直角三角形等腰直角三角形斜边直线专题

合集下载

等腰直角三角形斜边和直角边

等腰直角三角形斜边和直角边

等腰直角三角形斜边和直角边
等腰直角三角形是一种特殊的三角形,它的两条腰的长度相等,并且其中一条腰与另一条腰所夹的角度为90度。

本文将探讨等腰直角三角形中的斜边和直角边的关系。

首先,让我们定义等腰直角三角形的斜边、直角边和腰。

斜边是连接直角边的那条边,直角边是与直角相邻的两条边,而腰是与直角边不相邻的那条边。

在等腰直角三角形中,斜边是最长的边。

这是因为根据勾股定理,斜边的平方等于直角边的平方和直角边的平方。

由于直角边长度相等,所以斜边的平方等于2倍直角边的平方。

因此,斜边的长度是直角边长度的开方再乘以√2。

举个例子来说明。

假设直角边的长度为a,那么斜边的长度就是a 乘以√2。

换句话说,等腰直角三角形中,斜边的长度是直角边长度的√2倍。

除此之外,直角边的长度也有一定的关系。

由于等腰直角三角形的两条直角边相等,所以它们的长度是一样的。

假设直角边的长度为a,那么另一条直角边的长度也是a。

综上所述,等腰直角三角形中,斜边的长度是直角边长度的√2倍,而直角边的长度是相等的。

这个关系可以用下面的公式总结:
斜边=直角边×√2
直角边1=直角边2
通过这些关系,我们可以利用已知条件来求解等腰直角三角形的边长。

例如,如果我们知道直角边的长度,就可以通过斜边=直角边×√2来计算斜边的长度。

总之,等腰直角三角形中的斜边和直角边之间有着特定的关系。

通过理解和应用这些关系,我们可以更好地理解和解决与等腰直角三角形相关的问题。

专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]

专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]

