多个环节,通过这些环节的协同工作,可以实现将输入电压转换为稳定的输出电压。
这种设计原理在实际
应用中被广泛采用,能够为各种电子设备提供稳定可靠的电源供应。
一个新的200kHz200W环保型开关电源

一个新的200kHz-200W环保型开关电源一个新的200kHz/200W环保型开关电源1引言当今,对额定功率200W以上的高频实用型开关电源在进行环保性能评估方面都或多或少地存在一些麻烦。
它们要么EMI噪声较大,要么输入电流谐波超标或者在一定的功率封装密度下温度特性不好,可靠性差等等。
要解决这些问题,一个途径是找寻新的性能更先进的变换器拓扑,另一途径就是选择新工艺,新器件以尽可能满足环保性能评估的要求。
近年来国外某些知名半导体公司花了不少力气进行器件技术的改造并研发出一系列有针对性的性能优越的新器件。
例如前身为Siemens的Infineon公司近年陆续地推出专用于解决高频开关电源上述问题的一揽子器件。
它们包括耐高压600V,低导通电阻(Rdson)的CoolMOS管(高频运用时温升极低,适用作Boost开关),大电流低耐压且小Rdson 的OptiMOS管(特适用于Buck变换器),PFC PWM双合一ICTDA16888(可节省空间和元件),耐高压(600V)SiC肖特基二极管(特适用于作Boost二极管)等等。
这些器件都有专门特性,如果在开关电源设计中使用得当,就会事半功倍地解决问题,而且成本也得到控制。
作为范例,本文拟向读者介绍利用上述器件综合制成的一个工作频率为200kHz,功率为200W的符合环保要求的实用型开关电源。
它采用第二代的CoolMOSC2作为PFC和PWM的功率开关,采用SiC肖特基二极管作为PFC二极管,OptiMOS作为同步整流开关,PFC和PWM的控制由同一块ICTDA16888实现。
该电源具有宽的输入电压范围(90V~275V),80%以上的AC/DC变换效率。
输出电压有两组:+5V/20A和+12V/8.3A,带有输出过载保护和输出短路保护。
所有功率器件均无须加散热片,也不要求接最小的输出负载。
2电路方块图图1示出整体电源的工作框图。
它是由PFC和PWM两部分组成。
一个 200W 开关电源的功率级设计

一个 200W 开关电源的功率级设计总结Michael Weirich 实验室经理飞兆半导体(德国)公司摘要本文讲述了一个基於FAN4800 连续PFC 前端的双管正激电源的功率级设计。
回顾了这种电源的设计选择。
讨论的实际课题包括功率器件选型,电磁设计,布局和电磁干扰 (EMI),目的在於帮助工程师加速并改善其设计。
1. 导言新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。
这篇文章描述了一个用於液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。
这些特徵对於将要应用的场合是不可或缺的。
2. 电路描述和设计设计指标如下∶·交流输入电压∶85-265VRMS·功率因素∶> 0.95·总输出功率∶200W·三个直流输出∶5V/0.3A12V/5A24V/6A电源分为两个单元。
第一电源集成一个功率因素校正电路,内置在FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个24V/6A 和12V/5A 的输出。
这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。
在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。
这种变换器能产生一个稳压的24V 输出。
12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。
这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。
附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。
第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。
LED显示屏5V40A200W专用开关电源设计

LED显示屏5V 40A专用开关电源设计1 参数:输入电源:220V输出电源:5V 40A2开关电源的组成开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。
如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F 转换、基极驱动、输出整流、输出滤波电路等。
实际的开关电源还要有保护电路、功率因数校正电路、同步整流驱动电路及其它一些辅助电路等。
图1是开关电源原理框图:图1 开关电源原理框图2.1 输入电路包括线性滤波电路、浪涌电流抑制电路、整流电路三部分。
