变量间的相关关系
变量之间的相关关系(必修优秀课件)_图文

x
年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
距离之和:
越小越好 年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
点到直线距离的平方和:
年龄
求出回归直线的方程为:
Y^ =-2.352x+147.767
(4)当x=2时,y=143.063,因此,这天大约可以卖出143 杯热饮。
练习:
实验测得四组(x,y)的值如下表所示:
x
1
2
3
4
y
2
3
4
5
则y与x之间的回归直线方程为(海南理)对变量x,y观测数据(xi,yi)(i=1,2,...,10),得 散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,...,10),得散点图2,
2112 2110.6
3、求和
解:1、设回归方程 2、求平均数
3、求和 4、代入公式求
的值
5、写出回归直线的回归方程
用“最小二乘法”求回归直线方程的步骤
1、设回归方程 2、求平均数 3、求和
4、代入公式求
的值
5、写出回归直线的方程
三、利用线性回归方程对总体进行估计
例:有一个同学家开了一个小卖部,他为了研究气 温对热饮销售的影响,经过统计,得到一个卖出的 热饮杯数与当天气温的对比表:
变量间的相关关系

2.正相关:在散点图中,点散布在从左下角到右上 角的区域,对于两个变量的这种相关关系,我们将 它称为正相关。
思考6:如图是高原含氧量与海拔高度的相关关系 的散点图,高原含氧量与海拔高度有何相关关系? 点的分布有何特点?
海平面以上,海拔高度 越高,含氧量越少。
点散布在从左上角到右 下角的区域内。
脂肪含量
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考3:上图叫做散点图,你能描述一下散点图的含 义吗?
1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
脂肪含量
思考4:观察散点图的大致趋势,人的年龄的与人体 脂肪含量具有什么相关关系?
大体上看,随着年龄的增加,人体中脂肪百分比也 在增加。
年龄 23 脂肪 9.5
27 39 17.8 21.2
41 25.9
45
49 50
27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:为了确定年龄和人体脂肪含量之间的更明 确的关系,我们需要对数据进行分析,通过作图可 以对两个变量之间的关系有一个直观的印象.以x轴 表示年龄,y轴表示脂肪含量,你能在直角坐标系 中描出样本数据对应的图形吗?
销售价格 12.2 15.3 24.8 21.6 18.4 29.2 22
(万元)
画出数据对应的散点图,并指出销售价格与房屋面积 这两个变量是正相关还是负相关.
解: 35
30 25 20 15 10 5 0
变量间的相关关系及独立性检验

判断两个变量之间是否存在非线性相关关系可以通过绘制散点图或计算非 线性相关系数等方法来进行。
相关系数及其计算
相关系数是衡量两个变量之间相关关系的统计量,其计算方法有多种,其中最常用的是皮尔逊相关系 数和斯皮尔曼秩相关系数。
皮尔逊相关系数使用积差法计算,其值介于-1和1之间,用于衡量线性相关关系的强度和方向。斯皮尔 曼秩相关系数则用于衡量等级数据之间的相关性。
变量间的相关关系及独立性检验
目录
• 变量间的相关关系 • 变量间的独立性检验 • 变量间的因果关系推断 • 相关性与独立性的区别与联系
01
变量间的相关关系
线性相关关系
线性相关关系是指两个或多个变量之间存在一种可以用直 线表示的依赖关系。当一个变量发生变化时,另一个变量 也会随之发生相应的变化。
独立性检验
常用于验证两个变量之间是否存在直 接的因果关系,例如在经济学中检验 货币政策是否对经济增长有影响,或 者在心理学中检验某种疗法是否对心 理健康有影响。