专题2.6含30°的直角三角形的性质【十大题型】【苏科版】专题2.6 含30°的直角三角形的性质【十大题型】【题型1 由含30°的直角三角形的性质求线段长度】【题型2 由含30°的直角三角形的性质求角度】【题型3 由含30°的直角三角形的性质求面积】【题型4 由含30°的直角三角形的性质求最值】【题型5 由含30°的直角三角形的性质求坐标】【题型6 由含30°的直角三角形的性质进行证明】【题型7 由含30°的直角三角形的性质解决折叠问题】【题型8 由含30°的直角三角形的性质解决旋转问题】【题型9 由含30°的直角三角形的性质解决动点问题】【题型10 含30°的直角三角形的性质的实际应用】知识点:含30°的直角三角形的性质在直角三角形中,30°角所对的边等于斜边的一半.【题型1 由含30°的直角三角形的性质求线段长度】【例1】(23-24八年级·山东济宁·期末)1.如图,在等边ABC V 中,点D E 、分别在边BC AC 、上,且AE CD =,BE 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:BE AD =;(2)若4PQ =,求BP 的长.【变式1-1】(23-24八年级·黑龙江牡丹江·期中)2.在等边三角形ABC V ,若AB 边上的高CD 与边BC 所夹得角为30°,且3BD =,则ABC V 的周长为( )A .18B .9C .6D .4.5【变式1-2】(23-24八年级·山东泰安·期末)3.如图所示,ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为E .若3AE =,则ABC V 的边长为( )A .12B .10C .8D .6【变式1-3】(2024八年级·江苏·专题练习)4.如图,在ABC V 中,60ABC Ð=°,以AC 为边在ABC V 外作等边ACD V ,过点D 作DE BC ^.若 5.4AB =,3CE =,则BE = .【题型2 由含30°的直角三角形的性质求角度】【例2】(2024·吉林长春·八年级期末)5.如图所示,把两块完全相同的等腰直角三角板如图所示的方式摆放,线段AC 在直线MN 上.若点F 恰好是线段AB 中点,则AFD Ð的大小为 °.【变式2-1】(23-24八年级·湖北武汉·期中)6.如图,在ABC V 中,45ACB Ð=°,点M 为边BC 上的动点,当2AM CM +最小时,则CAM Ð的度数为( )A .60°B .45°C .30°D .15°【变式2-2】(2024八年级·江苏·专题练习)7.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.【变式2-3】(2024·安徽·八年级期末)8.已知在等腰ABC V 中,AD BC ^,垂足为点D ,12AD BC =,则C Ð的度数有( )A .5种B .4种C .3种D .2种【题型3 由含30°的直角三角形的性质求面积】【例3】(2024·山东聊城·八年级期末)9.如图,在ABC V 中,90ABC Ð=°,60BAC Ð=°,以点A 为圆心,以AB 的长为半径画弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径画弧,两弧交于点P ,作射线AP 交BD 于点M ,交BC 于点E ,连接DE ,则:CDE ABC S S △△的值是( )A .1:2B 3C .2:5D .1:3【变式3-1】(23-24八年级·重庆·期末)10.如图,在Rt ABC △中,90A Ð=°,点D 是AB 上一点,且6,15BD CD DBC ==Ð=°,则BCD △的面积为( )A .9B .12C .18D .6【变式3-2】(23-24八年级·辽宁辽阳·期末)11.如图,在ABC V 中,90,30C B Ð=°Ð=°,D 是BC 上一点,连接AD ,若AD 平分BAC Ð,设ADB V 和ADC △的面积分别是1S ,2S ,则12:S S =( )A .1:1B .2:1C .3:1D .3:2【变式3-3】(23-24八年级·湖南永州·期中)12.如图,在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,求阴影部分的面积.【题型4 由含30°的直角三角形的性质求最值】【例4】(23-24八年级·湖北荆门·期末)13.如图,CA ^直线l 于点A ,4CA =,点B 是直线l 上一动点,以CB 为边向上作等边MBC △,连接MA ,则MA 的最小值为( )A .1B .2C .3D .4【变式4-1】(23-24八年级·黑龙江齐齐哈尔·期末)14.如图,已知60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于点D ,6OP =,点E 是射线OB 上的动点,则PE 的最小值为( )A .4B .2C .5D .3【变式4-2】(23-24八年级·江苏苏州·期中)15.如图,边长为6的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是 .【变式4-3】(23-24八年级·浙江金华·期末)16.如图,在等腰三角形ABC 中,4AB AC ==,30BAC Ð=°,AG 是底边BC 上的高,在AG 的延长线上有一个动点D ,连接CD ,作150CDE Ð=°,交AB 的延长线于点E ,CDE Ð的角平分线交AB 边于点F ,则在点D 运动的过程中,线段EF 的最小值( )A .6B .4C .3D .2【题型5 由含30°的直角三角形的性质求坐标】【例5】(23-24八年级·北京朝阳·期末)17.如图,在平面直角坐标系xOy 中,Rt OAB V 的斜边OB 在x 轴上,30ABO Ð=°,若点A 的横坐标为1,则点B 的坐标为 .【变式5-1】(23-24八年级·湖南长沙·期中)18.如图,等边ABC V 的三个顶点都在坐标轴上,()30A -,,过点B 作BD AB ^,交x 轴于点D ,则点D 的坐标为 .【变式5-2】(2024·山东泰安·八年级期末)19.如图,在平面直角坐标系中,点O 的坐标为()00,,点M 的坐标为()30,,N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60°得到线段MK ,连接NK OK ,.求线段OK 长度的最小值( )A .32B C .2D .【变式5-3】(23-24八年级·广东东莞·期末)20.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,1),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A L ,按此规律继续作下去,得到等边三角形202120212022O A A ,则点2021A 的纵坐标为 .【题型6 由含30°的直角三角形的性质进行证明】【例6】(23-24八年级·山东烟台·期末)21.在Rt ABC △中,90ACB Ð=°,30BAC Ð=°,AD 平分BAC Ð,交BC 于点D .(1)用尺规作出线段AD 的垂直平分线交AD 于点M ,交AB 于点N .(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:12CD AN =.【变式6-1】(23-24八年级·重庆江津·期中)22.如图,在等腰ABC V 中,AC BC =,4ACB B =∠∠,点D 是AC 边的中点,DE AC ^,交AB 于点E ,连接CE .(1)求BCE Ð的度数;(2)求证:3AB CE =.【变式6-2】(2024八年级·江苏·专题练习)23.如图,在ABC V ,90ACB Ð=°,30A Ð=°,AB 的垂直平分线分别交AB 和AC 于点D E ,.(1)若6cm AC =,求CE 的长度;(2)连接CD ,请判断BCD △的形状,并说明理由.【变式6-3】(23-24八年级·安徽阜阳·开学考试)24.如图,已知在等边三角形ABC 中,D ,E 分别是边BC ,AC 上的点,且AE DC =,连接AD ,BE 相交于点P ,过点B 作BQ AD ^,Q 为垂足,求证:2BP PQ =.【题型7 由含30°的直角三角形的性质解决折叠问题】【例7】(23-24八年级·山东济宁·期末)25.如图,三角形纸片ABC 中,90BAC Ð=°,4AB =,30C Ð=°.沿过点A 的直线将纸片折叠(折痕为AF ),使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,折痕交AC 于点E (折痕为EG ),则FG 的长是( )A .3B .4C .6D .8【变式7-1】(23-24八年级·湖北武汉·期中)26.如图所示,在ABC V 中,9030C A Ð=°Ð=°,,将BCE V 沿BE 折叠,使点C 落在AB边D 点,若6cm EC =,则AC =( )cm .A .12B .16C .18D .14【变式7-2】(2024·山东滨州·八年级期末)27.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若3BE =,则折痕AE 的长为 .【变式7-3】(23-24八年级·广西南宁·阶段练习)28.如图,在ABCD Y 中,将ADC △沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若602B AB Ð=°=,,则BC 为 .【题型8 由含30°的直角三角形的性质解决旋转问题】【例8】(23-24八年级·陕西西安·阶段练习)29.如图,在ABC V 中,90C Ð=°,30ABC Ð=°,5cm AC =,将ABC V 绕点A 逆时针旋转至AB C ¢¢△的位置,点B 的对应点为点B ¢,点C 的对应点C ¢恰好落在边AB 上.设旋转角为a .(1)a 的度数为 °;(2)求ABB ¢V 的周长.【变式8-1】(2024·新疆乌鲁木齐·三模)30.如图,将ABC V 绕点A 旋转得到ADE V ,若90B Ð=°,30C Ð=°,2AB =,则AE 的长为 .【变式8-2】(2024八年级·浙江·专题练习)31.如图,AB C ¢¢△是ABC V 绕点A 旋转180°后得到的,已知90B Ð=°,1AB =,30C Ð=°,则CC ¢的长为 .【变式8-3】(2024·河北秦皇岛·八年级期末)32.如图,在等边ABC V 中,10AB =,P 为BC 上一点(不与点B ,C 重合),过点P 作PM BC^于点P ,交线段AB 于点M ,将PM 绕点P 顺时针旋转60°,交线段AC 于点N ,连接MN ,有三位同学提出以下结论:嘉嘉:PNC △为直角三角形.淇淇:当2AM =时,7AN =.珍珍:在点P 移动的过程中,MN 不存在平行于BC 的情况.下列说法正确的是( )A .只有嘉嘉正确B .嘉嘉和淇淇正确C .淇淇和珍珍正确D .三人都正确【题型9 由含30°的直角三角形的性质解决动点问题】【例9】(23-24八年级·湖南岳阳·期中)33.如图:ABC V 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达B 时,P 、Q 两点停止运动,当点P 到达B 时,P 、Q 两点停止运动.设点P 运动的时间为(s)t .当t 为 时,PBQV 是直角三角形.【变式9-1】(23-24八年级·山西晋中·期中)34.如图,在ABC V 中,90,30,8cm B A AC Ð=°Ð=°=,动点P 、Q 同时从A 、C 两点出发,分别在AC 、BC 边上匀速移动,它们的速度分别为2cm /s,1cm /s P Q v v ==,当点P 到达点C 时,P 、Q 两点同时停止运动,设点P 的运动时间为s t .(1)当t 为何值时,PCQ △为等边三角形?(2)当t 为何值时,PCQ △为直角三角形?【变式9-2】(2024八年级·全国·专题练习)35.已知:如图,ABC V 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB BC 、方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为s t .(1)当动点P 、Q 同时运动2s 时,则BP = cm ,BQ = cm .(2)当动点P 、Q 同时运动s t 时,分别用含有t 的式子表示;BP = cm ,BQ = cm .(3)当t 为何值时,PBQ V 是直角三角形?【变式9-3】(23-24八年级·辽宁朝阳·期末)36.如图,在ABC V 中,60A Ð=°,4cm AB =,12cm AC =.动点P 从点A 开始沿AB 边以1cm/s 的速度运动,动点Q 从点C 开始沿CA 边以3cm/s 的速度运动.点P 和点Q 同时出发,当点P 到达点B 时,点Q 也随之停止运动.设动点的运动时间为()s 04t t <<,解答下列问题:(1)用含t 的代数式表述AQ 的长是______.(2)在运动过程中,是否存在某一时刻t ,使APQ △是直角三角形?若存在,求出t 的值;若不存在,请说明理由.【题型10 含30°的直角三角形的性质的实际应用】【例10】(23-24八年级·安徽合肥·期末)37.如图①,设计一张折叠型方桌,其示意图如图②,若50cm AO BO ==,30cm CO DO ==.现将桌子放平,两条桌腿需要叉开的角度AOB Ð应为120°,则AB 距离地面CD 的高为 cm .【变式10-1】(23-24八年级·广西玉林·期中)38.某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ^.测得A 处与E 处的距离为70m ,C 处与E 处的距离为35m ,90C Ð=°,30BAE Ð=°.(1)请求出旋转木马E 处到出口B 处的距离;(2)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.【变式10-2】(23-24八年级·河北廊坊·期末)39.如图,嘉琪想测量一座古塔CD 的高度,在A 处测得15CAD Ð=°,再往前行进60m 到达B 处,测得30CBD Ð=°,点 A ,B ,D 在同一条直线上,根据测得的数据,这座古塔CD 的高度为( )A .40mB .30mC .D .50m【变式10-3】(23-24八年级·山东济宁·期中)40.