作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。
典型电路如图2所示:图2 输入电路该电路包含滤波电路、浪涌电流抑制电路及全波整流电路。
输入电路各电容C11、C12、C13 用于滤波,滤除高频噪声;电抗器L11 用于浪涌抑制;电容C14、C15、C18 用于去耦。
输入220VAC 电压经过全波整流,产生变换器所需要的直流电压,及提供控制电路必须的工作电源。
J21 为短路线,TH 为过流电阻,当发生过流时,器件熔断。
2.2 功率电路基本原理市电220V的交流电经输入电路整流滤波后,已变为直流电(带脉动),从该直流电到输出之间的电路可简单等效为一个单管隔离降压变换器。
如图3所示:图3 功率电路基本原理为防止变压器T磁饱及快速恢复,原边使用了简单的R1C1释放电路。
副边VD1 整流,VD2 续流,C2去耦,L、C4滤波,R3C3、R4为辅助泄放通路。
当然实际电路比这个要复杂的多,复杂的原因主要是因为加入了保护电路、反馈电路、控制电路等。
下面具体讲述实际应用的电路。
2.3 变压器及控制部分供电电路变压器周边电路以及给控制电路供电的电路如图4所示:图4 变压器及控制部分供电电路本电路中的变压器T11就是图3中的变压器T,其中1-3绕组为原边主绕组(即图3中的N1绕组),6-7绕组为副边输出绕组(即图3中的N2绕组),4-5绕组为原边辅助绕组,主要给控制电路提供电源。
高川+200w开关电源设计方案

高川+200w开关电源设计方案200w开关电源设计方案1、设计要求:输入额定电压:AC220V输出额定电压:DC50V输出额定电流:4A2、方案思路:该电源接入220V 交流电来供电。
总共可分为三大部分:整流部分(含滤波)、DC/DC 部分以及反馈部分。
整流部分采取桥式不控整流来获得脉动直流,再利用滤波器对电压实现平滑的调节,获得直流。
DC/DC 部分采取半桥来改变电路状态,此部分重点是对同一桥臂上下开关管(MOSFET )状态的控制以及变压器的设计。
反馈部分可采取SG3525芯片来对开关管控制,实现关断和开通。
3、方案对比:此开关电源由于其输出功率较大,不宜采用反激式开关电源,从设计难度和成本上考虑,可选取半桥来设计此开关电源。
4、变压器设计:先利用功率(视在功率),即Ap 来选取磁芯和框架。
磁芯:Ju c m P K K A fB p A 410000t ?= 原边匝数:fA B U N C m i 1=(此时输入电压为直流电压的一半)副边匝数:i U N U N 1o 2=线径可利用线圈中流过的有效电流进行计算。
5、反馈回路:反馈回路芯片利用SG3525来对控制开关管的通断。
6、计算:1.整流滤波,其滤波电容阻值:可按照功率来选取,可按照1w/1-2u 来选择电容阻值。
2.DC/DC 后输出滤波,其电感和电容值:电感:oi fI U L 12n =(输入电压为整流滤波后电压的一半)电容:p p U T I C _o 8?>(p P U _?为纹波电压) 3.负载:o I U R o = 7、硬件电路:1.主电路:2.控制回路:。
200W正弦波逆变电源的设计方法

200W正弦波逆变电源的设计方法
正弦波逆变电源是一种能够将直流电转化为交流电的电源。
其输出电压为正弦波形,输出电流能够满足要求,且具有较高的转换效率,被广泛应用于各种场合。
本文将从电路设计方法的角度,介绍200W正弦波逆变电源的设计方法。
首先,我们需要确定电源的参数:额定输出功率、输入电压范围、频率、输出电压稳定度等。
针对本设计,选取额定输出功率为200W,输入电压范围为DC12V-DC24V,输出频率为
50Hz/60Hz,输出电压稳定度在±5%左右。
其次,电路设计需要选用合适的元器件。
在正弦波逆变电源中,关键的元器件为开关管、大电容以及变压器等。
为了保证电源的工作效率和性能稳定度,需要选用质量好、稳定性高的元器件。
其三,我们需要对电路进行硬件连接。
正弦波逆变电源的电路结构相对较为复杂,需要合理布局电路板、优化电路元器件的排列顺序以及减小电路板的噪声纹波。
其四,进行电路测试。
在电路测试中,需要依次检验电路中关键元器件的参数,确认电路工作在最佳负载点,防止元器件的过度切换,导致电源工作不稳定。
在实际的电路设计中,由于外部环境和工作负载的不同,会导致电路的工作出现差异。
因此,在设计正弦波逆变电源时,需要制定合适的测试流程,并且在不断的优化和修正中,逐步完
善电源的性能和功能。
总的来说,正弦波逆变电源的设计方法需要有扎实的电路知识和对元器件的深入理解。
在设计过程中,需要不断改进电路设计,不断完善电路性能,以满足实际工作环境和负载的需求。
200瓦UPS的设计

200瓦 UPS的设计摘要:本设计是基于开关电源的200瓦小功率UPS,采用开关电源的直流供电方式,通过这种方式可以免除谐波干扰,提高功率因数,增加数据处理和传输的安全性与可靠性。
再通过开关电源逆变器实现对用户设备交流供电,设备中增设的各种保护机制,确保UPS能安全可靠的对设备供电。
