二次函数的应用(2)PPT课件
合集下载
二次函数的应用(经典) PPT

(1)若商场平均每天要盈利1200元,每件 衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天 盈利最多?
最值应用题——销售问题
某商场以每件42元的价钱购进一种服装,根据 试销得知这种服装每天的销售量t(件)与每 件的销售价x(元/件)可看成是一次函数关系: t=-3x+204。 写出商场卖这种服装每天销售利润y(元) 与每件的销售价x(元)间的函数关系式; 通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
已知某二次函数当x=1时,有最大值-6, 且图象经过点(2,-8),求此二次函数的 解析式。
思维小憩:
用待定系数法求二次函数的解析式,什么 时候使用顶点式y=a(x-m)2+n比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B
(2)每件衬衫降价多少元时,商场平均每天 盈利最多?
最值应用题——销售问题
某商场以每件42元的价钱购进一种服装,根据 试销得知这种服装每天的销售量t(件)与每 件的销售价x(元/件)可看成是一次函数关系: t=-3x+204。 写出商场卖这种服装每天销售利润y(元) 与每件的销售价x(元)间的函数关系式; 通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
已知某二次函数当x=1时,有最大值-6, 且图象经过点(2,-8),求此二次函数的 解析式。
思维小憩:
用待定系数法求二次函数的解析式,什么 时候使用顶点式y=a(x-m)2+n比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B
二次函数的应用课件ppt课件ppt课件ppt

要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
二次函数的应用(2)——抛物线型问题

∴水面宽度将增加 2 6 4米.
8.如图,隧道横截面为抛物线,其最大高度为 6 米,OM 为 12 米.
(1)求这条抛物线的解析式; (2)若在隧道 C,D 处装两个路灯,且路灯的高度为 4 米,求 C, D 之间的距离.
解:(1)由题意,得 M 12,0,P6,6
设抛物线的解析式为 y a x 62 6
设抛物线的解析式为 y a x 2 x 2
∵过点C(0,2)
∴2=a0 20 2
,a 1
2Байду номын сангаас
∴抛物线的解析式为y 1 x 2 x 2 ,即 y 1 x2 2
2
2
(2)由题意,得 1= 1 x2 2
2
解得 x1 6,x2 6
(1)求这条抛物线的函数关系式; (2)水池的半径至少要多少米,才能使喷出的水流不落在池 外?
(1)顶点 A1, 4
设抛物线的函数关系式为 y a x 12 4
∵过(0,3) ∴ 3=a 0 12 4 ∴ a 1
∴抛物线的函数关系式为 y x 12 4
PPT课程
主讲老师:
全一册下
第二章 二次函数
第13课 二次函数的应用(2)——抛物线型问题
一、知识储备
1.求抛物线 y=x2-8x 与 x 轴的交点坐标. 解:令 y 0 ,得 0=x2 8x 解得 x1 0,x2 8
∴该抛物线与x轴的交点坐标为0,0,8,0
2.抛物线的顶点为(6,3)且过点(0,0),求它的解析式.
(2)当 x=9 y=-112(9-6)2+3=2.25<2.5 ∴射中球门
5.(例 2)如图,铅球在 A 点被推出,出手时球离地面 1 米, 铅球飞行轨迹是抛物线,当铅球飞行的水平距离为 4 米时达到最高 点 B,最高点离地面 3 米.
新版北师大九年级下2.4二次函数的应用课件ppt

【解析】 (1)设矩形广场四角的小正方形的边长为x米,根据题意 得:4x2+(100-2x)(80-2x)=5 200, 整理得x2-45x+350=0, 解得x1=35,x2=10,经检验x1=35,x2=10均适合题意 , 所以,要使铺设白色地面砖的面积为5 200平方米, 则矩形广场四角的小正方形的边长为35米或者10米.
谢谢观赏
You made my day!
我们,还在路上……
即当x≈1.07m时,窗户通过的光线最多.此时窗户的面积为
4.02m2.
1.(包头·中考)将一条长为20cm的铁丝剪成两段,
并以每一段铁丝的长度为周长各做成一个正方形,则这
两个正方形面积之和的最小值是
cm2.
【答案】 12.5 或 25
2
2.(芜湖·中考)用长度为20m的金属材料制成如图所 示的金属框,下部为矩形,上部为等腰直角三角形,其
4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常 数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE, 作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y. (1)求y关于x的函数关系式. (2)若m=8,求x为何值时,y的值最大,最大值是多少? (3)若 y 12 ,要使△DEF为等腰三角形,m的值应为多少?
即△DEF为等腰三角形,m的值应为6或2.
5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用 40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教 学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y. (1)求y与x的函数关系式,并求出自变量x的取值范围. (2)生物园的面积能否达到210平方米?说明理由.
解析:
由4 y 7 x x 15.
人教版初中数学中考复习 一轮复习 二次函数及其应用2(课件)