图①所示的是某超市入口的双翼闸门,如图②,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为7cm ,双翼的边缘80cm AC BD ==,且与闸机侧立面夹角30ACP BDQ Ð=Ð=°,求当双翼收起时,可以通过闸机的物体的最大宽度.1.(1)见解析(2)8【分析】本题考查了全等三角形的判定和性质、含30°角的直角三角形的性质、等边三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)证明ABE CAD V V ≌即可得证;(2)求出30PBQ Ð=°,再根据含30°角的直角三角形的性质即可得出答案.【详解】(1)证明:∵ABC V 为等边三角形,∴60AB AC BAC C =Ð=Ð=°,,在ABE V 和CAD V 中AB AC BAE ACD AE CD =ìïÐ=Ðíï=î,∴()SAS V V ≌ABE CAD ,∴BE AD =.(2)解:∵ABE CAD V V ≌,∴ABE CAD Ð=Ð,∴60BPQ ABP BAP CAD BAP BAC Ð=Ð+Ð=Ð+Ð=Ð=°,又∵BQ AD ^,∴90BQP Ð=°,∴18030PBQ BPQ BQP Ð=°-Ð-Ð=°,∴2BP PQ =,又∵4PQ =,∴8BP =.2.A【分析】由30度角的性质可求出26BC AB ==,然后利用等边三角形的性质求解即可.【详解】解:如图,∵CD AB ^,∴90CDB Ð=°.∵30BCD Ð=°,3BD =,∴26BC AB ==.∵ABC V 是等边三角形,∴ABC V 的周长为6318´=.故选A .【点睛】本题考查了等边三角形的性质,含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解答本题的关键.3.A【分析】本题主要考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;在直角三角形中30°角所对应的边是斜边的一半是解题的关键.根据题意可知60A Ð=°,在直角三角形ADE 中求得AD 的长,即可求得AC 的长.【详解】解:∵ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为点E .若3AE =,∴在直角三角形ADE 中,60A Ð=°,90AED Ð=°,30ADE Ð=°,∴26AD AE ==,又∵D 为AC 的中点,∴212AC AD ==,∴等边三角形ABC 的边长为12,故选:A .4.7.8【分析】此题主要考查了等边三角形的性质,熟练掌握等边三角形的性质,正确地作出辅助线,构造全等三角形和含有30°角的直角三角形是解决问题的关键.过点C 作CP AB ^于P ,根据60ABC Ð=°得120BAC BCA Ð+Ð=°,再根据等边三角形性质得AC CD =,60ACD Ð=°,则120DCE BCA Ð+Ð=°,由此得BAC DCE Ð=Ð,据此可依据“AAS ”判定APC △和CED △全等,从而得3AP CE ==,则 2.4BP AB AP =-=,进而在根据直角三角形性质得2 4.8BC BP ==,据此可得BE 的长.【详解】解:过点C 作CP AB ^于P ,如图所示:60ABC Ð=°Q ,180120BAC BCA ABC \Ð+Ð=°-Ð=°,ACD QV 为等边三角形,AC CD \=,60ACD Ð=°,180120DCE BCA ACD Ð+Ð=°-Ð=°Q ,BAC DCE \Ð=Ð,CP AB ^Q ,DE BC ^,90APC CED \Ð=Ð=°,在APC △和CED △中,90APC CED BAC DCEAC CD Ð=Ð=°ìïÐ=Ðíï=î,(AAS)APC CED \V V ≌,3AP CE \==,5.43 2.4BP AB AP \=-=-=,在Rt BCP △中,60ABC Ð=°,30BCP \Ð=°,22 2.4 4.8BC BP \==´=,4.837.8BE BC CE \=+=+=.故答案为:7.85.15【分析】本题考查了三角形中位线,含30°的直角三角形,平行线的性质,熟练掌握以上知识是解题的关键.过点F 作CD 的垂线,垂足为H ,先证明FH 为ABC V 的中位线,和45B HFA Ð=Ð=°,再根据直角三角形中30°所对的直角边为斜边的一半即可得出30FDH Ð=°,继而求出HFD Ð,以及AFD Ð的度数.【详解】过点F 作CD 的垂线,垂足为H ,如图:∵点F 恰好是线段AB 中点,FH AC ^,90BCA Ð=°,∴BC FH ∥,2BC FH =,∴45B HFA Ð=Ð=°,∵两块等腰直角三角板完全相同,∴BC FD =,∴2BC FD FH ==,∵90FHD Ð=°,∴30FDH Ð=°,∴60HFD Ð=°,∵45B HFA Ð=Ð=°,∴604515AFD HFD HFA Ð=Ð-Ð=°-°=°,故答案为:15.6.D【分析】本题主要考查了直角三角形的性质,垂线段最短,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握相关的性质.在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,根据含30度角的直角三角形的性质得出12ME CM =,根据()12222AM CM AM CM AM ME æö+=+=+ç÷èø,两点之间线段最短,且垂线段最短,得出当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,求出此时CAM Ð的度数即可.【详解】解:在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,如图所示:则12ME CM =,∴()12222AM CM AM CM AM ME æö+=+=+ç÷èø,∵两点之间线段最短,且垂线段最短,∴当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,∴当点E 在点F 时,2AM CM +最小,∵90AFC Ð=°,453075ACE ACB BCE Ð=Ð+Ð=°+°=°,∴=9075=15CAF а-°°,即此时15CAM Ð=°.故选:D .7.72【分析】过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,证明()Rt Rt HL DNC DMC V V ≌,得12DCM ACD Ð=Ð=°,求出ACB Ð的度数,则根据等腰三角形的内角和,可求出A Ð的度数.【详解】解:如图,过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,∵点D 在AC 的垂直平分线上,∴DN 垂直平分AC ,∴12NC AC =,∵AC BC =,∴12NC BC =,在Rt BMC △中,30DBC Ð=°,∴12CM BC =,∴CM CN =,在Rt DNC △和Rt DMC V 中,∵CD CD CN CM =ìí=î,∴()Rt Rt HL DNC DMC V V ≌,∴12DCM ACD Ð=Ð=°,∵30DBC Ð=°,∴60MCB Ð=°,∴6012236ACB Ð=°-°´=°,又∵AC BC =,∴()118036722A Ð=´°-°=°,故答案为:72.【点睛】本题考查了等腰三角形的性质,含30°角直角三角形的性质,全等三角形的判定与性质,解题时要熟知等腰三角形的两个底角相等,需要作辅助线,构建全等三角形,利用全等三角形的对应角相等.8.A【分析】根据题意分两种情况:AD 落在ABC V 内部和AD 落在ABC V 外部,然后分别根据等腰三角形的概念和三角形内角和定理求解即可.【详解】(1)当AD 落在ABC V 内部时,①如图,当AB AC =时,∵AD BC ^,12AD BC =,∴AD BD DC ==,即45C Ð=°.②如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30B Ð=°,∴()()11180180307522C B Ð=´°-Ð=´°-°=°③如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30C Ð=°.(2)当AD 落在ABC V 外部时,④当AB AC =时,此时不存在.⑤如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30ABD Ð=°,则11301522C ABD Ð=Ð=´°=°.⑥如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30ACD Ð=°,则18030150ACB Ð=°-°=°,即150C Ð=°.综上,C Ð的度数可能为15°,30°,45°,75°,150°,共5种可能,故选:A .【点睛】此题考查了等腰三角形的性质,含30°角直角三角形的性质,三角形内角和定理等知识,解题的关键是根据题意分情况讨论.9.D【分析】先根据30°角的直角三角形的性质得到12AB AC =,证明()SAS ABE ADE △≌△,再根据全等三角形的判定和性质定理即可得到结论.【详解】解:∵90ABC Ð=°,60BAC Ð=°,∴90906030C BAC Ð=°-Ð=°-°=°,∴12AB AC =,由题意得:AB AD =,AP 平分BAC Ð,∴BAE DAE Ð=Ð,在ABE V 与ADE V 中,AB AD BAE DAE AE AE =ìïÐ=Ðíï=î,∴()SAS ABE ADE △≌△,∴ABE ADE S S =△△,∵12AD AB AC ==,∴AD CD =,∴ADE CDE S S =V V ,∴3ABC CDE S S =△△,∴:1:3CDE ABC S S =△△.故选:D .【点睛】本题考查作图—基本作图,直角三角形两锐角互余,30°角的直角三角形,全等三角形的判定和性质,角平分线的定义,等底同高的三角形面积相等.掌握基本作图及全等三角形的判定和性质是解题的关键.10.A【分析】本题考查等边对等角,三角形的外角,含30度角的直角三角形,根据等边对等角结合三角形的外角,求出30ADC Ð=°,进而求出AC 的长,利用三角形的面积公式求出BCD △的面积即可.【详解】解:∵6,15BD CD DBC ==Ð=°,∴15DCB B Ð=Ð=°,∴30ADC B BCD Ð=Ð+Ð=°,∵90A Ð=°,∴132AC CD ==,∴BCD △的面积为1163922BD AC ×=´´=;故选A .11.B【分析】本题考查了直角三角形的性质,等角对等边,三角形的面积等知识,先求出30BAD CAD Ð=Ð=°,得出AD BD =, 从而1122CD AD BD ==,然后根据三角形面积公式可得结论.【详解】解:∵90,30C B Ð=°Ð=°,∴903060BAC Ð=°-°=°.∵AD 平分BAC Ð,∴1302BAD CAD BAC Ð=Ð=Ð=°,∴B BAD Ð=Ð,∴AD BD =, ∴1122CD AD BD ==,∴1211::2:122S S BD AC CD AC =××=.故选B .12.9【分析】根据旋转的性质得到11ABC A BC V V ≌,16A B AB ==,所以1A BA V 是等腰三角形,依据130A BA Ð=°得到等腰三角形的面积,由图形可以知道1111A BA A BC ABC A BA S S S S S =+-=V V V V 阴影,最终得到阴影部分的面积.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.【详解】解:在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,∴11ABC A BC V V ≌16A B AB \==,\1A BA V 是等腰三角形,130A BA Ð=°,如图,过1A 作1A D AB ^于D ,则11132A D AB ==,116392A BA S \=´´=△,又1111A BA A BC ABC A BA S S S S S =+-=V V V V Q 阴影,11A BC CBA S S =V V ,19A BA S S \==V 阴影.13.B【分析】本题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,证明(SAS)BCA MCE V V ≌,由全等三角形的性质得出BA ME =,90BAC MEC Ð=Ð=°,由直角三角形的性质可得出答案.【详解】解:如图,以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,MBC QV 和ACE △为等边三角形,BC CM \=,AC CE =,60BCM ACE Ð=Ð=°,BCA MCE \Ð=Ð,在BCA V 和MCE △中,BC MC BAC MCE AC CE =ìïÐ=Ðíï=î,(SAS)BCA MCE \V V ≌,BA ME \=,90BAC MEC Ð=Ð=°,906030AEF \Ð=°-=°,B Q 是直线l 的动点,M \在直线ME 上运动,MA \的最小值为AF ,4AE AC ==Q ,122AF AE \==.故选:B14.D【分析】题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】解∶∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP =,∴132PD OP ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH ==,∵点E 是射线OB 上的动点,∴PE 的最小值为3,故选:C .15.32【分析】取BC 的中点,连接MG ,根据等边三角形的性质和旋转可以证明MBG NBH V V ≌,可得MG NH =,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,进而根据30度角所对直角边等于斜边的一半即可求得线段HN 长度的最小值.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.