关键词:UPS;功率因数校正;半桥电路;推挽逆变电路Design of 200 watt UPSWANG Kangjun(College of Electrical and Information Engineering,Quzhou University,Quzhou Zhejiang,324000)Abstract: This design is based on 200 watts of small power switching power supply UPS, using the dc power supply mode of switching power supply, through this way can avoid harmonic interference, improve the power factor, increase the safety and reliability of data processing and transmission. Then, the switching power inverter is used to realize the ac power supply of the user's equipment. Various protection mechanisms have been added to the equipment to ensure that UPS can supply power to the equipment safely and reliably.Keywords: UPS; Power factor correction; half bridge circult; Push-pull inverter circuit1.系统工作原理本设计是基于开关电源的200瓦的小功率UPS,由开关电路拓扑构成UPS的所有电路,UPS的电路由前级供电电路,后级逆变电路,功率因数校正电路三大部分构成。
200W开关电源设计PFC双管正激

学位论文200W开关电源设计——基于双管正激变换器摘要开关电源是一种由占空比控制的开关电路构成的电能变换装置,用于交流-直流或直流—直流电能变换,通常称其为开关电源。
其功率从零点几瓦到数十千瓦,广泛用于生活、生产、科研、军事等各个领域。
开关电源的核心为电力电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制。
本设计的交流输入电压范围是85V~265V,输出电压24V,输出功率200W。
该设计能够同时实现输入欠压保护、输出过压保护、功率因数校正等功能。
本设计主要采用单片开关电源芯片L6562D,NCP1015和NCP1217,线性光耦合器PC817A及可调式精密并联稳压器TL431等专用芯片以及其它的分立元件相配合,使设计出的开关电源具有稳压输出功能。
主要用到的开关电源电路拓扑有BUCK电路,BOOST电路和正激电路。
关键词:开关电源,功率因数校正,电路拓扑ABSTRACTThe switching power supply is a power conversion device for AC-DC or DC-DC conversion,which is consist of switching circuits controled by duty cycle.Its power varies from a few tenths of watts to tens of kilos watts,and it is widely used in life,production,scientific research, military and other fields.The core of the switching power supply is power electronic circuit.According to the request of steay output voltage or flow characteristics of power from the load,it can use feedback control circuit with duty cycle control method to control the switching circuit. The AC input voltage of this design ranges from 85V to 265V and the output voltage is 24V,the output power 200W.The design can simultaneously realize functions of input under-voltage protection, output overvoltage protection and power factor correction. The