二次函数应用 ppt课件
合集下载
《二次函数》课件

一二
元次
二函
次数
方与
程
抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)
《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3
二次函数的应用课件ppt课件ppt课件ppt

要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
二次函数与一元二次方程二次函数优秀ppt课件

7.一元二次方程 3 x2+x-10=0的两个根是x1=-
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
新版北师大九年级下2.4二次函数的应用课件ppt

【解析】 (1)设矩形广场四角的小正方形的边长为x米,根据题意 得:4x2+(100-2x)(80-2x)=5 200, 整理得x2-45x+350=0, 解得x1=35,x2=10,经检验x1=35,x2=10均适合题意 , 所以,要使铺设白色地面砖的面积为5 200平方米, 则矩形广场四角的小正方形的边长为35米或者10米.
谢谢观赏
You made my day!
我们,还在路上……
即当x≈1.07m时,窗户通过的光线最多.此时窗户的面积为
4.02m2.
1.(包头·中考)将一条长为20cm的铁丝剪成两段,
并以每一段铁丝的长度为周长各做成一个正方形,则这
两个正方形面积之和的最小值是
cm2.
【答案】 12.5 或 25
2
2.(芜湖·中考)用长度为20m的金属材料制成如图所 示的金属框,下部为矩形,上部为等腰直角三角形,其
4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常 数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE, 作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y. (1)求y关于x的函数关系式. (2)若m=8,求x为何值时,y的值最大,最大值是多少? (3)若 y 12 ,要使△DEF为等腰三角形,m的值应为多少?
即△DEF为等腰三角形,m的值应为6或2.
5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用 40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教 学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y. (1)求y与x的函数关系式,并求出自变量x的取值范围. (2)生物园的面积能否达到210平方米?说明理由.
解析:
由4 y 7 x x 15.
《二次函数的平移》课件