【详解】解:如图,取BC 的中点,连接MG ,Q 线段BM 绕点B 逆时针旋转60°得到BN ,60MBH HBN \Ð+Ð=°,又ABC QV 是等边三角形,60ABC \Ð=°,即60MBH MBC Ð+Ð=°,HBN GBM \Ð=Ð,CH Q 是等边三角形的高,12BH AB \=,BH BG \=,又BM Q 旋转到BN ,BM BN \=,(SAS)MBG NBH \△≌△,MG NH \=,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,此时160302BCH Ð=´°=°,116322CG BC ==´=,1322MG CG \==,32HN \=.\线段HN 长度的最小值是32.故答案为:3216.D 【分析】此题考查了全等三角形的判定即性质,等腰三角形的三线合一的性质,角平分线的性质,含30度角的直角三角形的性质.作DM AB ^于M ,作DN AC ^于N ,证明()ASA MDE NDC V V ≌,推出DE DC =,再证明()SAS EDF CDF V V ≌,推出EF CF =,得到当CF AB ^时CF 有最小值,即EF 有最小值,由30BAC Ð=°,4AC =,求出CF .【详解】解:作DM AB ^于M ,作DN AC ^于N ,AB AC =Q , AG BC ^,AG \平分BAC Ð,即AD 平分BAC Ð,DM AB ^Q ,DN AC ^,DM DN \=,30BAC Ð=°Q ,90AMD AND Ð=Ð=°,150MDN Ð\=° ,150CDE Ð=°Q ,150MDE CDM ÐÐ\=°- NDC Ð=,(ASA MDE NDC \V V ≌),DE DC \=,DF Q 平分CDE Ð,EDF CDF \Ð=Ð,连接CF ,DF DF =Q ,()SAS EDF CDF \V V ≌,EF CF \=,\当CF AB ^时CF 有最小值,即EF 有最小值,此时,30BAC Ð=°Q ,4AC =,\122CF AC ==,故选:D .17.()4,0【分析】本题主要考查了含30度角直角三角形的特征,解题的关键是掌握含30度角的直角三角形,30度角所对的边是斜边的一半.过点A 作x 轴的垂线,垂足为点C ,先得出30OAC Ð=°,则22OA OC ==,进而得出24OB OA ==,即可解答.【详解】解:过点A 作x 轴的垂线,垂足为点C ,∵Rt OAB V 中30ABO Ð=°,∴60AOB Ð=°,∵AC OB ^,∴30OAC Ð=°,∵点A 的横坐标为1,∴1OC =,∴22OA OC ==,∵30ABO Ð=°,∴24OB OA ==,∴点B 的坐标为()4,0,故答案为:()4,0.18.()90,【分析】本题考查了坐标与图形,等边三角形的性质,含30度角的直角三角形的性质.利用等边三角形的性质求得AB 的长,再利用含30度角的直角三角形的性质求得AD 的长,继而求得OD 的长,即可求解.【详解】解:∵ABC V 是等边三角形,且BO AC ^,∴60AO OC BAC =Ð=°,,∵()30A -,,∴3AO =,∴26AB AC AO ===,∵BD AB ^,∴90ABD Ð=°,∴30ADB Ð=°,∴212AD AB ==,∴9OD AD OA =-=,∴点D 的坐标为()90,.故答案为:()90,.19.A【分析】如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,证明OMQ V 是等边三角形,得到60QOM OQ OM =°=∠,,推出30NOQ Ð=°;由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,由此即可得到答案.【详解】解:如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,∴OMQ V 是等边三角形,∴60QOM OQ OM =°=∠,,∴30NOQ Ð=°,∵点M 的坐标为()30,,∴3OQ OM ==,由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,∴1322OK NQ OQ ===最小值最小值,故选A .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,坐标与图形,含30度角的直角三角形的性质,正确作出辅助线是解题的关键.20.202112【分析】此题主要考查了点的坐标,等边三角形的性质,直角三角形的性质,熟练掌握等边三角形的性质,理解在直角三角形中, 30°的角所对的边等于斜边的一半是解决问题的关键.首先根据点A 的坐标及等边三角形的性质得111,60,OA OA AOA ==Ð=°进而得1130,A OO Ð=°再根据直角三角形的性质得 11111,22A O OA ==点1A 的纵坐标为 12,依次类推得到点n A 的纵坐标为 12næöç÷èø即可解题.【详解】∵点A 的坐标是()0,1,1OAA V 是等边三角形,111,60OA OA AOA \==Ð=°,1111906030A OO AOO AOA \Ð=Ð-Ð=°-°=°,11A O x ^Q 轴,∴在11Rt A OO V 中, 1130,A OO Ð=°则 1111122A O OA ==,∴点1A 的纵坐标为 12,同理:2221111,22A O A O æö==ç÷èø 3332211,22A O A O æö==ç÷èø 4443311,22A O A O æö==ç÷èø...,以此类推, 12n n n A O æö=ç÷èø,∴点2A 的纵坐标为 21,2æöç÷èø点 A ₃的纵坐标为31,2æöç÷èø点 A ₄的纵坐标为 41,2æöç÷èø……,以此类推,点n A 的纵坐标为 12n æöç÷èø,∴点 2021A 的纵坐标为 202120211122æö=ç÷èø.故答案为: 202112.21.(1)见解析(2)见解析【分析】(1)根据尺规作一条线段垂直平分线的方法,进行作图即可;(2)过D 点作DE AB ^于E 点,连接DN ,由角平分线的性质和定义得到1152BAD BAC ==°∠,DC DE =,再由线段垂直平分线的性质得到NA ND =,进而得到30DNE NDA NAD Ð=Ð+Ð=°,则12DE DN =,由此即可证明结论.【详解】(1)解:如图,MN 为所求作的线段AD 的垂直平分线;(2)证明:过D 点作DE AB ^于E 点,连接DN ,∵30BAC Ð=°,AD 平分BAC Ð,DC AC ^,DE AB ^,∴1152BAD BAC ==°∠,DC DE =,∵MN 是AD 的垂直平分线,∴DN AN =,∴15NDA NAD Ð=Ð=°,∴30DNE NDA NAD Ð=Ð+Ð=°,在Rt DNE △中,12DE DN =,∵DN AN =,DC DE =,∴12CD AN =.【点睛】本题主要考查了,尺规作一条线段的垂直平分线,角平分线的性质,含30度角的直角三角形的性质,线段垂直平分线的性质,等边对等角,三角形外角的性质,解题的关键是作出辅助线,熟练掌握相关的性质.22.(1)90BCE °Ð=;(2)证明见解析.【分析】(1)证明ECD EAD V V ≌,可得A ECD Ð=Ð,设B x Ð=,可得2BEC x Ð=,得出23180x x x ++=°,解得30x =°,则BCE Ð可求出;(2)由直角三角形的性质可得2BE CE =,AE CE =,则结论可得出.【详解】(1)解: Q 点D 是AC 边的中点,DE AC ^,90EDC EDA \Ð=Ð=°,DC DA =,ED ED =Q ,()SAS ECD EAD \V V ≌,A ECD \Ð=Ð,设B x Ð=,∵AC BC =,B A x \Ð=Ð=,2BEC A ECA x \Ð=Ð+Ð=,4ACB B Ð=ÐQ ,3BCE x \Ð=,180B BEC BCE Ð+Ð+Ð=°Q ,23180x x x \++=°,解得30x =°,90BCE \Ð=°;(2)解:30B Ð=°Q ,90BCE Ð=°,2BE CE \=,CE AE =Q ,3AB BE AE CE \=+=.【点睛】考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,三角形内角和定理等知识.熟练掌握运用基础知识是解题的关键.23.(1)2cm(2)等边三角形,理由见解析【分析】本题主要考查线段垂直平分线的性质、含30°角的直角三角形,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.(1)连接BE ,由垂直平分线的性质可求得30CBE ABE A Ð=Ð=Ð=°,在Rt BCE V 中,由直角三角形的性质可证得2BE CE =,则可得出结果;(2)由垂直平分线的性质可求得AD BD =,根据含30°角的直角三角形可得12BC AB =,因此BCD △为等腰三角形,进一步由题意可知60ABC Ð=°,即可证明BCD △为等边三角形.【详解】(1)解:如图,连接BE ,DE Q 是AB 的垂直平分线,AE BE \=,30ABE A \Ð=Ð=°,30CBE ABC ABE \Ð=Ð-Ð=°,在Rt BCE V 中,2BE CE =,2AE CE \=,6cm AC =Q ,2cm CE \=.(2)BCD △是等边三角形,理由如下:连接CD ,DE Q 垂直平分AB ,∴D 为AB 中点,AD BD \=,在Rt ABC △中,30A Ð=°,12BC AB =∴,AD BD BC \==,又60ABC Ð=°Q ,∴BCD △是等边三角形.24.见详解【分析】根据全等三角形的判定定理SAS 可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到30PBQ Ð=°,根据直角三角形的性质即可得到.本题考查了全等三角形的判定与性质、等边三角形的性质以及含30度角直角三角形的性质,熟记全等三角形的判定与性质是解题的关键.【详解】解:ABC QV 为等边三角形.AB AC \=,60BAC ACB Ð=Ð=°,在BAE V 和ACD V 中,AE CD BAC ACB AB AC =ìïÐ=Ðíï=î,(SAS)BAE ACD \V V ≌,ABE CAD \Ð=Ð,BPQ ÐQ 为ABP V 外角,60BPQ BAD ABE CAD BAD BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,BQ AD ^Q ,30PBQ \Ð=°,2BP PQ \=.25.B【分析】根据折叠的性质可得,BF FD =,CG GD =,即12FG BC =,再由30°角所对的直角边是斜边的一半,即可求解,本题考查了折叠的性质,含30°角的直角三角形的性质,解题的关键是:熟练掌握折叠的性质.【详解】解:由折叠可知,BF FD =,CG GD =,12FG BC \=,在ABC V 中,90BAC Ð=°,4AB =,30C Ð=°,2248BC AB \==´=,118422FG BC \==´=,故选:B .26.C【分析】本题主要考查了折叠的性质,含30°角的直角三角形的直角.理解直角三角形中30°角所对边是斜边的一半是解题的关键.【详解】解:根据折叠的性质6cm DE EC ==,90EDB C Ð=Ð=°,∴90EDA Ð=°,∵30A Ð=°,∴212cm AE DE ==,∴18cm AC AE EC =+=,故选C .27.6【分析】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.由折叠的性质及矩形的性质得到OE 垂直平分AC ,得到AE EC =,根据AB 为AC 的一半确定出30ACE Ð=°,进而得到OE 等于EC 的一半,求出EC 的长,即为AE 的长.【详解】解:由题意得:AB AO CO ==,即2AC AB =,且OE 垂直平分AC ,AE CE \=,30ACB Ð=°,在Rt OEC △中,30OCE Ð=°,12OE EC BE \==,3BE =Q ,3OE \=,6EC =,则6AE =,故答案为:6.28.4【分析】本题考查了折叠的性质,平行四边形的性质,三角形内角和定理,含30°的直角三角形.解题的关键在于对知识的熟练掌握与灵活运用.由折叠的性质与题意可得,=90ACD а,由ABCD Y ,可知260BC AD CD AB D B ===Ð=Ð=°,,,则18030CAD ACD D Ð=°-Ð-Ð=°,24AD CD ==,进而可求BC 的值.【详解】解:由折叠的性质可得,=90ACD а,∵ABCD Y ,∴260BC AD CD AB D B ===Ð=Ð=°,,,∴18030CAD ACD D Ð=°-Ð-Ð=°,∴24AD CD ==,∴4BC =,故答案为:4.29.(1)60(2)30cm【分析】本题主要考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握旋转的性质.(1)根据90C Ð=°,30ABC Ð=°,求出903060BAC Ð=°-°=°,即可求出结果;(2)根据直角三角形的性质得出210cm AB AC ==,根据旋转得出60BAB ¢Ð=°,AB AB ¢=,证明ABB ¢V 是等边三角形,求出结果即可.【详解】(1)解:∵在ABC V 中,90C Ð=°,30ABC Ð=°,∴903060BAC Ð=°-°=°,根据旋转可知:60BAB BAC a =Ð=Ð=¢°;(2)解:∵90C Ð=°,30ABC Ð=°,5cm AC =,∴()22510cm AB AC ==´=,∵将ABC V 绕点A 逆时针旋转a 角度至AB C ¢¢△的位置,∴60BAB ¢Ð=°,AB AB ¢=,∴ABB ¢V 是等边三角形,∴ABB ¢V 的周长是()331030cm AB =´=.30.4【分析】由直角三角形的性质可得24AC AB ==,由旋转的性质可得4AE AC ==.本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是解题的关键.【详解】解:90B Ð=°Q ,30C Ð=°,24AC AB \==,Q 将ABC V 绕点A 旋转得到ADE V ,4AE AC \==,故答案为:431.4【分析】本题考查了旋转的性质,含30度角的直角三角形的性质,根据题意得出2AC =,进而根据旋转的性质,即可求解.【详解】在Rt ABC △中,1AB =,30C Ð=°,∴22AC AB ==.。