THANKS。
因果关系推断的方法
基于理论的推断
01
根据相关学科的理论和知识,推断变量之间的因果关
系。
基于相关关系的推断
02 通过分析变量之间的相关系数、相关图等,推断变量之间的因果关系。基于实验的推断03
通过实验的方式,控制其他变量的影响,观察单一变
量的变化对结果变量的影响,从而推断因果关系。
因果关系推断的局限性
相关性与独立性的联系
相关性和独立性是描述变量间关系的 两种不同角度,有时一个变量可能既 与另一个变量相关,又与第三个变量 独立。
在某些情况下,相关性和独立性可能 相互转化,例如当引入第三个变量时 ,两个原本独立的变量可能变得相关 。
变量间的相关关系教案

变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,能够识别和描述两种变量之间的相关关系。
2. 学生能够运用相关系数来衡量两个变量之间的相关程度。
3. 学生能够运用图表和数学模型来分析变量之间的相关关系。
4. 培养学生的数据分析能力和问题解决能力。
二、教学内容:1. 相关关系的概念和类型。
2. 相关系数的计算和解读。
3. 散点图在分析相关关系中的应用。
4. 线性回归方程的构建和应用。
5. 实际案例分析,运用相关关系解决实际问题。
三、教学重点与难点:重点:相关关系的概念和类型,相关系数的计算和解读,散点图在分析相关关系中的应用。
难点:线性回归方程的构建和应用,实际案例分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实际案例来理解和应用相关关系。
2. 使用多媒体教学资源,如图表和数学软件,辅助学生直观地理解相关关系。
3. 组织小组讨论和合作活动,培养学生的团队合作能力和问题解决能力。
4. 提供充足的练习机会,让学生通过实践来巩固所学知识。
五、教学过程:1. 引入:通过一个简单的实际案例,引导学生思考两种变量之间的关系。
2. 讲解相关关系的概念和类型,解释相关系数的意义。
3. 演示如何通过散点图来分析两种变量之间的相关关系。
4. 讲解线性回归方程的构建过程,并演示如何应用线性回归方程来预测未知数据。
5. 提供实际案例分析,让学生运用相关关系来解决实际问题。
7. 布置作业,让学生通过练习来巩固所学知识。
六、教学评估与反馈:1. 通过课堂练习和作业,评估学生对相关关系概念的理解程度。
2. 通过小组讨论和案例分析,评估学生在实际问题中运用相关关系的能力。
3. 收集学生的疑问和困难,及时给予反馈和解答。
4. 鼓励学生提出自己的观点和思考,促进学生的主动学习。
七、拓展与深化:1. 介绍相关关系在社会科学、自然科学和工程科学中的应用。
2. 探讨非线性相关关系和多变量相关关系的研究方法。
变量之间的相关关系

“变量间的相关关系”中的核心概念和思想方法解读及教学建议河北师范大学数学与信息科学学院程海奎《变量间的相关关系》的主要内容为采用定性和定量相结合的方法研究变量之间的相关关系,主要研究线性相关关系.主要概念有“相关关系”、“散点图”、“回归直线和回归直线方程”、“相关系数”等.研究方法为先绘制散点图,直观表示观测数据,定性描述变量间相关关系的类型、方向、相关程度.然后应用最小二乘法确定变量间相关关系的具体表达形式,描述变量间的数量规律,并由一个变量的取值去推测另一个变量的取值.这部分内容涉及到一些重要的统计思想和方法,对学生的学习和教师的教学都有一定的难度.本文就研究对象、核心概念、研究方法、统计思想及相关应用进行简单的解读,提出一些教学建议,希望对教学能提供一些帮助.一、相关概念及统计思想方法1.相关关系——变量间的不确定关系两个变量之间的数量关系有两种不同的类型:一种是函数关系,一种是相关关系.当一个变量取一定的值时,另一个变量有确定的值与之对应,我们称这种关系为确定的函数关系.一般把作为影响因素的变量称为自变量,把与之对应变化的变量称为因变量.