01 02 03 04
详细描述
例如,函数$f(x) = x^2$的图像 向右平移2个单位后,新的函数 表达式变为$f(x) = (x-2)^2$。
详细描述
在坐标系中,原函数$f(x) = x^2$的图像位于(0,0),当其向 右平移2个单位后,新的函数图 像将位于(2,0)。
向上平移
总结词
当二次函数图像向上平移时,其函数 表达式的常数项会增加。
在物理中的应用
振动和波动
在物理中,二次函数的平移可以用于 描述振动和波动现象。例如,在弦振 动方程中,通过平移可以描述弦的位 移和时间的关系。
引力与势能
电路分析
在电路分析中,二次函数的平移可以 用于描述交流电的电压或电流随时间 的变化。
在研究引力或势能时,二次函数的平 移可以用来描述物体在引力场中的运 动轨迹或势能随位置的变化。
总结词 详细描述 总结词 详细描述
当二次函数图像向左平移时,其 函数表达式中的x值会增加。
平移后的函数图像与原函数图像 在x轴方向上错开,距离等于平移 的单位数。
向右平移
总结词
当二次函数图像向右平移时,其 函数表达式中的x值会减少。
总结词
平移后的函数图像与原函数图像 在x轴方向上错开,距离等于平 移的单位数。
详细描述
例如,函数$f(x) = x^2$的图像向上 平移3个单位后,新的函数表达式变 为$f(x) = x^2 + 3$。
总结词
平移后的函数图像与原函数图像在y 轴方向上错开,距离等于平移的单位 数。
详细描述
在坐标系中,原函数$f(x) = x^2$的 图像位于(0,0),当其向上平移3个单 位后,新的函数图像将位于(0,3)。
04
《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30x320(0≤ x≤ 6) . y2 180(6≤ x≤ 10)
(1)求国内市场的销售总利润z1(万元)与其销量x( 万辆)之间的函数关系式,并指出自变量的取值范围 .
(2)求国外市场的销售总利润z2(万元)与国内市场 的销量x(万辆)之间的函数关系式,并指出自变量的 取值范围.
(3)求该公司每年的总利润w(万元)与国内市场的 销量x(万辆)之间的函数关系式?并帮助该公司确定国 内、国外市场的销量各为多少万辆时,该公司的年 利润最大?
二次函数的应用
-------分段函数
二次函数的应用关键在于建立二次函数的 数学模型,这就需要认真审题,理解题意, 利用二次函数解决实际问题,应用最多的是 根据二次函数的最值确定最大利润、最节省 方案等问题.
1. (2012湖北黄冈12分)某科技开发公司研制出一种新型产品,每件产品的成本
为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家 购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按 3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部 产品的销售单价均降低10 元,但销售单价均不低于2600 元.
(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的 函数关系式,并写出自变量x的取值范围;
(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50 只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优 惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?
3.(2010辽宁)某服装厂批发应季T恤衫,其单价y(元)与批发数量x( 件)(x为正整数)之间的函数关系如图所示.
(1)直接写出y与x的函数关系式; (2)一个批发商一次购进200件T恤衫,所花的钱数是多少元?(其他费用 不计); (3) 若每件T恤衫的成本价是45元,当10O<X≤500件 ( x为正整数)时 ,求服装厂所获利润w(元)与x(件)之间的函数关系式,并求一次批发多 少件时所获利润最大,最大利润是多少?
2、(2012年黄冈调研 本题满分12分)某公司生产一种健身自行车在市场上受 到普遍欢迎,在国内市场和国外市场畅销,生产的产品可以全部出售,该公 司的年生产能力为10万辆,在国内市场每辆的利润y1(元)与其销量x(万辆)的 关系如图所示;在国外市场每辆的利润y2(元)与其销量x(万辆)的关系为:
50
40
0
60
100 x(万盒)
跟踪练习
2.(2010年山东省菏泽市)我市一家电子计算器专卖店每只进价13元, 售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全 部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价 0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计 算,但是最低价为每只16元. (1).求一次至少买多少只,才能以最低价购买?
格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量 为y(万件),年获利为w(万元).(年获利=年销售额—生产成本—投
资成本)
(1)直接写出y与x之间的函数关系式; (公2司)是求盈第利一还年是的亏年损获?利若w盈与利x,间最的大函利数润关是系多式少,?并若说亏明损投,资最的少第亏一损年是,多该少?
(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?
(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件) 之间的函数关系式,并写出自变量x 的取值范围.
(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出 现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一 次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少 元?(其它销售条件不变)
(台) 40 36
20
O 4月
(第4题图)
12月
7.(2007黄冈本题满分11分)我市高新技术开发区的某公司,用480万元 购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备 ,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过 市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理. 当销售单价定为100元时,年销售量为20万件;当销售单价超过100元, 但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少 0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价
(2)投资成本为480+1520=2000万元 y=-0.08x+28, (100≤x<200 ) w=xy-40y-2000=(x-40)(-0.08x+28)-2000 =-0.08x2+31.2x-3120=-0.08(x-195)2-78
可见第一年在100≤x<200注定亏损, x=195时亏损最少,为78万元 y=-0.1x+32, (200≤x≤300 ) w=xy-40y-2000=(x-40)(-0.1x+32)-2000 =-0.1x2+36x-3280=-0.1(x-180)2-40 可见第一年在200≤x≤300注定亏损, x=200时亏损最少,为80万元
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏 损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范 围.在此情况下,要使产品销售量最大,销售单价应定, y=-0.08x+28 (100≤x<200) y=-0.1x+32, (200≤x≤300 )