初中数学专题复习等腰三角形与直角三角形

初中数学专题复习等腰三角形与直角三角形

初中数学专题复习等腰三角形与直角三角形在初中数学的学习中,等腰三角形和直角三角形是两个非常重要的几何图形。

它们具有独特的性质和定理,在解决数学问题时经常会用到。

下面我们就来对这两个图形进行一次系统的复习。

一、等腰三角形1、定义有两边相等的三角形叫做等腰三角形。

相等的两条边称为腰,另一边称为底边。

两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

2、性质(1)等腰三角形的两个底角相等(简写成“等边对等角”)。

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。

3、判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

(2)有两条边相等的三角形是等腰三角形。

4、等腰三角形中的常见计算(1)已知等腰三角形的顶角,求底角:底角=(180°顶角)÷ 2 。

(2)已知等腰三角形的底角,求顶角:顶角= 180° 2×底角。

5、等腰三角形的周长和面积(1)周长:等腰三角形的周长=腰长× 2 +底边。

(2)面积:通常可以通过作底边的高,将等腰三角形分成两个直角三角形,然后利用三角形面积公式 S = 1/2×底×高来计算。

二、直角三角形1、定义有一个角为 90°的三角形叫做直角三角形。

2、性质(1)直角三角形的两个锐角互余。

(2)直角三角形斜边上的中线等于斜边的一半。

(3)在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。

(4)勾股定理:直角三角形两直角边的平方和等于斜边的平方。

3、判定(1)如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

(2)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。

4、直角三角形中的常见计算(1)已知直角三角形的两条直角边 a、b,求斜边 c:c =√(a²+b²) 。

如何求解等腰直角三角形的斜边

如何求解等腰直角三角形的斜边

如何求解等腰直角三角形的斜边等腰直角三角形是一类经典的三角形,它的两条腰(两条等长的边)相等,且其中一条腰与斜边(也就是直角边)垂直相交。

求解等腰直角三角形的斜边可以通过几何方法或三角函数方法进行计算。

本文将介绍两种常用的求解方法。

一、几何方法要求解等腰直角三角形的斜边,我们首先需要明确已知条件,即已知等腰直角三角形的腰的长度。

假设等腰直角三角形的腰的长度为a,则根据等腰直角三角形的性质可知斜边的长度等于a√2。

这是因为在等腰直角三角形中,斜边与腰形成45度角,根据直角三角形的特性,斜边的长度等于直角边长度乘以√2。

因此,通过几何方法,我们可以得出等腰直角三角形的斜边的长度为a√2。

二、三角函数方法除了几何方法,我们还可以利用三角函数来求解等腰直角三角形的斜边。

在等腰直角三角形中,斜边与腰形成45度角,所以我们可以利用正弦函数、余弦函数或正切函数中的一个来计算斜边的长度。

以正弦函数为例,假设等腰直角三角形的腰的长度为a,则根据正弦函数的定义可知:sin(45°) = 斜边长 / 腰长由于正弦45°的值等于√2/2,腰长为a,我们可以得出:√2/2 = 斜边长 / a通过变形,可以得出斜边长为a√2,结果与几何方法中的计算结果相同。

