丰富的图形世界(无答案)-初中一年级数学试题练习、期中期末试卷-初中数学试卷
(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试题(答案解析)

一、选择题1.一个表面标有汉字的正方体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边2.如图所示是由一些相同的小正方体构成的立体图形从正面、左面、上面看到的形状图,那么构成这个立体图形的小正方体的个数是()A.5个B.6个C.7个D.8个3.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是()A.B.C.D.4.下列说法错误..的是()A.长方体、正方体都是棱柱B.三棱锥的侧面是三角形C.球体的三种视图均为同样大小的图形D.三棱柱有六条棱、六个侧面、侧面为长方形5.如图是正方体的平面展开图,每个面上都标有一个汉字,与“爱”字对应的面上的字为()A.大B.美C.綦D.江6.如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是()A.神B.奇C.数D.学7.下列图形是正方体展开图的是()A.B.C.D.8.如图是正方体的平面展开图,则与“梅”字相对的字是()A.侨B.香C.牛D.旺9.若一个几何体的表面展开图如图所示,则这个几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥10.如图是正方体的表面展开图,则“乐”字相对面上的字为()A.南B.开C.生D.快11.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中棱柱具有的性质有()A.1个B.2个C.3个D.4个12.用一个平面去截正方体,所得截面的形状不可能是()A.正方形B.梯形C.三角形D.七边形二、填空题13.某正方体的每个面上都有一个汉字,如图是它的一个展开图,则在原正方体中,与“我”字所在面相对的面上的汉字是___.14.一个小立方块的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示,其中A、B、C、D、E、F分别代表数字-2、-1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为_____15.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“迎”相对应的面上的汉字是______。
第一章 丰富的图形世界单元测试卷(含答案与解析)

【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(含答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥 C.圆台 D.长方体3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.4.圆锥的截面不可能为().A.三角形B.圆C.椭圆D.矩形5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C. D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个C.3个D.4个8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.611.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2π B.6πC.7πD.8π12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同 B.俯视图相同 C.左视图相同 D.主视图、俯视图、左视图都相同二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有(填编号).14.某几何体的三视图如图所示,则这个几何体的名称是_____.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.16.由几个相同的小正方体搭成一个几何体,从不同的方向看几何体所得到的图形如图所示,则组成这个几何体的小正方体的个数可能是___________个.三.解答题:(共52分)17.仔细观察图所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥18.下面图形是由小正方体木块搭成的几何体的三视图示意图,则该几何体的实物图形是什么模样的?它由多少个小正方体木块搭成.请用小木块实地操作一下吧!正视图左视图俯视图19.如图,是一个几何体的二视图,求该几何体的体积.(π取3.14)20.一间长为8米,宽为5米的房间,用半径为0.2米的圆形磨光机磨地板,不能磨到的部分的面积共多少平方米?(提示:不论房间面积多大,其四个角各有一部分不能磨到.)21. 画出下面几何体的主视图、左视图与俯视图.22.已知n棱柱中的棱长都是15 cm,且该棱柱共有16个顶点.(1)该棱柱的底面是______边形;(2)求该棱柱所有棱长的和;(3)求该棱柱侧面展开图的面积.23.用5个棱长都是1的小正方体木块摆成如图所示的几何体.(1)该几何体的体积为_______;(2)如果在该几何体的基础上,用同样的小正方体木块m块,摆成一个大正方体,则m的最小值为________;(3)如果给该几何体的表面刷漆,那么刷漆部分的面积是多少?【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:A为圆柱体,它的主视图应该为矩形;B为长方体,它的主视图应该为矩形;C为圆台,它的主视图应该为梯形;D为三棱柱,它的主视图应该为矩形.故选C.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱 B.圆锥 C.圆台 D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥.故选B.3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.【分析】根据从上面看得到的视图是俯视图,可得答案.【解答】解:从上边看第一层是一个小正方形,第二层在第一层的上面一个小正方形,右边一个小正方形,故选:B.4.圆锥的截面不可能为().(A)三角形(B)圆(C)椭圆(D)矩形【答案】D【解析】试题分析:从圆锥的顶点沿着高切得到的截面是三角形,平行于底面切得到的截面是圆,斜着切得到的截面是椭圆,所以不可能得到矩形,故选D.5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C.D.【分析】俯视图是从上面看所得到的图形,此几何体从上面看可以看到一个长方形,中间有一个长方形.【解答】解:其俯视图为.故选:D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:A、从正面看第一层三个小正方形,第二层中间一个小正方形;B、从正面看第一层三个小正方形,第二层中间一个小正方形;C、从正面看第一层三个小正方形,第二层右边一个小正方形、中间一个小正方形;D、从正面看第一层三个小正方形,第二层中间一个小正方形;故选:C.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【分析】四个几何体的左视图:球是圆,圆锥是等腰三角形,正方体是正方形,圆柱是矩形,由此可确定答案.【解答】解:由图示可得:球的左视图是圆,圆锥的左视图是等腰三角形,正方体的左视图是正方形,圆柱的左视图是矩形,所以,左视图是四边形的几何体是圆柱和正方体.故选B.8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案.【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.6【分析】根据从上面看得到的图形是俯视图,根据题意画出图形即可求解.【解答】解:由七个棱长为1的正方体组成的一个几何体,其俯视图如图所示;∴其俯视图的面积=5,故选C.11.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π【分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.【解答】解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π;故选D.12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的宽不同,故A错误;B、俯视图是两个相等的圆,故B正确;C、主视图的宽不同,故C错误;D、俯视图是两个相等的圆,故D错误;故选:B.二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有①②③(填编号).【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:①②③.14.某几何体的三视图如图所示,则这个几何体的名称是_____.【答案】圆柱【解析】试题解析:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.【答案】(1). 12(2). 7(3). 4(4). 等边【解析】试题分析:按照如图所示的截法,截面是一个正三角形,有12条棱,顶点比原来少一个变成7个,截去的几何体是三棱锥,有4个面,截面是等边三角形。