当一个变量取一定的数值时,与之对应的另一个变量的值虽然不确定,但它按某种规律在一定的范围内变化,变量间的这种关系称为不确定性的相关关系.或者说两个变量之间确实存在某种关系,但不具备函数关系所要求的确定性.函数关系和相关关系都是指两个变量之间的数量关系.函数关系是两个非随机变量之间的一种确定关系,是一种因果关系.而相关关系是两个变量之间的一种不确定的关系,这两个变量中至少有一个是随机变量.两个相关变量之间可能有内在联系(真实相关),也可能完全不存在内在联系(虚假相关).之所以X和Y之间是相关关系,原因是变量X是影响变量Y的主要因素,但不是唯一因素,还有其他种种因素,而这些因素我们又不能完全把握.研究函数关系,可以用数学分析的方法.例如,已知y和x之间具有线性关系,即,此时只要知道变量的两组取值就可以确定函数表达式.研究相关关系则必须对变量进行多次观测,借助统计的相关思想和方法.例如,有人认为人的体重y 和身高x之间具有近似的二次函数关系,由三个人的身高和体重数据,确定出y和x之间的表达式.这样得到的结果很不可靠,难以使人信服.2.散点图—描述相关关系的直观工具由于相关关系的不确定性,寻找变量X和Y之间的相关关系时,首先要对变量进行观测.设n次观测值为.在直角坐标系中,横轴代表变量X,纵轴代表变量Y,将观测数据用坐标点的形式描绘出来,得到的图形称为散点图.散点图是研究相关关系的直观工具,可以定性的判断相关的方向和程度.如果散点大致分布在一条直线附近,又不完全在一条直线上,说明变量间具有线性相关关系;如果这些点大致分布在一条曲线附近,说明变量间具有非线性相关关系;如果这些点的分布几乎没有什么规则,说明两个变量间没有相关关系.对于线性相关,如果散点从左下角到右上角沿直线分布,那么两个变量正相关,如果散点从左上角到右下角沿直线分布,两个变量负相关.如果散点在整体上和某一直线越接近,表明变量间相关关系越强.3.数据分析方法—相关分析与回归分析对变量间相关关系,在定性分析的基础上,需要进行定量分析.定量分析有相关分析和回归分析两种方法.相关分析是用一个指标(称为相关系数)来反映变量间相关关系的密切程度(见人教A版必修3P85,阅读与思考).回归分析就是根据相关关系的具体形态,选择一个合适的数学模型,来近似表达变量间的平均变化关系.相关分析和回归分析具有共同的研究对象,在具体应用时,需要互相补充.作相关分析需要依靠回归分析表明变量相关的具体形式,而进行回归分析需要通过相关分析表明变量间的相关程度,只有变量间存在高度相关时,由回归分析得到的变量间的具体形式才有意义.相关分析研究变量间的相关的方向和相关程度,它不提供相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况.相关分析不必确定哪个变量是自变量,哪个是因变量,所涉及的两个变量可以都是随机变量.回归分析根据观测数据,确定一个数学方程式(回归方程),根据这个方程式可以由已知量推测未知量,为估算和预测提供一个重要方法.回归分析必须事先确定具有相关关系的变量中哪个为自变量,哪个为因变量.一般地说,自变量是普通变量(人为可以控制其取值),因变量是随机变量.4.最小二乘思想—统计学基础的重要部分当两个变量之间存在相关关系时,由于不确定性,如果只有很少几组变量观测值,很难估计误差的大小.法国法数学家勒让德(Le Gendre,1752—1833)在根据测量数据预测彗星轨道的问题时,发现了如何有效利用全部测量数据的方法.即通过计算得出一组数值,在使数据组的偏差达到最小的意义下,这些数值是最优的.由勒让德的方法得出的数值充分利用了所有数据信息,这个方法现在叫做最小二乘法.人们立即认识到勒让德发现的价值,运用最小二乘法的数学并不难,所以绝大多数从事测量的科学家,都能从这一方法中受益,他们可以充分利用数据.当时最小二乘思想在科学界迅速流传.1809年,德国数学家高斯(Gauss,1777—1855年)在一篇论文中,分析了如何充分利用一系列测量数据来预测天体轨道的问题,在文章中也叙述了最小二乘法,并声称自己发明了这一方法.