综上所述,我们可以利用几何方法或三角函数方法来求解等腰直角三角形的斜边。

几何方法通过已知腰的长度得到斜边的长度为a√2,而三角函数方法则利用正弦函数、余弦函数或正切函数来计算斜边的长度,得到的结果也是a√2。

对于数学爱好者来说,掌握这些求解等腰直角三角形斜边的方法将有助于更好地理解和应用三角函数的概念和性质。

直角三角形等腰直角三角形斜边直线专题

直角三角形等腰直角三角形斜边直线专题

直角三角形、斜边中线、等腰直角三角形专题一、直角三角形的性质1.一块直角三角板放在两平行直线上,如图,∠1+∠2=度.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG 平分∠DAC,求证:①∠BAD=∠C;②∠AEF=∠AFE;③AG⊥EF.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角有4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:△APQ是等腰直角三角形.二、含30°角的直角三角形的性质5.在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E 两点.若BD=2,求AD的长6.如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,求PD的长7.如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,求∠EDC的度数8.如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E 在BA的延长线上,且ED=EC,若AE=2,求AF的长9.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,求CD的长10.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,求证:(1)CD=DE;(2)AC=BE;(3)BD=2CD;三、直角三角形斜边中线问题11.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,求证:△PMN为等边三角形;12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.13.如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,求AC的长14.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值15.如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC上,AD=BD,E为AB的中点,AD、CE相交于点F,求∠DFE等于多少16.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,求∠ACB′=.17.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,求BC的长度.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB 于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形?证明你的猜想.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.四、等腰直角三角形问题21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE的中点,求证:AF⊥DF,AF=DF.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD 于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.24.如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立?请说明理由.25.已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;=S△BDE+S△CDF;(2)求证:S四边形AEDF(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF 还仍然是等腰直角三角形吗?请画图说明理由.26.△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.27.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗?(填“可能”或“不可能”).直角三角形斜边中线等腰直角三角形专题参考答案与试题解析1.【解答】解:如图,∠1=∠3,∠2=∠4(对顶角相等),∵∠3+∠4=90°,∴∠1+∠2=90°.故答案为:90.【点评】本题考查了直角三角形两锐角互余的性质,对顶角相等,熟记性质是解题的关键.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG 平分∠DAC,给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.其中正确的结论是()A.②③④B.①③④C.①②④D.①②③【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【解答】解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选C.【点评】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据已知条件CD,BE是两条高可知:∠A+∠DCA=90°,∠ABE+∠BHD=90°,∠A+∠ABE=90°,∠CHE+∠HCE=90°,再根据同角的余角相等即可得到答案.【解答】解:∵CD⊥AB,∴∠CDA=∠BDH=90°,∴∠A+∠DCA=90°,∠ABE+∠BHD=90°,∵BE⊥AC,∴∠A+∠ABE=90°,∠CHE+∠HCE=90°,∴∠A=∠BHD=∠CHE,故选:B.【点评】此题主要考查了直角三角形的性质,关键是根据垂直得到有哪些角互余.4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.【分析】利用BE、CF都是△ABC的高,求证∠1=∠2,然后求证△ACQ≌△PBA,利用AQ=AP,AQ⊥AP,即可证明△APQ是等腰直角三角形.【解答】解:△APQ是等腰直角三角形.∵BE、CF都是△ABC的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2又∵AC=BP,CQ=AB,在△ACQ和△PBA中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ是等腰直角三角形【点评】此题考查学生对全等三角形的判定和性质和等腰直角三角形的理解和掌握,难度不大,属于基础题.5.(2016秋•泰山区期中)在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AD的长是()A.3 B.4 C.5 D.4.5【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,解答即可.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∵BD=2,∴AD=4,故选B【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.(2016秋•大丰市月考)如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,则PD等于()A.4 B.3 C.2 D.1【分析】过点P作PE⊥OB于E,根据两直线平行,内错角相等可得∠AOP=∠COP,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠COP,∴∠PCE=∠BOP+∠COP=∠BOP+∠AOP=∠AOB=30°,又∵PC=6,∴PE=PC=3,∵AOP=∠BOP,PD⊥OA,∴PD=PE=3,故选B.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含30°的直角三角形是解题的关键.7.(2015春•兰溪市期末)如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30°B.75°C.45°D.15°【分析】根据矩形性质得出∠C=∠ABC=90°,AB=CD,DC∥AB,推出AE=2AB,得出∠AEB=30°=∠DAE,求出∠EDC的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABC=90°,AB=CD,DC∥AB,∵AB=AD,E为BC上的一点,且AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠AEB=∠DAE=30°,∵AE=AD,∴∠ADE=∠AED=(180°﹣∠EAD)=75°,∵∠ADC=90°,∴∠EDC=90°﹣75°=15°,故选D.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数,题目比较好,是一道综合性比较强的题目.8.(2013春•重庆校级期末)如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E在BA的延长线上,且ED=EC,若AE=2,则AF的长为()A.B.2 C.+1 D.3【分析】过点E作EH∥AC交BC的延长线于H,证明△ABH是等边三角形,求出CH,得到BD的长,根据直角三角形的性质求出BF,计算即可.【解答】解:过点E作EH∥AC交BC的延长线于H,∴∠H=∠ACB=60°,又∠B=60°,∴△EBH是等边三角形,∴EB=EH=BH,∴CH=AE=2,∵ED=EC,∴∠EDC=∠ECD,又∠B=∠H,∴∠BED=∠HEC,在△BED和△HEC中,,∴△BED≌△HEC,∴BD=CH=2,∴BA=BC=4,BF=BD=1,∴AF=3.故选:D.【点评】本题考查的是等边三角形的性质、直角三角形的性质以及等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半、等边三角形的三个角都是60°是解题的关键.9.(2012春•古冶区校级期中)如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2 B.3 C.1 D.1.5【分析】在Rt△AEC中,由于=,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【解答】解:在Rt△AEC中,∵=,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=AD=2.故选A.【点评】本题利用了:(1)直角三角形的性质;(2)三角形内角和定理;(3)等边对等角的性质.10.(2012秋•包河区期末)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,以下结论(1)CD=DE;(2)AC=BE;(3)BD=2CD;(4)DE=AC中,正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据角平分线的性质可得CD=DE,AC=BE,结合含30°角的直角三角形的性质可得BD=2CD,而AC和BD不一定相等,所以可得出答案.【解答】解:∵∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB,∴DC=DE,∠ADC=∠ADE=60°,∴AD平分∠CDE,∴AC=AE,在Rt△BDE中,∠B=30°,∴BD=2DE=2CD,在Rt△ADE中,DE=AE=AC,∴正确的有(1)、(2)、(3),故选C.【点评】本题主要考查角平分线的性质及含30°角的直角三角形的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.11.(2015秋•江阴市期中)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN 为等边三角形;下面判断正确是()A.①正确B.②正确C.①②都正确D.①②都不正确【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断②正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;所以①②都正确.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键.12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.【分析】(1)根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2)根据三角形内角和定理求出∠ABC+∠ACB=120°,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出∠ABC=∠BDM,∠ACB=∠CEM,根据三角形内角和定理求出即可;(3)求出EM=EN,解直角三角形求出∠EMD度数,根据三角形的内角和定理求出即可.【解答】解:(1)∵CD,BE分别是AB,AC边上的高,∴∠BDC=∠BEC=90°,∵M是线段BC的中点,BC=8,∴DM=BC=4,EM=BC=4,∴△DME的周长是DE+EM+DM=3+4+4=11;(2)证明:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠BDC=∠BEC=90°,M是线段BC的中点,∴DM=BM,EM=CM,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠EMC+∠DMB=∠ABC+∠ACB=120°,∴∠DME=180°﹣120°=60°;(3)解:过M作MN⊥DE于N,∵DM=EM,∴EN=DN=DE,∠ENM=90°,∵EM=DM=BC,DN=EN=DE,BC2=2DE2,∴(2EM)2=2(2EN)2,∴EM=EN,∴sin∠EMN==,∴∠EMN=45°,同理∠DMN=45°,∴∠DME=90°,∴∠DMB+∠EMC=180°﹣90°=90°,∵∠ABC=∠BDM,∠ACB=∠CEM,∴∠ABC+∠ACB=(180°﹣∠DMB+180°﹣∠EMC)=135°,∴∠BAC=180°﹣(∠ABC+∠ACB)=45°.【点评】本题考查了等腰三角形的判定和性质,三角形的内角和定理,解直角三角形的性质,直角三角形斜边上中线性质的应用,能综合运用性质进行推理是解此题的关键,本题综合性比较强,有一定的难度,注意:直角三角形斜边上的中线等于斜边的一半.13.(2014春•永川区校级期中)如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A.3 B.4 C.5 D.6【分析】连结AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.【解答】解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故选B.【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF⊥BD是解题的关键.14.(2011秋•姜堰市期末)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC 上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.2 B.2.4 C.2.6 D.3【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.【解答】解:连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CBA,∴=,∴=,∴AP最短时,AP=4.8∴当AM最短时,AM==2.4.故选B.【点评】此题主要考查学生对相似三角形判定与性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定的拔高难度,属于中档题.15.(2010•武隆县模拟)如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC上,AD=BD,E为AB的中点,AD、CE相交于点F,∠DFE等于()A.40°B.50°C.60°D.70°【分析】根据已知得,∠BAC=70°,∠BAD=∠B,再根据直角三角形斜边上的中线等于斜边的一半,得出∠ECB=∠B,从而得出∠ACE,再由三角形的内角和定理得∠AFC,根据对顶角相等求出答案.【解答】解:∵∠ACB=90°,∠B=20°,∴∠BAC=70°,∵AD=BD,∴∠BAD=∠B=20°,∴∠DAC=50°,∵E为AB的中点,∴BE=CE,∴∠ECB=∠B=20°,∴∠ACE=70°,在△ACF中,∠ACF+∠AFC+∠FAC=180°,∴∠AFC=60°,∵∠DFE=∠AFC=60°(对顶角相等),故选C.【点评】本题考查了等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半,是基础知识要熟练掌握.16.(2016•江岸区模拟)如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=10°.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17.(2016秋•嵊州市期末)如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,则BC的长度为2.【分析】由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得BC的长.【解答】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=2DE=2×5=10,∵AE=8,∴BE==6.∴BC===2,故答案为:2.【点评】此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.【分析】连接EO,首先根据平行四边形的性质可得AO=CO,BO=DO,即O为BD 和AC的中点,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论.【解答】证明:连接EO,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD.【点评】此题主要考查了平行四边形的性质,直角三角形斜边上的中线,关键是掌握直角三角形斜边上的中线等于斜边的一半.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB 于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形?证明你的猜想.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM=CM=BM,由等腰三角形到性质得到∠CAB=∠ACM,由余角的性质得到∠CAB=∠BCH,等量代换得到∠BCH=∠ACM,根据角平分线的性质得到∠ACD=∠BCD,即可得到结论;(2)根据EM⊥AB,CH⊥AB,得到EM∥AB,由平行线的性质得到∠HCD=∠MED,由于∠HCD=∠MCD,于是得到∠MCD=∠MED,即可得到结论;(3)根据CM=EM AM=CM=BM,于是得到EM=AM=BM,推出△AEB是直角三角形,由于EM垂直平分AB,得到EA=EB于是得到结论.【解答】证明:(1)Rt△ABC中,∠ACB=90°,∵M是AB边的中点,∴AM=CM=BM,∴∠CAB=∠ACM,∴∠CAB=90﹣∠ABC,∵CH⊥AB,∴∠BCH=90﹣∠ABC,∴∠CAB=∠BCH,∴∠BCH=∠ACM,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ACD﹣∠ACM=∠BCD﹣∠BCH,即∠1=∠2;(2)∵EM⊥AB,CH⊥AB,∴EM∥CH,∴∠HCD=∠MED,∵∠HCD=∠MCD,∴∠MCD=∠MED,∴CM=EM;(3)△AEB是等腰直角三角形,∵CM=EM AM=CM=BM,∴EM=AM=BM,∴△AEB是直角三角形,∵EM垂直平分AB,∴EA=EB,∴△AEB是等腰三角形,∴△AEB是等腰直角三角形.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,线段垂直平分线的性质,等腰三角形的性质,熟练掌握各定理是解题的关键.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.【分析】连接BM、CN,根据等腰三角形三线合一得到∠BMC=90°,根据直角三角形的性质得到MP=BC,同理NP=BC,得到答案.【解答】证明:连接BM、CN,∵BA=BD,DM=MA,∴BM⊥AD,∴∠BMC=90°,又BP=PC,∴MP=BC,同理,NP=BC,∴MP=NP,∴△PMN是等腰三角形.【点评】本题考查的是直角三角形的性质和等腰三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半、等腰三角形三线合一是解题的关键.21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE的中点,求证:AF⊥DF,AF=DF.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AF=BF=AE,DF=BF=AE,再根据等边对等角可得∠ABF=∠BAF,∠DBF=∠BDF,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AFD=2∠ABC,再根据等腰直角三角形的性质求解即可.【解答】证明:∵∠CAB=∠CDE=90°,F为BE的中点,∴AF=BF=AE,DF=BF=AE,∴AF=DF,∴∠ABF=∠BAF,∠DBF=∠BDF,由三角形的外角性质得,∠AFD=∠ABF+∠BAF+∠DBF+∠BDF=2∠ABC,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠AFD=90°,∴AF⊥DF,综上所述,AF⊥DF,AF=DF.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD 于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.【分析】延长FE交AC于点G,利用角平分线的性质可知EG=ED,然后证明△CEG ≌△FED,得出CE=FE,利用等腰三角形的性质,平行线的性质即可求出∠ECF=∠BCF.【解答】解:延长FE交AC于点G,∵DE=DF,CD是斜边AB上的高,∴∠DEF=45°,∵∠DCB=45°,∴EF∥BC,∴∠EFC=∠FCB,∠CGF=90°,∵AE平分∠CAB,∠CGF=∠BDC=90°,∴GE=DE,在△CGE与△FDE中,,∴△CGE≌△FDE(ASA),∴CE=FE,∴∠ECF=∠EFC,∴∠ECF=∠BCF,∴CF平分∠DCB.【点评】本题考查等腰三角形的性质,涉及全等三角形的性质与判定,等腰直角三角形的性质,平行线的判定与性质等知识点,综合程度较高.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.【分析】由△OBD和△OCA是等腰直角三角形得到∠ACB=∠ADB=90°,∠OBD=45°,由M为AB的中点,根据直角三角形斜边上的中线性质得到DM=AM=BM,CM=AM=BM,则CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,理由三角形外角性质得∠AMD=2∠MBD,∠AMC=2∠MBC,则∠AMD﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,于是可得到△CDM为等腰直角三角形.【解答】解:△CDM为等腰直角三角形.理由如下:∵△OBD和△OCA是等腰直角三角形,∴∠ACB=∠ADB=90°,∠OBD=45°,而M为AB的中点,∴DM=AM=BM,CM=AM=BM,∴CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,∴∠AMD=2∠MBD,∠AMC=2∠MBC,∴∠AMD﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,即∠CMD=90°,∵CM=DM,∴△CDM为等腰直角三角形.同理可得:第2个图中△CDM为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质和直角三角形斜边上的中线性质、三角形外角的性质,灵活利用直角三角形的斜边上的中线的性质是关键.24.(2010•渝中区模拟)如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立?请说明理由.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,求出BM=EN=MC,DM=EM=MC,然后根据等边对等角的性质可以证明∠BMD=90°,所以△BMD为等腰直角三角形;(2)延长DM交BC于N,先根据∠EDB=∠ABC=90°证明ED∥BC,然后根据两直线平行,内错角相等求出∠DEM=∠MCN,从而证明△EDM与△MNC全等,根据全等三角形对应边相等可得DM=MN,然后即可证明BM⊥DM,且BM=DM.【解答】(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.(2分)同理可证:DM=EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA=90°,(4分)∴BM=DM.∴△BMD是等腰直角三角形.(5分)(2)(1)题中的结论仍然成立.理由:延长DM与BC交于点N,(6分)∵DE⊥AB,CB⊥AB,∴∠EDB=∠CBD=90°,∴DE∥BC.∴∠DEM=∠MCN.又∵∠EMD=∠NMC,EM=MC,∴△EDM≌△MNC.(8分)∴DM=MN.DE=NC=AD.又AB=BC,∴AB﹣AD=BC﹣CN,∴BD=BN.∴BM⊥DM.即∠BMD=90°.(9分)∵∠ABC=90°,∴BM=DN=DM.∴△BMD是等腰直角三角形.(10分)【点评】本题主要考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握判定定理及性质并灵活运用是解题的关键,难度中等.25.(2011秋•昌平区校级期中)已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;(2)求证:S=S△BDE+S△CDF;四边形AEDF(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF 还仍然是等腰直角三角形吗?请画图说明理由.【分析】(1)连接AD,根据等腰直角三角形的性质可得AD⊥BC,AD=BD,∠1=45°,从而得到∠1=∠B,再根据同角的余角相等求出∠2=∠4,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证;(2)同理求出△ADE和△CDF全等,根据全等三角形的面积相等即可得证;(3)依然成立,连接AD,根据等腰直角三角形的性质可得AD=BD,∠CAD=45°,再根据等角的补角相等求出∠DAF=∠DBE,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证.【解答】(1)证明:如图,连接AD,∵∠A=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∴∠1=∠B=45°,∵∠EDF=90°,∴∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形;(2)解:同理可证,△ADE≌△CDF,所以,S=S△ADF+S△ADE=S△BDE+S△CDF,四边形AEDF=S△BDE+S△CDF;即S四边形AEDF(3)解:仍然成立.如图,连接AD,∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∵∠DAF=180°﹣∠1=180°﹣45°=135°,∠DBE=180°﹣∠ABC=180°﹣45°=135°,∴∠DAF=∠DBE,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质,全等三角形判定与性质,作辅助线构造出全等三角形是解题的关键.26.(2016•汕头校级自主招生)△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.【分析】(1)欲证明∠FAB=∠FBA,由△ADF≌△BDF推出AF=BF即可解决问题.(2)①根据条件画出图形即可.②数量关系是:GD+AE=BE.过点D作DH⊥DE交BE于点H,先证明△ADE≌△BDH,再证明四边形GEHD是平行四边形即可解决问题.【解答】证明:(1)如图1中,∵AD⊥BC,∠ABC=45°,∴∠BAD=45°,∴AD=BD,∵DF平分∠ADB,∴∠1=∠2,在△ADF和△BDF中,,∴△ADF≌△BDF.∴AF=BF,∴∠FAB=∠FBA.(2)补全图形如图2中所示,数量关系是:GD+AE=BE.理由:过点D作DH⊥DE交BE于点H∴∠ADE+∠ADH=90°,∵AD⊥BC,∴∠BDH+∠ADH=90°,∴∠ADE=∠BDH,∵AD⊥BC,BE⊥AC,∠AKE=∠BKD,∴∠DAE=∠DBH,在△ADE和△BDH中,,∴△ADE≌△BDH.∴DE=DH,AE=BH,∵DH⊥DE,∴∠DEH=∠DHE=45°,∵BE⊥AC,∴∠DEC=45°,∵点G与点D关于直线AC对称,∴AC垂直平分GD,∴GD∥BE,∠GEC=∠DEC=45°,∴∠GED=∠EDH=90°,∴GE∥DH,∴四边形GEHD是平行四边形∴GD=EH,∴GD+AE=BE.【点评】本题考查三角形综合题、全等三角形的判定和性质、平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是熟练正确全等三角形判定方法,学会添加常用辅助线,构造全等三角形以及特殊四边形解决问题,属于中考常考题型.27.(2016春•东港市期末)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是AD=CF;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗?不可能(填“可能”或“不可能”).【分析】(1)根据等腰直角三角形的性质得到∠CBA=∠CAB=45°,根据平行线的性质得到∠FBE=∠CAB=45°,根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质定理得到答案;(3)根据线段垂直平分线的性质得到AD=AF,等量代换即可;(4)根据直角三角形的直角边小于斜边解答.【解答】(1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,,∴△ACD≌△CBF;(2)∵△ACD≌△CBF,∴AD=CF,故答案为:AC=BF;(3)连接AF,∵DF⊥AE,DE=EF,∴AD=AF,∵AD=CF,∴AF=CF,∴△ACF是等腰三角形;(4)在Rt△ACF中,AC<AD,∴AC<AF,∴△ACF不可能是等边三角形,故答案为:不可能.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、等腰三角形的判定以及等边三角形的判定,掌握相关的判定定理和性质定理是解题的关键.。