《丰富的图形世界》试题及答案

北师大七年级上数学丰富的图形世界能力提高题班级_______姓名________学号________分数__________一、填空题(本大题共8小题,每小题3分,共24分)1、下图所示的三个几何体的截面分别是:(1)_________;(2)__________;(3)___________.2、图中按左侧三个图形阴影部分的特点,将右侧的图形补充完整。
3、面与面相交成___,线与线相交得到___,点动成____,线动成_____,面动成____4、下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:________,___________5、已知三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条棱。
6、当下面这个图案被折起来组成一个正方体,数字_______会在与数字2所在的平面相对的平面上7、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成10个三角形,则这个多边形的边数为_____。
8、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。
二、选择题(本大题共8小题,每小题3分,共24分)9、下面几何体的截面图不可能是圆的是()A、圆柱B、圆锥C、球D、棱柱10、将左边的正方体展开能得到的图形是()11、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体12、用一个平面去截一个正方体,截面可能是()A、七边形B、圆C、长方形D、圆锥13、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是 ( )A长方形、圆、长方形 B、长方形、长方形、圆C、圆、长方形、长方形D、长方形、长主形、圆14、下面图形经过折叠不能围成棱柱的是 ( )15、说法中,不正确的是( )A 、棱柱的侧面可以是三角形;B 棱柱的侧面展开图是一个长方形;C 、若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的;D 、棱柱的上底面与下底面的形状与大小是完全一样的。
第一章 丰富的图形世界 达标测试卷(含答案)北师大版(2024)数学七年级上册

第一章丰富的图形世界达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列几何体为圆柱的是()A B C D2.图1是由5个相同的小立方块搭成的立体图形,从正面看它得到的形状图是()A B C D图1 图2 图33.下列图形绕虚线旋转一周能够得到图2所示的几何体的是()A B C D4. 把图3所示的三棱柱表面展开,得到的展开图可能是()A B C D5. 往图4所示的一个密封的正方体容器持续注入一些水,注水的过程中,可将容器任意放置,水平面形状不可能是()A.三角形B.正方形C.六边形D.七边形图4 图5 图66. 一个正方体的每个面上都有一个汉字,其展开图如图5所示,那么在该正方体中与“绿”字所在面的相对面上的汉字是()A.低B.碳C.发D.展7. 图6是由一些大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示该位置小立方块的个数,则该几何体从左面看到的形状图是()A B C D8.下列说法错误的是()A.若直棱柱的底面边长相等,则它的各个侧面的面积相等B.正九棱柱有9条侧棱,9个侧面,侧面为长方形C.长方体、正方体都是棱柱D.若一个棱柱有12个顶点,则这个棱柱的底面是八边形9. 已知一个不透明的正方体的六个面上分别写着1~6六个数字,如图7是我们能看到的三种情况,请你判断数字4对面上的数字是()A.6 B.3 C.2 D.1图7图810. 将图8所示的无盖正方体沿①、②、③、④边剪开后展开,则下列展开图的示意图正确的是()A B C D二、填空题(本大题共6小题,每小题3分,共18分)11. 用一个平面去截一个球,无论怎样切截,截面形状都是_______.12. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,这个现象用数学知识解释为______________.13. 如图9所示的几何体是由________个面围成,面与面相交成________条线,其中直的线有________条,曲线有________条.图9 图1014. 图10是由4个相同的棱长为1的小正方体组成的几何体,则从上面看它的平面图形的面积是______.15. 如图11是一些几何体的展开图,它们的几何体的名称从左到右依次是______________.图11 图1216.一个立体图形由若干个完全相同的小立方块搭成,如图12是分别从正面、左面、上面看这个立体图形得到的形状图.这个立体图形由 _____________个小立方块搭成.三、解答题(本大题共6小题,共52分)17.(6分)如图13所示是一个正六棱柱.(1)填写下表:(2)若该正六棱柱所有侧棱长的和为72 cm,底面的边长为5 cm,求该正六棱柱的所有侧面的面积和.图1318.(8分)如图14,小明同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中的阴影部分),但是由于疏忽少画了一个,请你给他补画一个,使之可以折叠成正方体,请你把所有的画法都补上,在图上用阴影注明.图14 备用图19.(8分)小明用一个平面去截图15所示的几何体.(1)写出几何体截面形状的名称,①__________,②___________,③___________.(2)除了上述三个截面形状外,还有其他互不相同的截面形状吗? 请分别再写出一个.图1520.(8分)如图16是一张长方形纸片,AB长为4 cm,BC长为6 cm.若将此长方形纸片绕它的一边所在直线旋转一周,(1)得到的几何体是__________;这个现象用数学知识解释为 ______________;(2)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的体积.(结果保留π)图16②①③21. (10分)图17是由棱长都为2 cm的6个小立方块搭成的简单几何体.图17(1)请在下面的方格中画出该几何体从三个方向看到的形状图;从正面看从左面看从上面看(2)根据形状图求简单几何体的表面积;(3)如果在这个几何体上再添加一些小立方块,并保持从正面和左面看到的形状图不变,那么最多可以再添加_________个小立方块.22.(12分)现有如图18所示的长方体,长、宽、高分别为4,3,6.图18(1)若将它的表面沿某些棱剪开,展开成一个平面图形,则下列图形中,可能是该长方体的展开图的是 _______.(填序号)(2)图A,B分别是图18所示的长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B的外围周长.(3)图18所示的长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个展开图,并求出它的外围周长.附加题(20分,不计入总分)一个几何体是由若干个棱长为3 cm的小立方块搭成的,从左面、上面看到的几何体的形状图如图所示.(1)该几何体最少由________个小立方块搭成,最多由________个小立方块搭成.(2)当该几何体用最多的小立方块搭成时,将该几何体的形状固定好.①求该几何体的体积;①若将该几何体表面涂上油漆,求所涂的油漆面积.(山西左丁政)第一章丰富的图形世界达标测试卷参考答案答案速览一、1. B 2. C 3. B 4. B 5. D 6. C 7. B 8. D 9. B 10. A二、11. 圆12. 线动成面13. 4 6 4 214. 3 15. 圆锥圆柱16. 9三、解答题见“答案详解”答案详解三、17. 解:(1)填表如下:(2)该正六棱柱的所有侧面的面积的和为(72÷6)×5×6=360(cm2).18. 解:如图1所示.图119.解:(1)圆长方形梯形(2)有,不唯一,如:还有三角形,椭圆,拱形门,如图2所示.图2几何体顶点数棱数面数正六棱柱___12_____18_______8____三角形拱形门椭圆20. 解:(1)圆柱面动成体(2)分两种情况:①绕AB所在直线旋转一周:V=π×62×4=144π(cm3);②绕BC所在直线旋转一周:V=π×42×6=96π(cm3).所以形成的几何体的体积是144π cm3或96π cm3.21. 解:(1)如图3所示.从正面看从左面看从上面看图3(2)简单几何体的表面积为2×(5+3+4)×2×2=96(cm2).(3)222. 解:(1)①②③(2)图B的外围周长为4×6+4×4+6×3=58.(3)外围周长最大的表面展开图如图4所示,外围周长为8×6+4×4+3×2=70.图4附加题:解:(1)观察图形可知,最少的情形有2+3+1+1+1+1=9(个)小立方块,最多的情形有2+3+3+3+3+1=14(个)小立方块(如图所示).(2)①该几何体的体积为33×14=378(cm3).①露在外面的面有2×[6+6+(9+2)]=46(个),所涂的油漆面积为36×9=414(cm2).。
初中数学 习题1:丰富的图形世界全章练习题