事实上,勒让德第一个发表了最小二乘法思想,并影响了统计学;高斯也使用了最小二乘法,并且考虑了最小二乘法的误差分析问题,他还发现了最小二乘法理论中的重要结果,它从统计学的角度回答了最小二乘法在缩小误差上的优势,使得在勒让德那里只是处理测量数据的代数方法逐渐渗透到统计数据分析的领域,最小二乘法对统计学就象微积分对于数学中的影响一样深远,高斯的巨大声望使一些历史学家把最小二乘法归功于他.下面通过一个简单问题,阐述最小二乘思想.一段公路,实际长度为a千米,a是未知的,对公路进行n次实际测量,假设测量值为.可是每次测量都有一定的误差,这些误差或正或负,或大或小.应该如何估计a的值呢?直观的想法是a 的值应该最接近这些测量数据,数学描述就是: a的值应该使所有的误差平方和达到最小.当时,达到最小.即用测量数据的平均值作为a的估计值.这里估计参数a所采用的就是最小二乘法的思想.用数理统计知识可以证明这样的估计也是最佳的.最小二乘法的优点是:有效利用了全部测量数据,使误差平方和达到最小,防止了某一极端误差对决定参数估计值取得支配性地位.在计算上只需对参数求偏导数求解线性方程组即可.5.回归直线与回归方程当两个变量之间具有线性相关关系时,散点图中的点大致分布在一条直线附近,这条直线叫做回归直线,这条直线的方程叫做回归方程.数学模型:假设因变量y主要受自变量x的影响,它们之间的数量关系为,其中x 是非随机变量,是未知的常数.是随机误差项,它反映了未列入方程的其它各种因素对y的影响.从而y是随机变量,它可以用由x的值完全确定的部分和随机误差部分来解释.当由观测数据估计出和b时,得到直线回归方程为.将观测数据代入中,得,或,其中为n次观测的误差.求的估计值,使“从整体上看各点与直线的距离最小”.应用最小二乘思想,就是求使误差平方和达到最小的的值.可以用配方法或求偏导数的方针求出的估计值.6.相关系数—变量间线性关系密切程度的度量相关系数是用来衡量两个变量之间线性关系密切程度(强与弱)的一个数量指标.只有了解构造相关系数的统计思想,才能对相关系数有较深刻的理解.下面对相关统计量的意义及构造相关系数的统计思想做一简述.设回归方程为,与对应的回归值为.称为偏差,称为偏差方和.的值越小,反映各偏差普遍较小,数据点整体上比较接近回归直线,说明变量间线性关系比较密切.但是一个绝对量,需要进行调整.为方便引入以下记号:,,,.衡量数据的波动大小,衡量数据的波动大小.,反映主要由的变化引起的间的波动,反映除线性关系之外的各种随机因素引起的间的波动.可以证明:.令,显然,而且越接近1,就越接近0,说明x和y之间的线性关系越密切.当时,x和y正相关,当时,x和y负相关.但由于只与有关,所以不能反映相关的方向.因此定义相关系数如下:,一般越接近1,x和y之间的线性关系越密切.需要注意的两点是:(1)相关系数只衡量变量间线性关系的密切程度,即使变量间具有确定的非线性函数关系,也可能非常接近0.(2)当n 很小时,即使非常接近1,也不表明变量间的线性关系强.例如,无论x和y之间是何种关系,当n=2时,总有.二、教学建议1.“相关关系”的有关概念及定性描述相关关系的概念是描述性的,不必追求形式化上的严格.建议采用案例教学法.对比函数关系,重点突出相关关系的两个本质特征:关联性和不确定性.关联性是指当一个变量变化时,伴随另一个变量有一定的变化趋势;不确定性是指当一个变量取定值时,与之相关的变量的取值仍具有随机性.因为有关联性,才有研究的必要性.因为其不确定性,从少量的变量观测值,很难估计误差的大小,因此必须对变量作大量的观测.但每个观测值都有一定误差,为了消除误差的影响,揭示变量间的本质联系,就必须要用统计分析方法.判断两个变量间是否具有相关关系,一是凭经验及学科专业知识,二是借助散点图.下面是一些可供选择的例子,教学时可先逐一分析其关联性和不确定性,然后结合散点图,进一步判断相关关系的类型和方向.例5(非线性相关和不相关的例子)对0到18岁之间的未成年人来说,年龄和身高之间具有非线性的相关关系.对成年人来说,年龄和身高之间没有相关关系(散点图略).