(2).写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关 系式,并写出自变量x的取值范围;
(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利 润最大?其最大利润为多少?
1.一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一 次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如, 某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的 全部20只计算器都按每只19元的价格购买.但是最低价为每只16元. (1)求一次至少买多少只,才能以最低价购买?
(1)求国内市场的销售总利润z1(万元)与其销量x( 万辆)之间的函数关系式,并指出自变量的取值范围 .
(2)求国外市场的销售总利润z2(万元)与国内市场 的销量x(万辆)之间的函数关系式,并指出自变量的 取值范围.
(3)求该公司每年的总利润w(万元)与国内市场的 销量x(万辆)之间的函数关系式?并帮助该公司确定国 内、国外市场的销量各为多少万辆时,该公司的年 利润最大?
二次函数的应用
-------分段函数
二次函数的应用关键在于建立二次函数的 数学模型,这就需要认真审题,理解题意, 利用二次函数解决实际问题,应用最多的是 根据二次函数的最值确定最大利润、最节省 方案等问题.
1. (2012湖北黄冈12分)某科技开发公司研制出一种新型产品,每件产品的成本
为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家 购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按 3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部 产品的销售单价均降低10 元,但销售单价均不低于2600 元.
(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的 函数关系式,并写出自变量x的取值范围;
(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50 只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优 惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?
3.(2010辽宁)某服装厂批发应季T恤衫,其单价y(元)与批发数量x( 件)(x为正整数)之间的函数关系如图所示.
(1)直接写出y与x的函数关系式; (2)一个批发商一次购进200件T恤衫,所花的钱数是多少元?(其他费用 不计); (3) 若每件T恤衫的成本价是45元,当10O<X≤500件 ( x为正整数)时 ,求服装厂所获利润w(元)与x(件)之间的函数关系式,并求一次批发多 少件时所获利润最大,最大利润是多少?
2、(2012年黄冈调研 本题满分12分)某公司生产一种健身自行车在市场上受 到普遍欢迎,在国内市场和国外市场畅销,生产的产品可以全部出售,该公 司的年生产能力为10万辆,在国内市场每辆的利润y1(元)与其销量x(万辆)的 关系如图所示;在国外市场每辆的利润y2(元)与其销量x(万辆)的关系为:
50
40
0
60
100 x(万盒)
跟踪练习
2.(2010年山东省菏泽市)我市一家电子计算器专卖店每只进价13元, 售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全 部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价 0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计 算,但是最低价为每只16元. (1).求一次至少买多少只,才能以最低价购买?
格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量 为y(万件),年获利为w(万元).(年获利=年销售额—生产成本—投
资成本)
(1)直接写出y与x之间的函数关系式; (公2司)是求盈第利一还年是的亏年损获?利若w盈与利x,间最的大函利数润关是系多式少,?并若说亏明损投,资最的少第亏一损年是,多该少?
(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?
(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件) 之间的函数关系式,并写出自变量x 的取值范围.
(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出 现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一 次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少 元?(其它销售条件不变)
(台) 40 36
20
O 4月
(第4题图)
12月
7.(2007黄冈本题满分11分)我市高新技术开发区的某公司,用480万元 购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备 ,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过 市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理. 当销售单价定为100元时,年销售量为20万件;当销售单价超过100元, 但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少 0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价
(2)投资成本为480+1520=2000万元 y=-0.08x+28, (100≤x<200 ) w=xy-40y-2000=(x-40)(-0.08x+28)-2000 =-0.08x2+31.2x-3120=-0.08(x-195)2-78
可见第一年在100≤x<200注定亏损, x=195时亏损最少,为78万元 y=-0.1x+32, (200≤x≤300 ) w=xy-40y-2000=(x-40)(-0.1x+32)-2000 =-0.1x2+36x-3280=-0.1(x-180)2-40 可见第一年在200≤x≤300注定亏损, x=200时亏损最少,为80万元
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏 损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范 围.在此情况下,要使产品销售量最大,销售单价应定, y=-0.08x+28 (100≤x<200) y=-0.1x+32, (200≤x≤300 )
(2).写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关 系式,并写出自变量x的取值范围;
(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利 润最大?其最大利润为多少?
1.一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一 次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如, 某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的 全部20只计算器都按每只19元的价格购买.但是最低价为每只16元. (1)求一次至少买多少只,才能以最低价购买?