丰富的图形世界全章练习题一、精心选一选,慧眼识金!1. 如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种形状图都是同一种几何图形,则另一个几何体是( ) A .长方体B .圆柱体C .球体D .三棱柱2. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( )A.文B.明C.奥D.运3.如图绕虚线旋转得到的几何体是( )4.下面的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是( )第1题图(D )(B )(C )(A )第2题图5.如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则截面的形状应为()A.梯形 B.正方形 C.平行四边形 D.长方形第5题图6. 如图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )第6题图 A B C D7. 一个无盖的正方体盒子的平面展开图可以是下列图形中的()8.如图,是一个几何体的从正面、从左面、从上面看到的三种形状图,则这个几何体是()从正面看从左面看从上面看9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是 ( )10.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为( )二、耐心填一填,一锤定音!11.正方体与长方体的相同点是_________________,不同点是_______________。
12.点动成_____,线动成_____,_____动成体。
13.把边长为lcm 的正方体表面展开要剪开 条棱,展开成的平面图形的周长为 cm.14.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为 . 15. 桌面上放两件物体,它们的三种形状图如下图示,则这两个物体分别是________和 。
第一章 丰富的图形世界 测试卷-2024-2025学年+北师大版数学七年级上册

第一章丰富的图形世界测试卷班级:姓名:学号:得分:一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列立体图形中,为斜棱柱的是( )2.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )3.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是( )4.如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A.三棱锥B.圆锥C.三棱柱D. 长方体5.由4个大小相同的小立方块搭成的几何体如图所示,从正面看到的这个几何体的形状图是( )6.生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )7.一个几何体由若干大小相同的小立方块搭成,从上面和左面看到的这个几何体的形状图如图所示,那么搭成该几何体所需小立方块的个数至少为( )A.4B.5C.6D.78.用一个平面去截一个几何体,若截面的形状是三角形,则原来的几何体不可能是( )A.球B.圆锥C.六棱柱D.长方体9.将“共建平安校园”六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. “校”B. “安”C. “平”D. “园”10.如图为一个长方体的展开图,且长方体的底面为正方形,该长方体的体积为( )A.144B.224C.264D.300二、填空题:本大题共5小题,每小题3分,共15分.11.一个圆柱的侧面展开后是一个边长为12.56 cm的正方形,则这个圆柱的底面半径是cm.(π取3.14)12.若用一个平面去截一个五棱柱,截面的边数最多是 .13.若一个直棱柱有10个顶点,则它共有个面.14.在一个仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱从三个不同方向看到的情形画出来,如图所示,则这堆货箱共有个.15.一张长50cm、宽40cm的长方形纸板,在其四个角上分别剪去一个边长为7cm的小正方形后,折成一个无盖的长方体盒子,这个长方体盒子的容积最大为cm³.三、解答题(一):本大题共3小题,每小题7分,共21分.16.一个几何体由若干个大小相同的小立方块(棱长为1cm)搭成,从上面看到它的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请分别画出从正面和左面看到的这个几何体的形状图,并求出这个几何体的体积.17.如图为一个正方体的平面展开图,若将图中平面展开图折叠成正方体后,相对面上的两个数字之和均为5,求x+y−z的值.18.如图,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板ABC绕其边所在的直线旋转一周,能得到种大小不同的几何体;(2)若将直角三角形纸板ABC绕边 BC 所在的直线旋转一周,请写出得到的几何体的名称,并计算其体积.四、解答题(二):本大题共3小题,每小题9分,共27分.19.如图是一个正六棱柱,它的底面边长是3cm,高是6cm.(1)这个棱柱有个顶点,有条棱,所有的棱的长度之和是 cm,这个棱柱的侧面积是(cm²;(2)通过观察,试用含n的式子表示n棱柱的面数和棱的条数.20.如图是分别从三个不同方向看到的某个几何体的形状图.(1)写出这个几何体的名称;(2)根据图中数据(单位:cm),求它的表面积和体积.21.综合与实践【主题】搭立体图形【素材】若干个棱长为2cm的小立方块(假设数量足够多).【实践操作】在桌面上按如图所示搭三个立体图形.【实践探索】(1)照这样的规律搭下去,第7个立体图形用了多少个小立方块?(2)第7个立体图形露在外面的面积是多少平方厘米?五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.【问题背景】七(1)班综合实践小组进行废物再利用的环保小卫士行动,他们准备用废弃的宣传单制作装垃圾用的无盖纸盒.【空间想象】(1)若准备制作一个无盖的正方体纸盒,图1中的 (填字母)经过折叠能围成一个无盖正方体纸盒.【深入思考】(2)图2是小明的设计图,把它折成一个无盖正方体纸盒后,与“卫”字相对的是“”.【实践操作】(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成一个无盖长方体纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕;②若四角各剪去了一个边长为3cm的小正方形,求这个纸盒的容积.23.【问题背景】小明在学习了“从立体图形到平面图形”这一节后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图1 和图2.【基础应用】(1)小明总共剪开了条棱.【实践探索】(2)现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成图3所示的长方体纸盒,你认为他应该将剪断的纸条粘贴到图1中的什么位置? 请你帮助小明在图4上补全.(补一种即可)【拓展延伸】(3)小明说他所剪的所有棱中,最长的一条棱的长度是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个面积为1 dm² 的正方形,求这个长方体纸盒的体积.参考答案一、1. C 2. C 3. B 4. C 5. B 6. D 7. B 8. A 9. A 10. B二、11.2 12.7 13.7 14.4 15.6552三、16.解:如图所示.这个几何体的体积为1³×(2+3+4+1+2)=12(cm³).17.解:由题意知,面“z”与面“3”相对,面“y”与面“4”相对,面“x”与面“1”相对.则有z+3=5,y+4=5,x+1=5,解得z=2,y=1,x=4.故x+y-z=4+1-2=3.18.解:(1)3(2)得到的几何体是圆锥,其体积为13×π×42×8=1283π(cm3).四、19.解:(1)12 18 72 108(2)∵正六棱柱有(6+2)个面和(3×6)条棱,∴n棱柱有(n+2)个面和3n条棱.20.解:(1)该几何体是圆柱.(2)圆柱的表面积:2×π×1²+2π×3=8π(cm²),圆柱的体积:π×1²×3=3π(cm³),21.解:(1)1+2+3+4+5+6+7=28(个).∴第7个立体图形用了28个小立方块.(2)2×2=4(cm²).28×2×4+7×3×4=308(cm²).∴第7个立体图形露在外面的面积是308cm².五、22.解:(1)C(2)保(3)①如图所示.②(20−3×2)×(20−3×2)×3=58(cm³).∴这个纸盒的容积为588cm³.23.解:(1)8(2)如图所示.(任意一种即可)(3)∵这个长方体纸盒的底面是一个面积为1dm²的正方形,∴长方体纸盒的长和宽都为10cm,即高为10÷5=2(cm),∴这个长方体纸盒的体积为10×10×2=200(cm³).。
第1章《丰富的图形世界》单元测试试卷及答案(2)