等腰直角三角形中的共斜边问题1

等腰直角三角形中的共斜边问题1
等腰直角三角形中的共斜边问题1
学 霸 数 学
问题1 等腰RtABC,AB=AC,BAC=BDC=900,求证:ADB=450
C




B
G
D
A
等腰RtABC,AB=AC,BAC=BDC=900,求证:ADB=450
方法1


M

学B
C
在BD上取一点M,使BM=CD
Q ABD AGB=900,GCD CGD=900
D
CGD=AGB ABG=GCD
Q AB=AC,AEB=AFC
F四A边BE形AEADCFF为正方形
ADB=450
等腰RtABC,AB=AC,BAC=BDC=900,求证:ADB=450
方法3
学 霸 数 学B
C GD
A
延长BD至H,使AH=AB Q ABD AGB=900
H GCD CGD=900
等腰RtABC,AB=AC,BAC=900,ADC=1350,求证:BDC=900
C
方法4
学 霸 数 学B
GD
HCA : IAB可证
H
A
I
问题5 等腰RtABC,AB=AC,BAC=900,ADC=1350,求证:BDC=900
方法5
F C

作等腰直角AEF
霸 数E
G D 再证ABE ACF

B
方法4 D B

霸GΒιβλιοθήκη 数学利用共圆
C
A
问题5 等腰RtABC,AB=AC,BAC=900,ADC=1350,求证:BDC=900
C



第15节 等腰三角形与直角三角形

第15节 等腰三角形与直角三角形

2.判定 (1)有两边相等的三角形是等腰三角形. (2)有③_两__角_____相等的三角形是等腰三角形.
3.面积:S=1 ah. 2
等边三角形的性质及判定
1.性质 (1)三条边相等. (2)三个内角相等,且每一个角都等于④__6_0_°___. (3)每条边上的高线、中线、角平分线均重合(“三线合一”). (4)是轴对称图形,有3条对称轴,对称轴为任一条边上的高(中线或角平分线)所 在的直线. 2.判定 (1)三边都相等的三角形是等边三角形. (2)三个角都相等的三角形是等边三角形. (3)有一个角是⑤_6_0_°____的等腰三角形是等边三角形.
分类讨论 例6 等腰三角形的一个角比另一个角大30°,则顶角为__8_0_°__或__4_0_°___. 例7 若直角三角形的两边长分别为6 cm,8 cm,则斜边上的中线长为_4_c_m_或__5_c_m_.
例8 如图,在△ABC中,∠C=90°,AC=6,BC=8,点D是BC上的中点, 点P是边AB上的动点,若要使△BPD为直角三角形,则BP=___5_或__15_6___.
(2)在△ABC中,若一边长为3,一边长为4,则△ABC的周长为__1_0_或__1_1__; 48
(3)若AB=10,BC=12,则△ABC的面积为_4_8___,边AC上的高为__5_____; (4)如图②,若∠ABC=60°,AB=8,点D为BC的中点,点E为AC的中点,连接 DE.则∠BAD的度数为______3_0_°___,DE的长为____4_,△ABC的面积为_1_6__3___;
(5)若∠B=60°,AD=3 3 ,则 AB=__6___,S△ABC=_1_8__3__,S△ABE=_9__3___;
(6)如图②,若∠B=60°,作 BF 平分∠ABC,交 AD 于点 F,AD=6,求 BF 的值.