解方程,得 m1=-2,m2=3(不符合题意,舍去) ∴m=-2
典型例题——二次函数与方程、不等式的关系
9. (2021•泸州)直线 l 过点(0,4)且与 y 轴垂直,若二次函数 y=(x﹣a)2+(x﹣2a)2+
(x﹣3a)2﹣2a2+a(其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴
解方程,得 m1= 41-1 ,m2= - 41+1 (不符合题意,舍去)
4
4
∴m= 41-1 , 4
1 - m>3,即 m<-3,当 x=3 时,y=6.∴9来自6m+2m2-m=6,
解方程,得 m1=-1,m2= - 3 (均不符合题意,舍去). 2
综上所述,m=-2 或 m=
41-1
.
4
2 1<- m≤3,即-3≤m<-1,当 x=-m 时,y=6. ∴m2-m=6
bx+c=0有 两个不相等的 实数根;
②如果抛物线y=ax2+bx+c(a≠0)与x轴 只有一个 交点,则一元二次方
程ax2+bx+c=0有两个 相等 的实数根;
③如果抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则一元二次方程ax2+bx
+c=0 没有 实数根.
知识点梳理——知识点4:二次函数与一元二次方程及不等式的关系
A(1,0),B(m,0)(-2<m<-1),下列结论①2b+c>0;②2a+c<0;
③a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等实数根,
A 则4ac-b2<4a;其中正确结论的个数是(
)
A.4
B.3
C.2
D.1
典型例题——二次函数与方程、不等式的关系
山东省九年级鲁教版(五四制)数学上册课件:36二次函数的应用(2)(共16张PPT)

.最大面积的求法
(1)确定自变量x及其取值范围 (2)将面积表示以x为自变量的二 次函数
(3)利用 或 求最大面积. (4)一般地,因为抛物线 的顶点是 最高(低)点,所以当x= 时, 函数有最大(小)值为
议一议
还记得本章一开始的“种多少棵橙子树”的问题吗?
增种橙子树的数量x(棵)与橙子总产量y(个)之
例2:
某旅社有客房120间,每间房的日租金为160元, 每天都客满.经市场调查发现,如果每间客房的日租 金每增加10元时,那么客房每天出租数会减少6间. 不考虑其他因素,旅社将每间客房的日租金提高到 多少元时,客房日租金的总收入最高?
大家自己动手做一做 吧,相信你是最棒的!
分析:有客房120间,每间房的日租金为160元,每天 都. 客满.如果每间客房的日租金每增加10元时,那么客房 每天出租数会减少6间.
件.
厂家批发单价是多少时,可以获利最多?
分析:服装厂生产某品牌的T恤衫,每件的成本是10元. 根. 据市场调查,以单价13元批发给经销商,经销商愿意经 销5000件,并且表示每件降价0.1元,愿意多经销500件.
解:设批发单价为x元(0<x≤13元),那么 销售量可表示为 : 5000+5000(13-;x)
每件小商品的利润为: X-10 元;
所获总利润可表示为: (X-10) [5000还+5有00其0(1他3-x解)]法元吗;?
即y=-5000x2+120000x-700000=-5000(x-12)2+20000
∵-5000<0 ∴当销售单价为
12 元时,可以获得最大利润,
最大利润是 20000
元.
则 y=〔 800-10(30-x) 〕·x
二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m
北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