design mainly adopts dedicated chips ,such as single switching power supply chip L6562D, the NCP1015 and NCP1217A, a linear optocoupler PC817 and adustable precision shunt regulator control TL431 ,which is matched with other discrete components to make the switching power supply with voltage regulator output function. The main switching power supply circuit topology are Buck Circuit, the Boost Circuit and a Forward Circuit.Key words:the switching power supply,power factor correction,circuit topology目录第1章开关电源简介 (1)1.1 开关电源的发展简史 (1)1.2 开关电源的发展趋势和前景展望 (1)1.3 本文的主要工作 (2)1.3.1 基本要求 (3)1.3.2 发挥部分 (3)第2章开关电源的分类和基本工作原理 (4)2.1 开关电源的分类 (4)2.2 开关电源的基本工作原理 (4)2.3 PFC原理 (5)2.4 双管正激式变换器工作原理 (6)第3章交流输入部分电路的设计与实现 (8)3.1 原理图设计 (8)3.2 元件参数与选择 (8)3.2.1 压敏电阻 (8)3.2.2 安规电容 (8)3.2.3 泄放电路 (9)3.2.4 共模扼流圈 (9)3.2.5 整流桥和滤波电容 (9)第4章基于L6562D的连续型APFC电路设计与实现 (10)4.1 L6562D功能特点及其工作方式 (10)4.2 设计要求 (10)4.3 工作原理 (10)4.3.1 概述 (10)4.3.2 FOT峰值电流模式分析 (11)4.3.3 FOT峰值电流模式的输入电流畸变 (12)4.3.4 输入电流尖峰畸变的补偿电路 (12)4.4 原理图设计 (14)4.5 参数设计 (14)4.5.1 升压电感的设计 (14)4.5.2 确定电流取样电阻 (17)第5章基于NCP1217A双管正激变换器电路的设计与实现 (19)5.1 NCP1217A功能特点 (19)5.2 设计要求 (19)5.3 原理图设计 (19)5.4 参数设计 (21)5.4.1 变压器和输出电感的设计 (21)5.4.2 确定次级侧的整流二极管 (22)5.4.3 确定输出电容器 (23)5.4.4 脉冲驱动电路的设计 (23)5.4.5 稳压反馈电路设计 (24)第6章基于NCP1015的辅助电源设计与实现 (25)6.1 NCP1015功能特点 (25)6.2 设计要求 (25)6.3 原理图设计 (25)6.4 工作原理 (25)第7章测试报告 (26)7.1 概述 (26)7.1.1 输出电压精度 (26)7.1.2 线性调整率 (26)7.1.3 负载调整率 (27)7.1.4 工作效率 (28)7.1.5 PF值 (30)7.1.6 纹波 (31)7.2 毕设完成指数 (33)7.2.1 基本要求 (33)7.2.2 发挥部分 (33)第8章调试总结 (34)8.1.1 基于NCP1654的PFC调试 (34)8.1.2 基于NCP1217A的双管正激调试 (34)8.1.3 基于L6562D的APFC电路的调试 (34)8.1.4 联调 (35)8.1.5 心得体会 (35)参考文献 (37)附录A 原理图 (38)A.1 APFC设计部分 (38)A.2 双管正激部分 (39)A.3 交流输入部分 (40)A.4 NCP1217A设计部分 (40)A.5 辅助电源设计部分 (40)附录B 器件清单 (41)B.1 交流输入部分参数 (41)B.2 辅助电源设计部分参数 (41)B.3 NCP1217A设计部分参数 (41)B.4 APFC设计部分参数 (42)B.5 双管正激设计部分参数 (42)附录C APFC电路PCB (44)附录D 双管正激电路PCB (45)第1章开关电源简介1.1 开关电源的发展简史开关电源是相对线性电源说的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个200W开关电源的功率级设计总结一个200W开关电源的功率级设计总结1.导言新的功率在200W-500W的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。
这篇文章描述了一个用於液晶电视的200W电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm,无风扇的简单冷却,低成本。