例6吸烟和患肺部疾病之间不具有因果关系,但具有相关关系.我们引入两值变量X和Y:如果调查了700人,其中400个不吸烟者中有40人患肺部疾病(10%),300个吸烟者中有60个人患肺部疾病(20%),说明吸烟对患肺部疾病有一定的影响.但不吸烟者也可能患肺部疾病,吸烟者也可能不患肺部疾病,因此X和Y之间具有相关关系.例7 有人曾经观察过某一国家历年的国内生产总值与精神病患者的人数的关系,发现两者之间存在较强的正相关.实际上国内生产总值与精神病患者的人数之间没有内在联系,是一种典型的虚假相关.这是因为它们都和人口总量有内在的相关关系.说明:(1)适当例举非线性相关和不相关的例子,有助于对相关关系的全面了解,但我们研究的重点是线性相关关系,而且正相关或负相关只对线性相关有意义.(2)讨论“相关关系”时,对中学生来说,不要求说明哪个变量是随机变量,哪个变量是普通变量.(3)根据学生实际情况,可以从散点图判断线性关系的强弱,进行适当拓展.2.相关关系的定量描述——求回归直线方程本小节的重点是用最小二乘法求回归直线方程.采用探究式教学方式.在给出回归直线和回归直线方程的定义后,提出如下问题:如何求回归直线方程,要求这条直线在整体上与数据点最接近?许多统计思想和方法都比较直观,学生可能提出各种不同的方法,包括教材上列举的方法.为了防止漫无目的,对求回归直线的方法应提出一些基本要求:尽可能利用全部数据,体现整体偏差最小,便于数学计算,结果确定等.离这些要求越来越远的方法,不必多加考虑.通过对有些方法逐步修正,最后引导到使用最小二乘法求回归直线方程.方法1:逐渐移动直线,测量各点到直线的距离,使距离和最小.该方法体现了整体偏差最小的思想,缺点是难以实现,而且测量的方法很难得到确定的结果.方法2:选择两点画直线,使直线两侧的点的个数基本相同.这种方法没有利用全部数据信息,其结果会因人而异.方法3:用多条直线的斜率和截距的平均值作为回归直线的斜率和截距.这种方法既没有利用全部数据信息,也没有体现整体误差最小的思想,结果也不确定.设回归方程为,,是第i个观测值的偏差,是第i个观测点到回归直线的距离.设是回归直线的倾斜角,则.方法4:距离和最小.求a,b使达到最小.这是方法1的数学严格化.方法5:总的偏差和最小.求a,b使达到最小.方法4和方法5是等价的.方法5利用了全部数据,体现整体偏差最小的思想,结果是唯一确定的.唯一的缺点是不便数学计算.方法6偏差平方和最小.求a,b使达到最小.该方法克服了方法5的缺点.这种方法称为最小二乘法.说明:(1)我们的目的是通过探究找到一个求回归方程的“较优”的方法,这里所说的“较优”也是基于直观的思想,在学生现有的知识水平下,无法严格证明.如果对用上面的方法得到直线的“优劣”进行评判,我认为是理解上的偏差,况且也做不到.(2)应用最小二乘法求回归方程是一个纯数学的问题,用配方法显得繁琐,用求偏导数的方法超出了学生的能力要求.对此不做要求,直接给出a,b的公式,不影响对统计方法的理解.(3)也可以按下面的过程展开教学.①提供实际问题情境,从测量数据出发,采用偏差平方和最小的思想(最小二乘思想)求参数的估计值.②通过类比用最小二乘法求回归直线方程.3.回归方程的计算回归方程中a,b的计算公式比较复杂,要求利用计算器或计算机进行计算.为了熟悉公式的构成及相关量的计算过程,建议使用Excel软件中的公式进行计算.以年龄和脂肪含量的关系为例.如下表所示:在相应的单元格内输入数据,第15行为合计.先计算,,在单元格C1,D1,E1中输入相应的公式.通过公式复制然后求和得到:(C15)(D15)(E15),相关系数,,回归方程为.作为拓展还可以计算与对应的回归值,与实际观测值进行比较,了解偏差的大小.由相关系数的大小判断线性关系的强弱.4.回归方程的意义及应用回归直线方程作为变量x和y之间线性关系的代表,它近似描述了x和y之间的数量关系.利用回归方程,当已知x的值时,可以推断y的取值.回归方程中b的意义为:当自变量x改变一个单位时,因变量y的平均改变量.