北师大版七年级数学上册第1章《丰富的图形世界》单元测试试卷及答案(2)【本检测题满分:100分,时间:90分钟】 一、选择题(每小题3分,共30分)1.在棱柱中() A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.下列平面图形不能够围成正方体的是( )3.下列图形是四棱柱的侧面展开图的是( )4.将一个正方体沿着某些棱剪开,展成一个平面图形,至少需要剪的棱的条数是( ) A.5 B.6 C.7 D.85.下列图形中,不是三棱柱的表面展开图的是( )6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的( )7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方A B DC体构成,这些相同的小正方体的个数是()A.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是()8题图A.①②B.①③C.②③D.②④9.用两块完全相同的长方体搭成如图所示的几何体,这个几何体从正面看到的形状图是()9题图10.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是 .15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)16题图17.用六根长度相等的火柴棒搭等边三角形,最多搭成个.18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?19题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.20题图21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.21题图22.(7分)画出下列几何体从正面、左面看到的形状图.22题图23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?25题图参考答案1.D 解析:对于A,如果是长方体,不止有两个面平行,故错;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错;对于C,如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故错;对于D,根据棱柱的定义知其正确,故选D.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.A4.C 解析:如果把一个正方体剪开展平的图画出来,发现最多有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,∴12-5=7(条), ∴至少所需剪的棱为7条.5.D 解析:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故D不能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,答案选C.[9.C 解析:从物体正面看,左边1个正方形,右边1列,上下各一个正方形,且左右正方形中间是虚线.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16. C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C17.4 解析:如图,用六根长度相等的火柴棒可以搭成如图中三棱锥的形状,所以最多搭成4个等边三角形.18.D,E,A,B,C19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.20题图21.解:从正面和从左面看到的形状图如图所示:21题图22.解:从正面、左面看到的形状图如图所示:22题图23.解:画图如图所示,共有四种画法.23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对, 则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后再把展开图折叠起来.25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线. 在正方体上,像这样的最短路线一共有六条,如图所示。
七年级数学 第01讲 丰富的图形世界(解析版)
第01讲丰富的图形世界1、认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类;2、经历展开与折叠、切截以及从不同方向看等数学活动,积累数学活动经验;3、在平面图形与几何体相互转换等的活动过程中,发展空间观念;4、通过丰富的实例,进一步认识点、线、面,了解有关点、线及某些平面图形的一些简单性质;5、初步体会从不同方向看同一物体时可能看到不同的图形,能识别简单物体的三视图(主视图、俯视图、和左视图),会画立方体极其简单组合体的三种视图;6、了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型;7、进一步丰富数学学习的成功体验,激发对空间与图形学习的好奇心,初步形成积极参与数学活动数学活动、主动与它让人合作交流的意识。
知识点1:立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.拓展:常见的立体图形有两种分类方法:2.3.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)拓展:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.知识点2:展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.知识点3:截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.知识点4:从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)考点1:认识立体图形例1.(2023•西城区一模)下面几何体中,是圆柱的是()A.B.C.D.【答案】B【解答】解:A、是正方体,故A不符合题意;B、是圆柱,故B符合题意;C、是圆锥,故C不符合题意;D、是球体,故D不符合题意;故选:B.【变式1-1】(2023春•渝中区校级月考)如图所示四个几何体中,棱锥是()A.B.C.D.【答案】A【解答】解:A选项是四棱锥;B选项是圆锥;C选项是圆柱;D选项是三棱柱.故选:A.【变式1-2】(2022秋•道里区期末)如图选项中的立体图形,表面没有曲面的是()A.B.C.D.【答案】D【解答】解:A.表面是曲面,故不符合题意;B.侧面是曲面,故不符合题意;C.侧面是曲面,故不符合题意;D.6个面都是平面,没有曲面,符合题意.故选:D.【变式1-3】(2022秋•二七区期末)如图中柱体的个数是()A.3B.4C.5D.6【答案】C【解答】解:柱体分为圆柱和棱柱,所以图中的柱体有①③④⑤⑥,共5个.故选:C.考点二:点、线、面、体例2.(2022秋•沅江市期末)下图所示的4个几何体中,由5个面围成的是()A.B.C.D.【答案】D【解答】解:A是由3个面围成的;B有2个面围成的;C是6个面围成的;D有5个面围成的.故选:D.【变式2-1】(2022秋•荔湾区期末)如图平面图形绕轴旋转一周,得到的立体图形是()A.B.C.D.【答案】A【解答】解:由“面动成体”可知,将直角三角形绕着一条直角边旋转一周,所得到的几何体是圆锥.故选:A.【变式2-2】(2022秋•文登区期末)几何图形都是由点、线、面、体组成,点动成线,线动成面,面动成体.下列生活现象中,可以反映“面动成体”的是()A.打开折扇B.流星划过夜空C.旋转门旋转D.汽车雨刷转动【答案】C【解答】解:A、打开折扇,属于线动成面,本选项不符合题意;B、流星划过夜空,属于点动成线,本选项不符合题意;C、旋转门的旋转,属于面动成体,本选项符合题意;D、汽车雨刷的转动,属于线动成面,本选项不符合题意.故选:C.【变式2-3】(2022秋•湖北期末)将最左边的图形绕直线l旋转一周后得到的图形是()A.B.C.D.【答案】D【解答】解:直角梯型绕直角腰所在的直线旋转一周得到的几何体是圆台,故选:D.考点三:几何体的展开图例3.(2023•衡水三模)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】B【解答】解:选项A、C、D均可能是该直棱柱展开图,不符合题意,而选项B中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:B.【变式3-1】(2023•房山区一模)如图是某几何体的展开图,该几何体是()A.长方体B.四棱锥C.三棱柱D.正方体【答案】A【解答】解:由题意知,图中展开图为长方体的展开图.故选:A.【变式3-2】(2022秋•广阳区期末)如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆柱,圆锥,四棱柱,正方体B.四棱锥,圆锥,正方体,圆柱C.圆柱,圆锥,正方体,三棱锥D.圆柱,圆锥,三棱柱,正方体【答案】D【解答】解:根据图形得:圆柱,圆锥三棱柱,正方体,故选:D.【变式3-3】(2022秋•姑苏区校级期末)如图是一个几何体的侧面展开图,则该几何体是()A.三棱柱B.三棱锥C.五棱柱D.五棱锥【答案】D【解答】解:由题意可知,该几何体为五棱锥,所以它的底面是五边形.故选:D.考点四:正方体相对两个面的文字例4.