6050 0
60495
60480
6045 5
6042 0
60600 y/个
60500
60400
60300
60200
60100 60000
0 1 2 3 4 5 6 7 8 9 1011 1213 14 x/棵
议一议
何时橙子总产量最大
1.利用函数表达式描述橙子的总产量与增种橙子 树的棵数之间的关系.
(100+x)棵
这时平均每棵树结多少个橙子?
(600-5x)个
(2)如果果园橙子的总产量为y个, 那么请你写出y与x之间的关系式.
想一想
何时橙子总产量最大
果园共有(100+x)棵树,平均每棵树结(600-5x) 个橙子,因此果园橙子的总产量
y=(100+x)(600-5x)=-5x²+100x+60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量 最多?X/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
点重合时,等腰△PQR以1cm/s的速度沿直线l向
左方向开始匀速运动,ts后正方形与等腰三角形
重合部分面积为Scm2,解答下列问题:
(1)当t=3s时,求S的值; (2)当t=3s时,求S的值; A
B
(3)当5s≤t≤8s时,求S 与t的函数关系式,并求
MP
S的最大值。
lD Q
C
R
做一做
何时橙子总产量最大
N
2y
xb
x
3
x
30
3
x2
30x
3 x 202
300.
4
4
4
或用公式 :当x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢检查求得的最大值或最小值对应的字变量的值必 须在自变量的取值范围内 。
2020年10月2日
5
例3:
某饮料经营部每天的固定成本为200元,其销 售的饮料每瓶进价为5元。销售单价与日均销售量 的关系如下:
销售单价(元) 678 Nhomakorabea9
10
11
12
日均销售量(瓶) 480 440 400 360 320 280 240
①若记销售单价比每瓶进价多X元,日均毛利润 (毛利润=售价-进价-固定成本)为y元,求Y 关于 X的函数解析式和自变量的取值范围;
②若要使日均毛利润达到最大,销售单价应定为多
少元(精确到0.1元)?最大日均毛利润为多少
元?
2020年10月2日
6
练一练
P:47 课内练习
2020年10月2日
7
1、通过这节课的学习活动你 有哪些收获?
➢ ①设经过t时后,A、B两 船分别到达A/、B/(如图), A’ 则两船的距离S应为多少 ?
➢ ②如何求出S的最小值??
A
B’ B
2020年10月2日
4
归纳小结:
运用二次函数的性质求实际问题的最大值和最小值 的一般步骤 : ➢求出函数解析式和自变量的取值范围
➢配方变形,或利用公式求它的最大值或最小值。
浙教版九年级《数学》上册
2020年10月2日
九年级数学备课组 2006.8.
1
复习思考
如何运用二次函数求实际问题中的最大值或最小值?
➢ 首先应当求出函数解析式和自变量的取值范 围,然后通过配方变形,或利用公式求它的最大值 或最小值。
➢注意:有此求得的最大值或最小值对应的
。 字变量的值必须在自变量的取值范围内
汇报人:XXX 汇报日期:20XX年10月10日
9
2020年10月2日
2
例2:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12KM/H的速度朝正北方向行 驶,B船以5KM/H的速度朝正西方向行驶,何时两船 相距最近?最近距离是多少?
A’
2020年10月2日
A
B’ B
3
例2:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12KM/H的速度朝正北方向行 驶,B船以5KM/H的速度朝正西方向行驶,何时两船 相距最近?最近距离是多少?
2、对这节课的学习,你还有 什么想法吗?
2020年10月2日
8
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2020年10月2日
5
例3:
某饮料经营部每天的固定成本为200元,其销 售的饮料每瓶进价为5元。销售单价与日均销售量 的关系如下:
销售单价(元) 678 Nhomakorabea9
10
11
12
日均销售量(瓶) 480 440 400 360 320 280 240
①若记销售单价比每瓶进价多X元,日均毛利润 (毛利润=售价-进价-固定成本)为y元,求Y 关于 X的函数解析式和自变量的取值范围;
②若要使日均毛利润达到最大,销售单价应定为多
少元(精确到0.1元)?最大日均毛利润为多少
元?
2020年10月2日
6
练一练
P:47 课内练习
2020年10月2日
7
1、通过这节课的学习活动你 有哪些收获?
➢ ①设经过t时后,A、B两 船分别到达A/、B/(如图), A’ 则两船的距离S应为多少 ?
➢ ②如何求出S的最小值??
A
B’ B
2020年10月2日
4
归纳小结:
运用二次函数的性质求实际问题的最大值和最小值 的一般步骤 : ➢求出函数解析式和自变量的取值范围
➢配方变形,或利用公式求它的最大值或最小值。
浙教版九年级《数学》上册
2020年10月2日
九年级数学备课组 2006.8.
1
复习思考
如何运用二次函数求实际问题中的最大值或最小值?
➢ 首先应当求出函数解析式和自变量的取值范 围,然后通过配方变形,或利用公式求它的最大值 或最小值。
➢注意:有此求得的最大值或最小值对应的
。 字变量的值必须在自变量的取值范围内
汇报人:XXX 汇报日期:20XX年10月10日
9
2020年10月2日
2
例2:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12KM/H的速度朝正北方向行 驶,B船以5KM/H的速度朝正西方向行驶,何时两船 相距最近?最近距离是多少?
A’
2020年10月2日
A
B’ B
3
例2:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12KM/H的速度朝正北方向行 驶,B船以5KM/H的速度朝正西方向行驶,何时两船 相距最近?最近距离是多少?
2、对这节课的学习,你还有 什么想法吗?
2020年10月2日
8
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!