为当时y的估计值,也可以理解为当时y的可能取值的平均值.在教学中下面的实例可供选择.例1主要解释系数b和回归值的意义;例2说明回归方程用于预测时的作用;例3介绍“回归”一词的由来的背景知识,同时也说明了回归方程在揭示了变量间的依存规律时的作用.例1 年龄和脂肪含量之间的回归方程为.(1)解释b(0.5765)的意义;(2)当x=37时,计算相应的值并解释其意义.解(1)回归直线方程中b是直线的斜率,b>0表示随年龄的增长,人体脂肪含量呈现增长的趋势,b=0.5765说明年龄每增加1岁,身体脂肪含量平均增加0.5765%.(2)当x=37时,%,20.9%是37岁的人脂肪含量的一个估计值,可以理解为众多37岁人脂肪含量的平均值.说明:年龄的取值范围为23—61岁,一般在这个年龄范围内估计脂肪含量时误差相对较小,如果估计80岁人的脂肪含量,误差会很大,结果不可靠.例2 某博物馆发现文物被盗,公安刑侦人员经过分析,推测案犯的身高在175㎝左右.刑侦人员是如何推断的呢?原来在现场发现了案犯的脚印,测量脚印的长度为25.5㎝,已知成年人的脚印长x和身高y 之间存在线性相关关系,回归方程为.因此可以从脚印的长度,推断其大致身高,为破案提供重要线索.例3 英国遗传学家高尔顿(Francis Galton,1822-1911年)在子女与父母相像程度遗传学研究方面,取得了重要进展.高尔顿的学生卡尔·皮尔逊(Karl Pearson,1857-1936年)在继续这一遗传学研究的过程中,测量了1078个父亲及其成年儿子的身高.用x表示父亲的身高,y表示儿子的身高(单位为英寸).求得回归方程为(如图所示),发现了一个重要的规律.主要计算结果及描述见下表:时,时,高尔顿和皮尔逊把这种现象称为“回归效应”,现在人们把由一个变量的变化去推断另一个变量变化的方法统称为回归分析.参考文献[1] 袁卫,庞皓,曾五一.统计学.高等教育出版社,2000年.[2] 魏宗舒等.概率论与数理统计教程.高等教育出版社,1983年.[3] (美)John Tabak 著,杨静译.不明确的科学.商务印书官,2008年。
3 变量间的相关关系

第二章 统 计
对预处理后的数据, 容易算得 x =0, y =3.2. ^b=-4×-21+42-+242×+4-2+114+ 2 2×19+4×29 =24600=6.5,
栏目 导引
第二章 统 计
栏目 导引
第二章 统 计
②函数关系与相关关系的区别与联系 确定性关系
栏目 导引
第二章 统 计
非确定性
栏目 导引
第二章 统 计
栏目 导引
第二章 统 计
(2)两个变量相关关系的判断 ①散点图的概念 将样本中n个数据点(xi, yi)(i=1,2, …, n)描 在平直角坐标系中得到的图形. ②正相关与负相关 a. 正相关: 散点图中的点散布在从左下角 到右上角的区域. b. 负相关: 散点图中的点散布在从左上角 到右下角的区域.
栏目 导引
第二章 统 计
【名师点评】 求线性回归直线方程的步骤如下: (1)列表表示 xi, yi, xiyi;
, xiyi;
i=1 i=1
(3)代入公式计算 b, a 的值; (4)写出线性回归直线方程.
栏目 导引
第二章 统 计
互动探究 2. 如果把本题中的y的值: 2.5及4.5分别改 为2和5, 如何求回归直线方程.
栏目 导引
第二章 统 计
做一做 1.下列变量之间的关系不是相关关系的是 () A. 二次函数y=ax2+bx+c中, a, c是已知 常数, 取b为自变量, 因变量是判别式 Δ=b2-4ac B. 光照时间和果树亩产量 C. 降雪量和交通事故发生率
栏目 导引
第二章 统 计
D. 每亩田施肥量和粮食亩产量 解析: 选A.在A中, 若b确定, 则a, b, c都是常 数, Δ=b2-4ac也就唯一确定了, 因此, 这两 者之间是确定性的函数关系; 一般来说, 光 照时间越长, 果树亩产量越高; 降雪量越大, 交通事故发生率越高; 施肥量越多, 粮食亩 产量越高. 所以B, C, D是相关关系. 故选A.