(2022秋•沈丘县期末)如图,是一个正方体的表面展开图,则“2”所对的面是()A.0B.9C.快D.乐【答案】B【解答】解:“222”这种展开图的对应面的特征是:14,25,36,也就是2与9,0与快,1与乐相对.故选:B.【变式4-1】(2023•确山县三模)“从明天起,做一个幸福的人,喂马,劈柴,周游世界”.如图所示,已知一个正方体展开图六个面依次书写“明”“天”“喂”“马”“劈”“柴”,则折叠后与“明”相对的是()A.天B.马C.劈D.柴【答案】D【解答】解:根据正方体的展开图可知:折叠后与“明”相对的是“柴”.故选:D.【变式4-2】(2023•武邑县二模)如图所示的正方体,它的展开图可能是下列四个选项中的()A.B.C.D.【答案】C【解答】解:由题意知,图形折叠后是,故选:C.考点五:判断展开图标记物的位置例5.(2023•市北区二模)如图的正方体纸盒,只有三个面上印有图案,下面四个平面图形中,经过折叠能围成此正方体纸盒的是()A .B .C .D .【答案】B 【解答】解:由题意知,图形经过折叠能围成题中正方体纸盒,故选:B .【变式5-1】(2022秋•东西湖区期末)下面四个图形中,经过折叠能围成如图所示的几何图形的是()A .B .C .D .【答案】C【解答】解:由立体图可知,圆、小正方形、三角形所在的正方形有公共顶点,题目中的4个答案图,只有C 图中折三个小图形有公共顶点,故选:C .【变式5-2】(2022秋•黄岛区校级月考)将如图围成一个正方体,这个正方体应是()A.B.C.D.【答案】D【解答】解:观察图形可知,两个带圆圈图案的面相对,所以A,B错误;C中,黑色三角形的位置错误.所以正确的正方体是D.故选:D.【变式5-3】(2021春•民权县期末)如图图形是立方体的表面展开图,把它折叠成立方体.它会变成()A.B.C.D.【答案】C【解答】解:根据展开图中各种符号的特征和位置,可得能变成的是C.故选:C.考点六:截一个几何体例6.(2022秋•新兴县期末)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.B.C.D.【答案】D【解答】解:由水平面与圆柱的底面垂直,可知水面的形状是长方形.故选:D.【变式6-1】(2022秋•高新区期末)用一个平面去截一个三棱柱,截面的形状不可能是()A.B.C.D.【答案】C【解答】解:A、当截面与底面平行时,得到的截面的形状可能是该图形,故不符合题意;B、当截面与侧面平行时,截面就是长方形,故不符合题意;C、无论如何去截截面,截面的形状不可能是圆形.故符合题意;D、当截面与轴截面斜交时,得到的截面的形状可能是梯形,故不符合题意.故选:C.【变式6-2】(2022秋•锦江区期末)一个正方体的截面不可能是()A.三角形B.四边形C.五边形D.七边形【答案】见试题解答内容【解答】解:用平面去截正方体,得出截面可能为三角形、四边形、五边形、六边形,不可能为七边形,故选:D.【变式6-3】(2022秋•青白江区期末)用一个平面去截下列几何体,截面一定是圆的是()A.B.C.D.【答案】D【解答】解:球体无论怎样去截,其截面一定是圆形的.故选:D.考点七:判断正方体的个数例7.(2023•抚远市二模)在桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的最少个数为()A.5个B.8个C.10个D.13个【答案】A【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.【变式7-1】(2022秋•兴化市校级期末)如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.5个B.6个C.7个D.8个【答案】A【解答】解:由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是5.故选:A.【变式7-2】(2023•乐东县一模)用3个大小相同的小正方体搭成的几何体,从三个方向看到的形状图如图所示,则这个几何体可能是()A.B.C.D.【答案】B【解答】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:则这个几何体可能是.故选:B.考点八:由三视图判断几何体例8.(2023•邢台一模)某个几何体的三视图如图所示,该几何体是()A.B.C.D.【答案】B【解答】解:根据俯视图知第一层有3个,前面一排有2个,故排除掉A、C选项,根据主视图和左视图知第二层第一列有1个,排除掉D,故选:B.【变式8-1】(2023•灞桥区模拟)某几何体的三视图如图所示,则该几何体是()A.B.C.D.D【答案】D【解答】解:由三视图可知该几何体是.故选:D.【变式8-2】(2023•钦州一模)如图是一个几何体的主视图和俯视图,则该几何体为()A.B.C.D.【答案】B【解答】解:A.该几何体的主视图是三角形,故本选项不符合题意;B.该几何体的主视图是一行相邻的矩形,俯视图是三角形,故本选项符合题意;C.该几何体的俯视图是矩形,故本选项不符合题意;D.该几何体的主视图是等腰三角形,俯视图是圆(带圆心),故本选项不符合题意.故选:B.考点九:由几何体判断三视图例9.(2023•五华区校级模拟)下列简单几何体中,俯视图是四边形的是()A.B.C.D.【答案】D【解答】解:A.三棱柱的俯视图是三角形,因此选项A不符合题意;B.三棱锥的俯视图是三角形的,因此选项B不符合题意;C.圆锥的俯视图是圆形,因此选项C不符合题意;D.四棱锥的俯视图是矩形,因此选项D符合题意;故选:D.【变式9-1】(2023•光山县校级二模)如图放置的正六棱柱,其俯视图是()A.B.C.D.【答案】C【解答】解:由题图,可知该正六棱柱的主视图为:.故选:C.【变式9-2】(2023•武汉模拟)如图,下列几何体中,主视图、俯视图,左视图都一样的是()A.正方体B.三棱柱C.圆柱D.圆台【答案】A【解答】解:A、正方体的三视图都是正方形,故此选项符合题意;B、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;C、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,故此选项不符合题意;D、圆台的主视图是等腰梯形,左视图是等腰梯形,俯视图是同心圆(内圆是虚线),故此选项不符合题意;故选:A.考点十:画几何体三个方向的图形例10.(2022秋•吉州区期末)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.【答案】见试题解答内容【解答】解:主视图,左视图如图所示:【变式10-1】(2022秋•抚州期末)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.【答案】见试题解答内容【解答】解:【变式10-2】(2022秋•济南期末)如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有9个小正方体.【答案】见试题解答内容【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.1.(2022•阿坝州)如图所示的几何体由3个小正方体组合而成,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上边看就是横着的2个小正方形.故选:C.2.(2022•德州)如图所示几何体的俯视图为()A.B.C.D.【答案】C【解答】解:由题意知,几何体的俯视图为:故选:C.3.(2022•淄博)经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是()A.B.C.D.【答案】C【解答】解:A、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;B、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故B不符合题意;C、因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一个四字成语金榜题名,故C符合题意;D、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意;故选:C.4.(2022•阜新)在如图所示的几何体中,俯视图和左视图相同的是()A.B.C.D.【答案】C【解答】解:A.俯视图是带圆心的圆,左视图是等腰三角形,故本选项不合题意;B.俯视图是圆,左视图是矩形,故本选项不合题意;C.俯视图与左视图都是正方形,故本选项符合题意;D.俯视图是三角形,左视图是矩形,故本选项不合题意.故选:C.5.(2022•襄阳)襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.【答案】A【解答】解:从正面看,是一个矩形,故选:A.6.(2022•菏泽)沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A.B.C.D.【答案】A【解答】解:这个几何体的主视图如下:故选:A.7.(2022•六盘水)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是()A.①B.②C.③D.④【答案】A【解答】解:如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是①,故选:A.8.(2022•安顺)某几何体如图所示,它的俯视图是()A.B.C.D.