这些特徵对於将要应用的场合是不可或缺的。
2.电路描述和设计设计指标如下∶交流输入电压∶85-265VRMS·功率因素∶>0.95·总输出功率∶200W·三个直流输出∶5V/0.3A12V/5A24V/6A电源分为两个单元。
第一电源集成一个功率因素校正电路,内置在FAN4800PFC/PWM(脉宽调制)二合一控制器周围,产生一个24V/6A和12V/5A的输出。
这个器件包含一个平均电流模式PFC控制器和一个能够在电压和电流模式下工作的PWM控制器。
在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。
这种变换器能产生一个稳压的24V输出。
12V 输出则由一个采用MC34063A PWM控制器的Buck变换器产生。
这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。
附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。
第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback变换器,它给FAN4800提供电源和5V输出。
这个电源工作在待机模式下,它的无负载功耗低於500mW。
因此,即使对於省电模式下小负载情况,也有可能满足1W待机功耗的限制。
为了简洁,设计计算和电路图将在每个模组中单独给出。
最终完成的示意图和布局,可在附录中查到。
3.功率因素校正本节回顾了功率因素校正电路的电源选择。
用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。
3.1整流器由於主电源用来提供一个200W的输出功率,即总输入功率。
假设PFC 的效率为90%,正激变换器效率为90%,其中输出功率为∶考虑到最大输入电压为85VRMS,最大输入电流为∶电磁干扰滤波器的常见共模扼流圈,必须承受这部分电流,同时具有约10mH高电感。
市场上有一些扼流圈,具有高电流,高电感和小尺寸的特徵,来自EPCOS和TDK。
扼流圈的实际值和类型由电磁干扰测试确定,依赖於工作条件,也许与本文提出的滤波器有所不同。
与输出串联的负温度系数热敏电阻(NTC)限制了浪涌电流,但并非电源工作所真正需要的。
整流器根据IIn,RMS选定,但注意到高额定电流二极管通常在某一电流下具有更低的电压降,使用一个额定电流略高的整流桥是有利的。
对於实际设计,选择一个6A/800V桥GBU6K。
整流器功耗是可以预计的,通过一个恒定正向电压下已知的近似二极管正向特性乘以一个串联电阻。
正向电压VF和串联电阻Rs必须从规格说明书中查,对於GBU6K分别是0.8V和0.03Ω。
功耗方程变成∶如果我们假设一个绝对的最高结温度TJ为150℃,最高室温为50℃,然後BR1散热器的热大热阻(与空气之间)应为3.2电感L1在讲述的设计中,通过L1的波纹电流的振幅被选定为输入电流的20%。
在这种选择下,电感可以根据下列等式(5)计算∶给出的电感差不多是1mH。
当RMS电流等於RMS输入电流时,L1的峰值电流是在这个电流和5A/mm2的电流密度下,所需的铜线截面积约为0.58mm2。
由於高频电流仅为输入电流的20%,趋肤效应和邻近效应不是很明确。
三或四条细电线并联总面积能够达到所需面积就足够了。
在实际设计中,使用了三根直径为0.5mm的电线,电流密度略低於5A/mm2。
L1的磁环尺寸根据被称为磁环区域乘积Ap确定,即有效磁性截面积和绕组面积(骨架)的乘积。
这个乘积很容易证明是其中ACu是铜线面积,Bpeak是饱和磁通密度(对於大多数铁氧体,≤0.35T)。
fCu是铜填充因子,对於简单电感,约为0.5;对於含有几个线圈的变压器,约为0.4。
确定这些数据後,L1的Ap需求值是基於惯例,对大多数磁环,磁性截面积和绕组面积非常相近,需要的磁环面积为因此,对於我们的应用,一个合适的磁环的Ae约为122mm2。
虽然,要找到此磁截面的磁芯并不难,但电感的高度由於应用要求被限制在25mm。
因此,经过一番对磁环和筒管规格说明书仔细搜索之後,选择了EER3542,它的Ae为107mm2,AW为154mm2,得到AP约为16500mm4。
其中AL,0是无气隙磁芯的AL(查磁芯规格书),有气隙的磁芯的AL是1mH/1242=65nH。
如果後两个值的单位是nH,Ae的单位是mm2,那麽气隙长度s的单位是毫米。
在这次设计中,气隙长度约2毫米。
3.3Q1和D1因为最高额定输入电压是265VRMS,Q1的最大漏极电压为500V似乎足够了。
但是建议使用一个额定电压为600V的MOSFET,因为经验显示这个600V MOSFET,能够承受浪涌测试,根据无损坏IEC61000-4-5标准,而500V类型则需要额外的浪涌电压限制器。
同样,这对於Boost 二极管也是有效的。
这是因为电解质电容C5能够吸收大量能量,保护一个600V器件,而不是500V器件。