两个变量间具有相关关系可以说明它们之间具有因果关系
两个变量间具有相关关系可以说明它们之间具有因果
关系
两个变量之间既可以是一种因果关系,也可能是一种相关关系,两个变量间有相关关系并不必然就有因果关系。
两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。
注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。
变量之间的相关关系
变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。
变量间的相关关系教案
变量间的相关关系优秀教案第一章:引言1.1 教学目标让学生理解变量间的相关关系概念让学生掌握绘制散点图的方法让学生了解相关系数的概念1.2 教学内容变量间的相关关系定义散点图的绘制方法相关系数的概念及计算方法1.3 教学过程1.3.1 导入通过实际例子引入变量间的相关关系概念,如身高与体重的关系。
1.3.2 新课导入讲解变量间的相关关系定义,解释相关系数的概念。
演示如何绘制散点图,让学生跟随操作。
1.3.3 案例分析提供一些实际数据,让学生绘制散点图,并计算相关系数。
1.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的变量间相关关系。
1.4 教学评价通过课堂练习和讨论,评估学生对变量间的相关关系的理解和应用能力。
第二章:线性相关关系2.1 教学目标让学生理解线性相关关系的概念让学生掌握线性相关关系的判断方法让学生学会绘制线性回归直线2.2 教学内容线性相关关系的定义线性相关关系的判断方法线性回归直线的绘制方法2.3 教学过程2.3.1 导入通过实际例子引入线性相关关系概念,如房价与面积的关系。
2.3.2 新课导入讲解线性相关关系的定义,解释线性回归直线的概念。
演示如何判断线性相关关系,让学生跟随操作。
2.3.3 案例分析提供一些实际数据,让学生判断线性相关关系,并绘制线性回归直线。
2.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的线性相关关系。
2.4 教学评价第三章:非线性相关关系3.1 教学目标让学生理解非线性相关关系的概念让学生掌握非线性相关关系的判断方法让学生学会绘制非线性回归直线3.2 教学内容非线性相关关系的定义非线性相关关系的判断方法非线性回归直线的绘制方法3.3 教学过程3.3.1 导入通过实际例子引入非线性相关关系概念,如温度与冰点的关系。
3.3.2 新课导入讲解非线性相关关系的定义,解释非线性回归直线的概念。
演示如何判断非线性相关关系,让学生跟随操作。
变量之间的相关关系和茎叶图知识(小结)
在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
2、在研究两个变量之间是否存在某种关系时,必须 从散点图入手。对于散点图可以作出如下判断:
(1)函数关系:如果所有样本点都落在某一函数 曲线上,就用该函数来描述变量之间的关系,即变 量之间具有函数关系;(自变量取值一定时,因变 量取值唯一确定) (2)变量之间相关关系:如果所有的样本点都落 在某一曲线附近,变量之间就有相关关系;(自变 量取值一定时,因变量取值带有一定的随机性)
乙
2, 5, 1, 4, 0
5 4 6, 1, 6, 7, 9 9
叶
茎
叶
茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计 图上没有原始数据信息的损失,所有数据信息都可以 从茎叶图中得到;二是茎叶图中的数据可以随时记录, 随时添加,方便记录与表示。 (2)茎叶图只便于表示两位有效数字的数据,而 且茎叶图只方便记录两组的数据,两个以上的数据虽 然能够记录,但是没有表示两个记录那么直观,清晰。
3、正相关(教材P86)
散点图散布在从左下角到右上角的区域。
特点:一个变量随另一个变量变大而变大。(类似 于单调增函数) 4、负相关(教材P86) 散点图散布在从左上角到右下角的区域。 特点:一个变量随另一个变量变大而变小。(类似 于单调减函数)
4、回归直线(教材P87)
如果散点图中点的分布从整体上看大致在 一条直线附近,我们就称这两个变量之间具 有线性相关关系,这条直线叫做回归直线。 这条直线的方程叫做回归直线方程(简称回 归方程)。
练习:
下表一组数据是某车间30名工人加工零件的个数, 设计一个 茎叶图表示这组数据,并说明这一车间的生产情况.
134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80
-10
0
散落在直线的附近
有相同的变化趋势
有相反的变化趋势
系列1
10
20
30
40
线性相关 正相关
负相关
初步探索,直观感知
左面的散点图中,点散布在从左下角 到右上角的区域,对于两个变量的这种相 关关系,我们将它称为正相关。
右面的散点图中,点散布在从左上角 到右下角的区域,对于两个变量的这种相 关关系,我们将它称为负相关。
20
0
0
0
问题4 20
40
60
80
-10
0
10
20
30
40
(1)两个散点图的有什么共同之处?
(2)两个散点图的点的分布有什么不同?
初步探索,直观感知 探究三:线性相关、正相关、负相关
40 35 30 25 20 15 10
5 0
0
20
40
60
180
160
140
120
100 系列1
80
60
40
20
0
3).如果所有的样本点都落在某一直线附近, 变量之间就有线性相关关系 .
散点图:用来判断两个变量是否具有相关关系.