【答案】D【解答】解:从上面看该几何体,是两个同心圆,故选:D.9.(2022•钢城区)如图是某几何体的三视图,该几何体是()A.圆柱B.球C.圆锥D.正四棱柱【答案】A【解答】解:该几何体的主视图、左视图都是长方形,而俯视图是圆形,因此这个几何体是圆柱,故选:A.10.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【答案】B【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.11.(2022•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【答案】B【解答】解:从俯视图可看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.故选:B.12.(2022•包头)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【解答】解:由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4,故选:B.13.(2022•泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【答案】B【解答】解:根据展开图可以得出是四棱锥的展开图,故选:B.14.(2021•日照)一张水平放置的桌子上摆放着若干个碟子,其三视图如图所示,则这张桌子上共有碟子的个数为()A.10B.12C.14D.18【答案】B【解答】解:从俯视图可知该桌子共摆放着三列碟子.主视图可知左侧碟子有6个,右侧有2个,而左视图可知左侧有4个,右侧与主视图的左侧碟子相同,共计12个,故选:B.1.(2022秋•姑苏区校级期末)下列几何体中,是棱锥的为()A.B.C.D.【答案】C【解答】解:选项中的几何体分别为:A.圆柱;B.圆锥;C.四棱锥;D.球;故选:C.2.(2022秋•零陵区期末)下面的立体图形按从左到右的顺序依次是()A.长方体、圆柱、圆锥、正方体B.长方体、圆柱、球、正方体C.棱柱、棱柱、球、正方体D.长方体、棱柱、圆锥、棱柱【答案】B【解答】解:下面的立体图形按从左到右的顺序依次是:长方体、圆柱、球、正方体.故选:B.3.(2022秋•灵宝市期末)汽车的雨刷把玻璃上的雨雪刷干净属于以下哪项几何知识的实际应用()A.点动成线B.线动成面C.面动成体D.以上答案都正确【答案】B【解答】解:汽车的雨刷把玻璃上的雨雪刷干净,应是线动成面.故选:B.4.(2022秋•平谷区期末)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释()A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线【答案】C【解答】解:由平面图形变成立体图形的过程是面动成体,故选:C.5.(2023•湖北二模)将长方形绕着它的一边旋转一周得到的立体图形是()A.正方体B.长方体C.棱柱D.圆柱【答案】D【解答】解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故选:D.6.(2022秋•文登区期末)下列图形中,不是正方体展开图的是()A.B.C.D.【答案】D【解答】解:A、B、C都可以折叠成正方体,故选:D.7.(2022秋•滕州市校级期末)如图,是正方体的展开图的有()A.1个B.2个C.3个D.4个【答案】B【解答】解:由正方体展开图的特征可知,从左数第3、4个图形可以拼成一个正方体,第1个图形有两个面重复,第2个图形是凹字格,故不是正方体的展开图.正方体的展开图的有2个.故选:B.8.(2022秋•上杭县期末)把一个立体图形展开成平面图形,其形状如图所示,则这个立体图形是()A.B.C.D.【答案】B【解答】解:展开图中三个长方形是棱柱的三个侧面;两个三角形是棱柱的两个底面,所以这个立体图形是三棱柱.故选:B.9.(2023•中原区校级三模)下面的平面展开图与图下方的立体图形名称不相符的是()A.三棱锥B.长方体C.正方体D.圆柱体【答案】A【解答】解:选项A中的图形,折叠后形成的几何体是三棱柱,不是三棱锥,因此选项A符合题意;选项B的图形折叠后成为长方体,因此选项B不符合题意;选项C的图形折叠后成为正方体,因此选项C不符合题意;选项D的图形折叠后成为圆柱体,因此选项D不符合题意;故选:A.10.(2023•通州区一模)如图是某个几何体的表面展开图,则这个几何体是()A.长方体B.三棱柱C.三棱锥D.四棱锥【答案】B【解答】解:观察图形可知,展开图是由三个全等的矩形,和两个全等的三角形构成,符合三棱柱的展开图特征,∴这个几何体是三棱柱.故选:B.11.(2022秋•历城区期末)用一个平面去截一个如图的圆柱体,截面不可能是()A.B.C.D.【答案】B【解答】解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,斜切是椭圆,唯独不可能是梯形.故选:B.12.(2023•川汇区二模)如图,是由7个相同的小正方体组成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】A【解答】解:从左面看易得第一层有3个正方形,第二层最右边和中间都有1个正方形.故选:A.13.(2023•上杭县模拟)下列几何体中,主视图可能是三角形的是()A.球体B.圆柱C.圆锥D.长方体【答案】C【解答】解:球的主视图是圆,故A选项不合题意;圆柱的主视图是矩形(或圆),故B选项不合题意,圆锥的主视图可能是等腰三角形,故C选项符合题意,长方体的主视图是长方形(或正方形),故D选项不合题意.故选:C.14.(2023•通许县一模)下列几何体中,左视图和俯视图都为矩形的是()A.B.C.D.【答案】D【解答】解:A、左视图与俯视图分别为,不符合题意;B、左视图与俯视图分别为,不符合题意;C、左视图与俯视图分别为,不符合题意;D、左视图与俯视图分别为,符合题意;故选:D.15.(2022秋•开江县期末)正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为27πcm3.(结果保留π)【答案】27π.【解答】解:根据题意可知,将正方形旋转一周,所得几何体是底面半径为3cm,高为3cm的圆柱体,所以体积为:π×32×3=27π(cm3),故答案为:27π.16.(2022秋•仙游县期末)已知正方体的一个平面展开图如图所示,则在原正方体上“庆”的对面是年.【答案】年.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在原正方体上“庆”的对面是“年”.故答案为:年.17.(2022秋•莱州市期末)如图,一个正方体截去一个角后,截面的形状是等边三角形.【答案】等边三角形.【解答】解:由题意知,截面的形状是等边三角形,故答案为:等边三角形.18.(2022秋•市中区期末)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.【答案】见解答.【解答】解:如图所示:。
(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试(含答案解析)(1)
一、选择题1.一个表面标有汉字的正方体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边2.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.无法确定3.下列图形中,不是正方体平面展开图的是()A.B.C.D.4.从左面看如图中的几何体,得到的平面图形正确的是()A.B.C.D.5.如图是一个正方体的展开图,相对面上的两个数互为相反数,则x等于()A.1 B.﹣1 C.﹣2 D.26.2020年,两安市为创建全国文明城市,在街头制作了正方体宣传板进行宣传,它的展开图如图示,请你来找一找“创”字所在面的对面是哪个字()A.明B.文C.北D.城7.若一个几何体的表面展开图如图所示,则这个几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥8.将如图所示的图形剪去两个小正方形,使余下的部分图形恰好能折成一个正方体,应剪去的两个小正方形可以是()A.②③B.①⑥C.①⑦D.②⑥9.下列图形中是正方体表面展开图的是()A.B.C.D.10.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚90 ,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是()A.2 B.3 C.4 D.511.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.4个B.3个C.2个D.1个12.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友二、填空题13.若要使图中平面展开图折叠成正方体后,使得相对面上的数的和相等,则+=______.x y14.如图是一个几何体的展开图,则这个几何体有_______条棱.15.一个小立方块的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示,其中A、B、C、D、E、F分别代表数字-2、-1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为_____=__.16.