Q1和D1的峰值电流和通过L1的峰值电流是相同的,即4.5A,而Q1的RMS电流为∶关键字:开关电源tyle="TEXT-ALIGN:center" done0="13">D1的RMS电流为∶尤其对於MOSFET,低功耗和峰值电流是选择某些器件的重要考虑因素。
经过一番计算,选择了一个最大RDSon约为0.45Ω@100℃的SuperFetTM FCP16N60。
Q1的总功耗分成传导功耗和开关功耗。
传导功耗如下∶开关损耗进一步分为,由於源漏电容(加上寄生电容的,例如L1和PCB)放电导致的功耗和由於开关过程中电流和电压重叠带来的功耗,以及D1反向恢复带来的功耗。
所有这三项都无法确切了解,但可以根据下面的表达式估计∶FCP16N60的COSS,eff是110pF,而杂散电容Cext估计为150pF。
50ns的交叉时间tcrossover是一个合理的估计值,并且得到测量确认。
二极管反向恢复导致的功耗预计为2W。
最终,Q1的总功耗是∶4、双管正激变换器图2是双管正激变换器。
在这个应用中,FAN4800的PWM部分运作在电流模式,控制一个双管正激变换器。
这个拓扑基本上和熟知的单管正激变换器相同。
但它的优点是,两晶体管中的任何一个漏极电压只需要等於PFC的直流输出电压。
相比之下,标准正激变换器需求两倍大小的漏极电压,差不多800-900V。
此外,对於双管正激变换器,变压器构造简单,便宜,因为它不需要复位绕组。
当然有缺点需要考虑∶使用的拓扑需要两个晶体管,其中一个的门极电压悬浮于高电压。
如果细看,这些问题都不是大问题,因为功率MOSFET的导通阻抗正比於漏极电压,为2至2.5倍。
这意味著两个晶体管,只须有一半耐电压同时只有一半导通阻抗,即可使用更少的矽面积得到相同的传导功耗。
所以两种解决方案的成本是相似的。
因为使用了门极驱动器FAN7382,第二缺点也没有了。
这个器件包含一个完全独立的低端和高端门极驱动器。
这是很重要的,因为在双管正激变换器中,所有的晶体管同时关闭和导通。
当导通时,能量转移到次级;当关闭时,变压器经复位二极管D217和D218被去磁化。
对於双管和单管正激来说,主要设计等式完全相同,所以飞兆半导体应用说明AN-4137及其相关的电子数据表,[2],可用於考虑一些变化後的计算。
由於变换器直流电压由一个PFC预调节器产生,填入电子数据表的线路电压须选择适当,以获得正确的直流电压。
在这个应用中,284VRMS 用於两个最低和最高线电压。
线频率并不影响计算。
接下来,考量直流母线电容大小(例如1000uF),因为使用到PFC,实际直流母线电容器两端的纹波电压相当小。
最高占空比也须严格小於0.5,允许变压器去磁化。
为了留下一些馀量,最大占空比选择为0.45。
由於已经有了单个晶体管正激的表单,np/nr比(Excel:Np/Nr)和最大额定MOSFET电压可以忽略。
输出滤波电感L5的电流纹波因素Krf的选择,通常是一个反复的过程。
一方面,想使这个因素尽可能小,以减少初级和次级电流的RMS和峰值。
另一方面,L5不得过大。
因此,开始假设一个纹波因素,然後检查L5的配置结果是否可以接受。
在这次设计中,KRF值为0.21,L5的计算电感为40μH。
计算的绕组将完全填补一个EER2828磁环。
根据选择的KRF,通过Q205和Q206的电流的RSM和峰值如下∶如前所述,最高漏极电压稍微大於400V足够了,能有效使用额定电压为500V MOSFET。
其次,输出建议使用600V MOSFET,而不是一个浪涌电压限制器。
SUPERFETTM FCP7N60具有下列数据功耗能够很容易得到,与计算Q1功耗类似。
这里给出了一个功耗上限值。
在实际中,励磁电感的谐振和节电输出电容使电压降低到400V以下,Q206的功耗当然是完全相同的。
每一个MOSFET需要一个最大热阻为20℃/W的散热器。
电流感应电阻R233的值是这样选择的,最大峰值电流可能超过1.6A。
如果电阻值为0.56Ω,这个条件实现了但没有馀量。
出於这个原因,选择0.47Ω电阻,此时最大峰值电流为2.1A。
电感L5,变压器,二次整流和滤波,都可以根据Excel表计算。
在工作表给出的变压器AP等式的帮助下,为变压器选择了一个EER2834磁环,绕组数据可在附录中查到。
整流二极管的反向电压计算值是57V,但是推荐使用一个指定最大电压至少100V的整流二极管。
为了减少传导和开关损耗,最好使用肖特基二极管。
RMS电流负载在电子数据表中给出,可以用来确定二极管;实际选择的是两个FYP2010DN二极管。
整流二极管D219和D220的平均电流为∶确定功耗的方法与BR1和D1的方法相同。
再次,每个二极管使用的散热器热阻不超过20℃/W。
5、DC/DC变换器的Buck变换器工作在连续模式,由一个简单的,但是工作在100千赫的有效PWM控制器控制。
因为开放集电极输出,使用一个由Q211/212组成的驱动器来驱动P沟道MOSFET。
通过Q209,D223和L6的峰值电流是6.3A。