判断下列图形中具有线性相关关系的两个 变量是
C
初步探索,直观感知 探究三:线性相关、正相关、负相关
40
180
35
160
30
140
25
120
100
20
系列1
系列1
80
15
60
10
40
5
变量之间的相关关系
两个变量间存在着某种关系,带 有不确定性(随机性),不能用函数
关变系精量确地间表的达出相来,关我们关说这系两个
变量具有相关关系.
初步探索,直观感知
探究一: 两个变量间的相关关系
问题1、对于两个变量之间的关系, 我们之前学过,函数关系是一种确定性 关系。那么下列变量与变量之间哪些是 函数关系,哪些是相关关系?
回归直线
脂肪含量
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
如何具体的求出这个回归直线方程呢?
整体上最接近
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
回归直线
i 1
i1
n
xi yi nx y
b
i1 n
,a y bx
xi2 nx 2
i1
第四步,写出回归方程
2.回归直线经过样本点中心(x, y)
高斯的假定:(平均数天然合理)
例.(广东高考)下表提供了某厂节能降耗技术 改造后生产甲产品过程中记录的产量x吨与相应 的生产能耗y(吨标准煤)的几组对照数据.
400
10
200
5
0
0
0
20
40
60
80
0
5
10
15
观察左面散点图,发现这些点大致
分布整体上看大致在一条__直__线__附近,我们 就称这两个变量之间具有线性相 关关系, 这条直线叫做_回__归__直__线__。
散点图 说明
1).如果所有的样本点都落在某一函数曲线上, 就用该函数来描述变量之间的关系,即变量之 间具有函数关系. 2).如果所有的样本点落在某一函数曲线附近, 变量之间就有相关关系。
x
3
4
5
6
y
2.5
3
4
4.5
(1)请画出上表数据的散点图. (2)根据上表数据用最小二乘法求出y关于x 的线性回归方程. (3)由(2)预测技改后生产100吨甲产品的 生产能耗是多少吨标准煤?
(参考数值:3 2.5+43+54+64.5=66.5)
解:(1)根据题意,作图可得, (2)由系数公式可知,
①请正同方学形们边试长举与几面个积现之实间生的活关中系相关关 系的②例圆子的。半径与圆的周长之间的关系
③年龄与人体的脂肪含量之间的关系 ④数学成绩与物理成绩之间的关系.
相关关系
初步探索,直观感知 如何进行数据分析? 探究二:散点图
问题2、在一次对人体脂肪含量和年龄的关 系的研究中,研究人员获得了一组样本数据:
xi yi nx y
b i1 n
i 1 n
(xi x)2
xi2 nx 2
i1
i1
a y bx
利用公式可求得年龄和人体脂肪含量
的样本数据的回归方程为
yÙ = 0.577x - 0.448
由此我们可以根据一个人的年龄预测
其体内脂肪含量的百分比的估计值.若某人
65岁,则其体内脂肪含量的百分比约为多
少?
0.577×65-0.448=345037.1
30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
小结
1.求样本数据的线性回归方程,可按 下列步骤进行:
第一步,计算平均数 x , y
第二步,求和 第三步,计算
n
n
, xi yi
xi 2
实际上,求回归直线的关键是如何用数学的方 法来刻画“从整体上看,各点与此直线的距离最 小”.
Q = (y1-bx1-a)2 + (y2-bx2-a)2 +…+ (yn-bxn-a)2 问题归结为:a,b取什么值时Q最小,即总体和最小.
这一方法叫最小二乘法
计算回归方程的斜率与截距的一般公式:
n
n
(xi x)( yi y)
b
66.5 4 4.5 3.5 86 4 4.52
0.7
a 3.5 0.74.5 0.35
yˆ 所以线性回归方程为 =0.7x+0.35;
(3)x=100时, yˆ =0.7x+0.35=70.35,
所以预测生产100吨甲产品的生产能耗为70.35吨标准煤.
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
初步探索,直观感知
问题3 下面两个散点图中点的分
布有什么不同?
种植西红柿,施肥量与产量
年龄与脂肪含量之间的散点图
之间的散点图
40
1200
35
1000
30
25
800
20
系列6010
系列1
15
年龄 23 27 39 41 45 49 50 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
根据上述数据,人体的脂肪含量与 年龄之间有怎样的关系?
脂肪含量