如图是正方体的表面展开图,若原正方体相对面上两个数之和为4,则x y17.一个正方体的相对的面所标的数都是互为相反数的两如图是这个正方体的表面展开图,那么3a3﹣2b3=_____18.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是_____.19.五棱柱有______ 条棱.20.小倩将“细心、规范、勤思”写在一个正方体的六个面上,其表面展开图如图所示,那么在该正方体中,和“细”相对的字是________.三、解答题21.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.22.图1所示的三棱柱,高为8cm ,底面是一个边长为5cm 的等边三角形.(1)这个三棱柱有 条棱,有 个面;(2)图2框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可....); (3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开 条棱,需剪开棱的棱长的和的最大值为 cm .23.如图,是由9个大小相同的小立方块搭成的一个几何体.(1)请在指定位置画出该几何体从正面、上面看到的形状图;(2)在不改变几何体中小立方块个数的前提下,从中移动一个小立方块,使所得新几何体与原几何体相比,从正面、上面看到的形状图保持不变,但从左面看到的形状图改变了.请在指定位置画出一种新几何体从左面看到的形状图.24.问题情境:小明在学习中发现:棱长为1cm 的正方体的表面展开图面积为26.cm 但是反过来,在面积为26cm 的长方形纸片(如图1,图中小正方形的边长为1)cm 上是画不出这个正方体表面展开图的.于是,爱思考的小明就想:要画出这个正方体的表面展开图,最少需要选用多大面积的长方形纸片呢?问题解决:小明仔细研究正方体的表面展开图的11种不同情形后发现,至少要用“34⨯”和“25⨯”两种不同的长方形纸片才能剪得一个正方体的表面展开图.请你在图2两个网格中分别画出一种.拓展廷伸:若要在如图3所示的“36⨯”和“28⨯”的两种规格的长方形纸片上分别剪出两个正方体的表面展开图,请在图中画出裁剪方法.操作应用:现有边长20cm 的正方形纸片(图4所示),能否用它剪得两个棱长相等,且表面积之和最大的正方体表面展开图?若能,请你画出你的设计方案;若不能,请说明理由.25.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中只添加一个正方形并用阴影表示,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.26.如图是一个几何体的三视图:(1)请写出这个几何体的名称.(2)求这个几何体的侧面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【详解】根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在左边,“快”在右边.故不正确的是D.故选D.【点睛】此题考查专题:正方体相对两个面上的文字,解题关键在于掌握平面展开图的特点. 2.C解析:C【解析】【分析】如图可知该几何体的正视图由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,易得解.【详解】解:根据三视图可以得到如下主视图、左视图、俯视图:该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为:C【点睛】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.3.D解析:D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.4.A解析:A【解析】【分析】根据从左面看得到的图形是左视图,可得答案.【详解】从左面看得到的图形为:,故选:A.【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.5.B解析:B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知x与1是相对面,据此进行解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴x与1是相对面,∴x表示的数是﹣1,故选:B.【点睛】本题考查了正方体的展开图,理解其各面的对立关系是解题关键.6.D解析:D【分析】根据正方体相对的面的特点作答.【详解】解:相对的面的中间要相隔一个面,所以“创”字的对面是“城”.故选:D.【点睛】本题考查了正方体相对面上的文字,属于基础题,注意培养自己的空间想象能力.7.A解析:A【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【详解】解:由图得,这个几何体为三棱柱.故选:A.【点睛】本题考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.8.A解析:A【分析】利用正方体及其表面展开图的特点解题.【详解】A. 剪去②③后,恰好能折成一个正方体,符合题意;B. 剪去①⑥后,不能折成一个正方体,不符合题意;C. 剪去①⑦后,不能折成一个正方体,不符合题意;D. 剪去②⑥后,不能折成一个正方体,不符合题意.故选:A【点睛】本题考查了正方体的展开图及学生的空间想象能力,正方体展开图规律:十一种类看仔细,中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃.9.C解析:C【分析】根据正方体表面的十一种展开图的性质进行判断即可.【详解】A. 不属于正方体表面展开图,错误;B. 不属于正方体表面展开图,错误;C. 属于正方体表面展开图,正确;D. 不属于正方体表面展开图,错误;故答案为:C.【点睛】本题考查了正方体展开图的问题,掌握正方体表面的十一种展开图的性质是解题的关键.10.D解析:D【分析】根据正方体的表面展开图,可得各个面上的数字,由2019次翻转为第505组的第三次翻转,即可得到答案.【详解】正方体的表面展开图,相对面之间一定相隔一个正方形,“2点”与“5点”是相对面,“3点”与“4点”是相对面,“1点”与“6点”是相对面,÷=,∵201945043∴完成2019次翻转为第505组的第三次翻转,∴骰子朝下一面的点数是5.故选D.【点睛】本题主要考查正方体的表面展开图各个面上的数字规律,掌握相对面上的数字规律,是解题的关键.11.B解析:B【分析】对几何体逐个分析判断即可得出答案.【详解】圆的截面不可能是三角形;圆柱的截面不可能是三角形;圆锥的截面可能是三角形;三棱柱的截面可能是三角形;长方体的截面可能是三角形;故截面可能是三角形的几何体共有3个故选B【点睛】本题考查用一个面截几何体,熟练掌握各个几何体的截面的形状是解题关键.12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.1614.915.-216.417.15218.419.1520.规三、解答题21.见解析【分析】本题涉及的知识点是正方体的平面展开图;要想组成正方体,其平面展开图应是“一,四,一”、“三,三”、“二,二,二”、“一,三,二”中的一种,结合题目已给图形,进行发散思维,即可得出对正方体展开图的补图.【详解】解:如图所示:新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.【点睛】本题主要考查了正方体的展开图,掌握正方体展开图的特点是解题的关键.22.(1)9,5;(2)见解析;(3)5,34【分析】(1) n棱柱有n个侧面,2个庭面,3n条棱,2n个顶点;(2)利用三棱柱及其表面展开图的特点解题;(3)三棱柱有9条棱,观察三棱柱的展开图可知没有剪开的棱的条数星条,相减即可求出需要剪开的棱的条数;【详解】(1)这个三棱柱有条9棱,有个5面;故答家为:9,5;(2)(3)由图形可知:没有剪开的棱的条数是4条则至少需要剪开的棱的条数是:9﹣4=5(余)故至少需要开的楼的条数是5条,需开棱的棱长的和的最大值为:8×3+5×2=34(cm)故答案为:5,34【点睛】本题主要考查的是认识立体图形,明确m 棱柱有n 个面,2个底面,3n 条棱,2n 个顶点;能够数出三棱柱没有开的棱的条数是解答此的关量23.(1)见解析;(2)见解析【分析】根据从不同方向看几何体的定义画出图形即可.【详解】解:(1)从正面、上面看到的形状图如图所示;(2)新几何体从左面看到的形状图如图所示;【点睛】本题考查从不同方向看几何体-,掌握分别是从物体的正面,左面,上面看几何体得到的相应的平面图形是解题关键.24.问题解决:详见解析;拓展延伸:详见解析;操作应用:能,详见解析.【分析】根据正方体展开图的11种特征,正方体展开图分四种类型.“141--”结构,“222--”结构,“132--”结构,“33-”结构,发现至少要用“25⨯”和“34⨯”两种不同的长方形纸片才能剪得一个正方体的表面展开图,进行分析.【详解】问题解决:如图2:拓展延伸:如图3:操作应用:能,如图4,【点睛】本题考查了作图,解决本题的关键是掌握正方体展开图的11种特征.25.见解析【解析】【分析】根据正方体的展开图,可得答案.【详解】如图所示:.【点睛】考查展开图折叠成几何体,掌握正方体展开图的各种情形是解题的关键.26.(1)圆柱体;(2)6π(cm2).【解析】【分析】易得此几何体为圆柱,底面直径为2cm,高为3cm.圆柱侧面积=底面周长×高,代入相应数值求解即可.【详解】主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×2×3=6πcm 2.【点睛】掌握通过观察三视图来判断几何体类型和相关线段关系是解答本题的关键.。
北师大版初一上册数学第一章《丰富的图形世界》试题(带答案)
七年级数学上册第一章《丰富的图形世界》试题(时间:120分钟满分:150分)姓名:学号:分数:一、选择题(本大题共15小题,每小题3分,共45分)1.下列几何体中,是圆柱的是 ()A B C D2.下列各几何体中,直棱柱的个数是 ()A.5个B.4个C.3个D.2个3.对如图所示的几何体认识正确的是 ()A.几何体是四棱柱B.棱柱的侧面是三角形C.棱柱的底面是四边形D.棱柱的底面是三角形4.汽车的雨刷把玻璃上的雨水刷干净,是属于实际应用中的 ()A.点动成线B.线动成面C.面动成体D.以上答案都不对5.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A B C D6.下列平面图形不能够折叠成正方体的是 ()A B C D7.四棱柱的面、棱、顶点的个数分别是 ()A.4,8,8B.6,12,8C.6,8,4D.5,5,48.由5个大小相同的正方体组成的几何体如图所示,从正面看到的图形是()A B C D9.从上面看,下列四个几何体的形状图与众不同的是 ()A B C D10.下列图形中,能通过折叠围成一个三棱柱的是 ()A B C D11.在一仓库里堆放着若干个相同的正方体小货箱,仓库管理员将这堆货箱从三个方向看到的图形画了出来,如图所示,则这堆正方体小货箱共有()A.11箱B.10箱C.9箱D.8箱12.下列几何体中,不能由一个平面图形经过旋转运动形成的 ()A.圆柱B.圆锥C.球D.长方体13.如图是一个正方体的表面展开图,则原正方体中与“云”字所在的面相对的面上的字是()A.建B.设C.美D.丽14.下列图形中能折叠成棱柱的是 ()A B C D15.如图,这个立体图形中小正方体的个数可能是 ()A.9个B.10个C.13个D.12个二、填空题(本大题共5小题,每小题5分,共25分)16.夜晚的流星划过天空时留下一道明亮的光线,由此说明了的数学事实.17.如图所示的几何体中,属于柱体的有.(填序号)(1)(2)(3)(4)(5)(6)(7)18.如图,将五角星沿虚线折叠,使得A,B,C,D,E五个点重合,得到的立体图形是.19.用一个平面去截一个五棱柱,最多可以截出边形.20.一个棱柱有10个面,那么它的棱数是.三、解答题(本大题共7小题,共80分)21.(10分)下列图形中,用一个平面去截一个正方体所得截面的形状,试写出截面图形的名称.(1)截面是 (2)截面是(3)截面是 (4)截面是(5)截面是22.(10分)请你画出如图所示的几何体从上面、左面、正面三个不同方向看见的平面图形.23.(12分)如图是一个由若干个完全相同的小正方体所搭成的几何体从上面看到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看到的平面图形.24.(12分)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点的个数a 6 10 12棱的条数b9 12面的个数c 5 8观察上表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.25.(12分)如图所示,用长为31.4 cm,宽为5 cm的长方形,围成圆柱,底面积要尽可能大,求需加上的每个底面圆的面积是多少平方厘米?(π取3.14)26.(12分)张明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法.(2)任意画出一种成功的设计图(在图中补充).27.(12分)在平整的地面上,由若干个完全相同的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体从三个方向看到的平面图形.(2)若现在还有一些相同的小正方体,如果保持从上面看到的图形和从左面看到的图形不变,最多可以再添加几个小正方体?第一章过关与测试1.A2.C3.D4.B5.A6.B7.B8.A9.B 10.C 11.C 12.D 13.C 14.B 15.C 16.点动成线17.(1)(2)(4)(6)(7)18.五棱锥19.七20.2421.解:(1)长方形(2)三角形(3)梯形(4)三角形(5)六边形22.解:如图所示.23.解:如图所示.24.解:从左往右、从上往下依次填8,15,18,6,7;a,b,c之间的关系式为a+c-b=2.25.解:由题意可知,圆柱底面圆的周长为长方形的长,圆柱的高为长方形的宽.设圆柱底面圆的半径为r cm,所以2πr=31.4,解得r=5.所以一个底面圆的面积为πr2=3.14×25=78.5(cm2).故需要加上的每个底面圆的面积是78.5 cm2.26.解:(1)4(2)如图所示(答案不唯一):27.解:(1)如图所示.(2)最多可以再添加4个小正方体.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰富的图形世界(无答案)-初中一年级数学试题练习、期中期末试卷、测验题、复习资料-初
中数学试卷-试卷下载
七年级数学第一章丰富的图形世界测试
班级____________姓名__________得分___________
一.填空(每空2分,共40分).
1.正方体或长方体是一个立体图形,它是由__ ___个面,______条棱,_____个顶点组成的.
2. 这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。
3. 将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:
4. 要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱.
5.
如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱.
6.
若要使图中平面展开图按虚线折叠成正方体后,相
对面上两个数之和为6,x=____,y=______.
7.
四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:
_________ __
8.
薄薄的硬币在桌面上转动时,看上去象球,这说明了____
_____________.
9.右图中,三角形共有
个。
(第9题)
10.如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。
主视图
俯视图
左视图
二:选择题(每题4分,共24分).
11. 桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.
P
q
m
n
①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子………按小狗四次看礼物的顺序,四个画面的顺序为………………………………………………【】
A.mnpq B.
qnmp C.
pqmn D.
mnqp
12.
用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是……【】A.①②④B.①②③C.②③④D.①③④
13.
如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同……………【】A. (1)(2) B. (2)(3) C.(3)(4) D.(2)(4)
14.
从多边形一条边上的一点(不是顶点)处出发,连接各个顶点得到2003个三角形,则这个多边形的边数为………………………………………………………………………………【】
A. 2001
B. 2005
C.
2004 D.
2006
15. 明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中.………………………………………………………【】
D
A
B
C
16. 观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来【】.
三. 解答题(每题6分,共36分)
17. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.
( )
()()( )( )
⑴. 将这些几何体分类,并写出分类的理由.
18. 画出下列几何体的三种视图.
19. 如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的主视图和俯视图.
20. 四个正方体,每个正方体的面都按相同次序涂黑、白、红、黄、蓝、绿六色,将四个正方体叠在一起(如图)只能看到它们的部分颜色.
从这个图可知,最上面一个正方体的下面涂色,
背面涂色.
21.分析下图:(1)①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.
(2)已知大正方形的边长为4cm,则阴影部分的面积是cm.
22.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?
定海
叶贤豪.
欢迎下载使用,分享让人快乐。