专题17等腰三角形与直角三角形-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期)

专题17等腰三角形与直角三角形-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期)

2021年中考数学真题分项汇编【全国通用】(第01期)专题17等腰三角形与直角三角形(共42题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形2.(2021·江苏扬州市·中考真题)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .53.(2021·浙江宁波市·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,3BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .33B 3C .1D .624.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心5.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinC a c b R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π6.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+7.(2021·四川凉山彝族自治州·中考真题)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .748.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD 的值为( )A .12B .22C .32D .339.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+10.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B .3C .2D .5211.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .20712.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,613.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .8014.(2021·浙江金华市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,以该三角形的三条边为边向形外作正方形,正方形的顶点,,,,,E F G H M N 都在同一个圆上.记该圆面积为1S ,ABC 面积为2S ,则12S S 的值是( )A .52πB .3πC .5πD .112π 15.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D 作DF 的垂线交小正方形对角线EF 的延长线于点G ,连结CG ,延长BE 交CG 于点H .若2AE BE =,则CG BH的值为( )A .32B .2C .3107D .35516.(2021·四川南充市·中考真题)如图,在矩形ABCD 中,15AB =,20BC =,把边AB 沿对角线BD 平移,点'A ,'B 分别对应点A ,B .给出下列结论:∠顺次连接点'A ,'B ,C ,D 的图形是平行四边形;∠点C 到它关于直线'AA 的对称点的距离为48;∠''A C B C -的最大值为15;∠''A C B C +的最小值为917.其中正确结论的个数是( )A .1个B .2个C .3个D .4个17.(2021·四川广元市·中考真题)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .32B .1C .2D .3218.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形二、填空题19.(2021·浙江绍兴市·中考真题)如图,在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.20.(2021·四川广安市·中考真题)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,3DE =,则BC 的长为_______.21.(2021·江苏苏州市·中考真题)如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.22.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.23.(2021·江苏扬州市·中考真题)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.24.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.25.(2021·江苏南京市·中考真题)如图,在四边形ABCD 中,AB BC BD ==.设ABC α∠=,则ADC ∠=______(用含α的代数式表示).26.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB 剪开,再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒,则OBA∠的度数为______.27.(2021·浙江金华市·中考真题)如图,菱形ABCD的边长为6cm,60∠=︒,将该菱形沿AC方向BAD'''',A D''交CD于点E,则点E到AC的距离为____________cm.平移23cm得到四边形A B C D△在同一平面内,点C,D不重合,28.(2021·浙江绍兴市·中考真题)已知ABC与ABD∠=∠=︒,430ABC ABDAB=,22==CD长为_______.AC AD29.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC的边长为4,C3P为AB边上一动点,过点P作C的切线PQ,切点为Q,则PQ的最小值为________.30.(2021·浙江丽水市·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中2FM EM =,则“奔跑者”两脚之间的跨度,即,AB CD 之间的距离是__________.31.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.32.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形∠的边BC 及四边形∠的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.33.(2021·江苏宿迁市·中考真题)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.三、解答题34.(2021·浙江温州市·中考真题)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (2)选一个合适的三角形,将它的各边长扩大到原来的5倍,画在图3中.35.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC . (2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.36.(2021·浙江绍兴市·中考真题)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.37.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)38.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.39.(2021·重庆中考真题)在等边ABC 中,6AB =,BD AC ⊥ ,垂足为D ,点E 为AB 边上一点,点F 为直线BD 上一点,连接EF .图1 图2 图3(1)将线段EF 绕点E 逆时针旋转60°得到线段EG ,连接FG .∠如图1,当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;∠如图2,点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:3BE BH BF +=; (2)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且2DN NC =,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60°得到线段EP ,连接FP ,当12NP MP +最小时,直接写出DPN △的面积.40.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.41.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC 是边长为3的等边三角形,E 是边AC 上的一个动点,小亮以BE 为边作等边三角形BEF ,如图2,在点E 从点C 到点A 的运动过程中,求点F 所经过的路径长;(3)ABC 是边长为3的等边三角形,M 是高CD 上的一个动点,小亮以BM 为边作等边三角形BMN ,如图3,在点M 从点C 到点D 的运动过程中,求点N 所经过的路径长;(4)正方形ABCD 的边长为3,E 是边CB 上的一个动点,在点E 从点C 到点B 的运动过程中,小亮以B 为顶点作正方形BFGH ,其中点F 、G 都在直线AE 上,如图4,当点E 到达点B 时,点F 、G 、H 与点B 重合.则点H 所经过的路径长为______,点G 所经过的路径长为______.42.(2021·湖北随州市·中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)∠如图1,P 是边长为a 的正ABC 内任意一点,点O 为ABC 的中心,设点P 到ABC 各边距离分别为1h ,2h ,3h ,连接AP ,BP ,CP ,由等面积法,易知()123123ABC OAB h h h S a S ++==△△,可得123h h h ++=_____;(结果用含a 的式子表示)∠如图2,P 是边长为a 的正五边形ABCDE 内任意一点,设点P 到五边形ABCDE 各边距离分别为1h ,2h ,3h ,4h ,5h ,参照∠的探索过程,试用含a 的式子表示12345h h h h h ++++的值.(参考数据:8tan 3611≈°,11tan 548≈°)(3)∠如图3,已知O 的半径为2,点A 为O 外一点,4OA =,AB 切O 于点B ,弦//BC OA ,连接AC ,则图中阴影部分的面积为______;(结果保留π)∠如图4,现有六边形花坛ABCDEF ,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形ABCDG ,其中点G 在AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点G 的位置,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形、斜边中线、等腰直角三角形专题一、直角三角形的性质1.一块直角三角板放在两平行直线上,如图,∠1+∠2= 度.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC,求证:①∠BAD=∠C;②∠AEF=∠AFE;③AG⊥EF.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角有4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:△APQ是等腰直角三角形.二、含30°角的直角三角形的性质5.在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,求AD的长6.如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,求PD的长7.如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,求∠EDC的度数8.如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E在BA的延长线上,且ED=EC,若AE=2,求AF的长9.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,求CD的长10.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB 于E,求证:(1)CD=DE;(2)AC=BE;(3)BD=2CD;三、直角三角形斜边中线问题11.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC 边的中点,连接PM,PN,求证:△PMN为等边三角形;12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.13.如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,求AC的长14.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值15.如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC上,AD=BD,E为AB的中点,AD、CE相交于点F,求∠DFE等于多少16.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,求∠ACB′= .17.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,求BC的长度.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形?证明你的猜想.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.四、等腰直角三角形问题21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE 的中点,求证:AF⊥DF,AF=DF.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD 于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.24.如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M 为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立?请说明理由.25.已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;(2)求证:S四边形AEDF=S△BDE+S△CDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF还仍然是等腰直角三角形吗?请画图说明理由.26.△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.27.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗?(填“可能”或“不可能”).直角三角形斜边中线等腰直角三角形专题参考答案与试题解析1.【解答】解:如图,∠1=∠3,∠2=∠4(对顶角相等),∵∠3+∠4=90°,∴∠1+∠2=90°.故答案为:90.【点评】本题考查了直角三角形两锐角互余的性质,对顶角相等,熟记性质是解题的关键.2.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC,给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.其中正确的结论是()A.②③④B.①③④C.①②④D.①②③【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【解答】解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选C.【点评】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.3.如图所示,在△ABC中,CD,BE是两条高,那么图中与∠A相等的角的个数有()A.1个 B.2个C.3个D.4个【分析】根据已知条件CD,BE是两条高可知:∠A+∠DCA=90°,∠ABE+∠BHD=90°,∠A+∠ABE=90°,∠CHE+∠HCE=90°,再根据同角的余角相等即可得到答案.【解答】解:∵CD⊥AB,∴∠CDA=∠BDH=90°,∴∠A+∠DCA=90°,∠ABE+∠BHD=90°,∵BE⊥AC,∴∠A+∠ABE=90°,∠CHE+∠HCE=90°,∴∠A=∠BHD=∠CHE,故选:B.【点评】此题主要考查了直角三角形的性质,关键是根据垂直得到有哪些角互余.4.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.【分析】利用BE、CF都是△ABC的高,求证∠1=∠2,然后求证△ACQ≌△PBA,利用AQ=AP,AQ⊥AP,即可证明△APQ是等腰直角三角形.【解答】解:△APQ是等腰直角三角形.∵BE、CF都是△ABC的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2又∵AC=BP,CQ=AB,在△ACQ和△PBA中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ是等腰直角三角形【点评】此题考查学生对全等三角形的判定和性质和等腰直角三角形的理解和掌握,难度不大,属于基础题.5.(2016秋•泰山区期中)在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AD的长是()A.3 B.4 C.5 D.4.5【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,解答即可.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∵BD=2,∴AD=4,故选B【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.(2016秋•大丰市月考)如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,则PD等于()A.4 B.3 C.2 D.1【分析】过点P作PE⊥OB于E,根据两直线平行,错角相等可得∠AOP=∠COP,然后利用三角形的一个外角等于与它不相邻的两个角的和求出∠PCE=∠AOB=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠COP,∴∠PCE=∠BOP+∠COP=∠BOP+∠AOP=∠AOB=30°,又∵PC=6,∴PE=PC=3,∵AOP=∠BOP,PD⊥OA,∴PD=PE=3,故选B.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个角的和的性质,以及平行线的性质,作辅助线构造出含30°的直角三角形是解题的关键.7.(2015春•兰溪市期末)如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30° B.75°C.45°D.15°【分析】根据矩形性质得出∠C=∠ABC=90°,AB=CD,DC∥AB,推出AE=2AB,得出∠AEB=30°=∠DAE,求出∠EDC的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABC=90°,AB=CD,DC∥AB,∵AB=AD,E为BC上的一点,且AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠AEB=∠DAE=30°,∵AE=AD,∴∠ADE=∠AED=(180°﹣∠EAD)=75°,∵∠ADC=90°,∴∠EDC=90°﹣75°=15°,故选D.【点评】本题考查了矩形性质,三角形的角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA 的度数,题目比较好,是一道综合性比较强的题目.8.(2013春•校级期末)如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E在BA的延长线上,且ED=EC,若AE=2,则AF的长为()A.B.2 C.+1 D.3【分析】过点E作EH∥AC交BC的延长线于H,证明△ABH是等边三角形,求出CH,得到BD的长,根据直角三角形的性质求出BF,计算即可.【解答】解:过点E作EH∥AC交BC的延长线于H,∴∠H=∠ACB=60°,又∠B=60°,∴△EBH是等边三角形,∴EB=EH=BH,∴CH=AE=2,∵ED=EC,∴∠EDC=∠ECD,又∠B=∠H,∴∠BED=∠HEC,在△BED和△HEC中,,∴△BED≌△HEC,∴BD=CH=2,∴BA=BC=4,BF=BD=1,∴AF=3.故选:D.【点评】本题考查的是等边三角形的性质、直角三角形的性质以及等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半、等边三角形的三个角都是60°是解题的关键.9.(2012春•古冶区校级期中)如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2 B.3 C.1 D.1.5【分析】在Rt△AEC中,由于=,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【解答】解:在Rt△AEC中,∵=,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=AD=2.故选A.【点评】本题利用了:(1)直角三角形的性质;(2)三角形角和定理;(3)等边对等角的性质.10.(2012秋•包河区期末)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD 平分∠BAC,DE⊥AB于E,以下结论(1)CD=DE;(2)AC=BE;(3)BD=2CD;(4)DE=AC中,正确的有()A.1个 B.2个C.3个D.4个【分析】根据角平分线的性质可得CD=DE,AC=BE,结合含30°角的直角三角形的性质可得BD=2CD,而AC和BD不一定相等,所以可得出答案.【解答】解:∵∠ACB=90°,∠B=30°,AD平分∠BAC,DE⊥AB,∴DC=DE,∠ADC=∠ADE=60°,∴AD平分∠CDE,∴AC=AE,在Rt△BDE中,∠B=30°,∴BD=2DE=2CD,在Rt△ADE中,DE=AE=AC,∴正确的有(1)、(2)、(3),故选C.【点评】本题主要考查角平分线的性质及含30°角的直角三角形的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.11.(2015秋•江阴市期中)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN ⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN为等边三角形;下面判断正确是()A.①正确B.②正确C.①②都正确 D.①②都不正确【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断②正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;所以①②都正确.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键.12.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.【分析】(1)根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2)根据三角形角和定理求出∠ABC+∠ACB=120°,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出∠ABC=∠BDM,∠ACB=∠CEM,根据三角形角和定理求出即可;(3)求出EM=EN,解直角三角形求出∠EMD度数,根据三角形的角和定理求出即可.【解答】解:(1)∵CD,BE分别是AB,AC边上的高,∴∠BDC=∠BEC=90°,∵M是线段BC的中点,BC=8,∴DM=BC=4,EM=BC=4,∴△DME的周长是DE+EM+DM=3+4+4=11;(2)证明:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠BDC=∠BEC=90°,M是线段BC的中点,∴DM=BM,EM=CM,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠EMC+∠DMB=∠ABC+∠ACB=120°,∴∠DME=180°﹣120°=60°;(3)解:过M作MN⊥DE于N,∵DM=EM,∴EN=DN=DE,∠ENM=90°,∵EM=DM=BC,DN=EN=DE,BC2=2DE2,∴(2EM)2=2(2EN)2,∴EM=EN,∴sin∠EMN==,∴∠EMN=45°,同理∠DMN=45°,∴∠DME=90°,∴∠DMB+∠EMC=180°﹣90°=90°,∵∠ABC=∠BDM,∠ACB=∠CEM,∴∠ABC+∠ACB=(180°﹣∠DMB+180°﹣∠EMC)=135°,∴∠BAC=180°﹣(∠ABC+∠ACB)=45°.【点评】本题考查了等腰三角形的判定和性质,三角形的角和定理,解直角三角形的性质,直角三角形斜边上中线性质的应用,能综合运用性质进行推理是解此题的关键,本题综合性比较强,有一定的难度,注意:直角三角形斜边上的中线等于斜边的一半.13.(2014春•区校级期中)如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A.3 B.4 C.5 D.6【分析】连结AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.【解答】解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故选B.【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF⊥BD是解题的关键.14.(2011秋•堰市期末)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.2 B.2.4 C.2.6 D.3【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.【解答】解:连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CBA,∴=,∴=,∴AP最短时,AP=4.8∴当AM最短时,AM==2.4.故选B.【点评】此题主要考查学生对相似三角形判定与性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定的拔高难度,属于中档题.15.(2010•武隆县模拟)如图,在△ABC中,∠ACB=90°,∠B=20°,D在BC 上,AD=BD,E为AB的中点,AD、CE相交于点F,∠DFE等于()A.40° B.50°C.60° D.70°【分析】根据已知得,∠BAC=70°,∠BAD=∠B,再根据直角三角形斜边上的中线等于斜边的一半,得出∠ECB=∠B,从而得出∠ACE,再由三角形的角和定理得∠AFC,根据对顶角相等求出答案.【解答】解:∵∠ACB=90°,∠B=20°,∴∠BAC=70°,∵AD=BD,∴∠BAD=∠B=20°,∴∠DAC=50°,∵E为AB的中点,∴BE=CE,∴∠ECB=∠B=20°,∴∠ACE=70°,在△ACF中,∠ACF+∠AFC+∠FAC=180°,∴∠AFC=60°,∵∠DFE=∠AFC=60°(对顶角相等),故选C.【点评】本题考查了等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半,是基础知识要熟练掌握.16.(2016•江岸区模拟)如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【分析】根据三角形角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17.(2016秋•嵊州市期末)如图,△ABC中,AB=AC,D为AB中点,E在AC 上,且BE⊥AC,若DE=5,AE=8,则BC的长度为2.【分析】由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得BC的长.【解答】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=2DE=2×5=10,∵AE=8,∴BE==6.∴BC===2,故答案为:2.【点评】此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.18.如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,又∠BED=90°.求证:AC=BD.【分析】连接EO,首先根据平行四边形的性质可得AO=CO,BO=DO,即O 为BD和AC的中点,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论.【解答】证明:连接EO,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD.【点评】此题主要考查了平行四边形的性质,直角三角形斜边上的中线,关键是掌握直角三角形斜边上的中线等于斜边的一半.19.已知:如图,在Rt△ABC中,∠ACB=90°,点M是AB边的中点,CH⊥AB于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)△AEB是什么三角形?证明你的猜想.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM=CM=BM,由等腰三角形到性质得到∠CAB=∠ACM,由余角的性质得到∠CAB=∠BCH,等量代换得到∠BCH=∠ACM,根据角平分线的性质得到∠ACD=∠BCD,即可得到结论;(2)根据EM⊥AB,CH⊥AB,得到EM∥AB,由平行线的性质得到∠HCD=∠MED,由于∠HCD=∠MCD,于是得到∠MCD=∠MED,即可得到结论;(3)根据CM=EM AM=CM=BM,于是得到EM=AM=BM,推出△AEB是直角三角形,由于EM垂直平分AB,得到EA=EB于是得到结论.【解答】证明:(1)Rt△ABC中,∠ACB=90°,∵M是AB边的中点,∴AM=CM=BM,∴∠CAB=∠ACM,∴∠CAB=90﹣∠ABC,∵CH⊥AB,∴∠BCH=90﹣∠ABC,∴∠CAB=∠BCH,∴∠BCH=∠ACM,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ACD﹣∠ACM=∠BCD﹣∠BCH,即∠1=∠2;(2)∵EM⊥AB,CH⊥AB,∴EM∥CH,∴∠HCD=∠MED,∵∠HCD=∠MCD,∴∠MCD=∠MED,∴CM=EM;(3)△AEB是等腰直角三角形,∵CM=EM AM=CM=BM,∴EM=AM=BM,∴△AEB是直角三角形,∵EM垂直平分AB,∴EA=EB,∴△AEB是等腰三角形,∴△AEB是等腰直角三角形.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,线段垂直平分线的性质,等腰三角形的性质,熟练掌握各定理是解题的关键.20.如图,已知在△ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点.求证:△PMN是等腰三角形.【分析】连接BM、CN,根据等腰三角形三线合一得到∠BMC=90°,根据直角三角形的性质得到MP=BC,同理NP=BC,得到答案.【解答】证明:连接BM、CN,∵BA=BD,DM=MA,∴BM⊥AD,∴∠BMC=90°,又BP=PC,∴MP=BC,同理,NP=BC,∴MP=NP,∴△PMN是等腰三角形.【点评】本题考查的是直角三角形的性质和等腰三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半、等腰三角形三线合一是解题的关键.21.如图,△ACB、△CDE为等腰直角三角形,∠CAB=∠CDE=90°,F为BE 的中点,求证:AF⊥DF,AF=DF.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AF=BF=AE,DF=BF=AE,再根据等边对等角可得∠ABF=∠BAF,∠DBF=∠BDF,然后根据三角形的一个外角等于与它不相邻的两个角的和求出∠AFD=2∠ABC,再根据等腰直角三角形的性质求解即可.【解答】证明:∵∠CAB=∠CDE=90°,F为BE的中点,∴AF=BF=AE,DF=BF=AE,∴AF=DF,∴∠ABF=∠BAF,∠DBF=∠BDF,由三角形的外角性质得,∠AFD=∠ABF+∠BAF+∠DBF+∠BDF=2∠ABC,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠AFD=90°,∴AF⊥DF,综上所述,AF⊥DF,AF=DF.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的性质,三角形的一个外角等于与它不相邻的两个角的和的性质,熟记各性质是解题的关键.22.已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分∠CAB交CD 于E,在DB上取点F,使DF=DE,求证:CF平分∠DCB.【分析】延长FE交AC于点G,利用角平分线的性质可知EG=ED,然后证明△CEG≌△FED,得出CE=FE,利用等腰三角形的性质,平行线的性质即可求出∠ECF=∠BCF.【解答】解:延长FE交AC于点G,∵DE=DF,CD是斜边AB上的高,∴∠DEF=45°,∵∠DCB=45°,∴EF∥BC,∴∠EFC=∠FCB,∠CGF=90°,∵AE平分∠CAB,∠CGF=∠BDC=90°,∴GE=DE,在△CGE与△FDE中,,∴△CGE≌△FDE(ASA),∴CE=FE,∴∠ECF=∠EFC,∴∠ECF=∠BCF,∴CF平分∠DCB.【点评】本题考查等腰三角形的性质,涉及全等三角形的性质与判定,等腰直角三角形的性质,平行线的判定与性质等知识点,综合程度较高.23.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.【分析】由△OBD和△OCA是等腰直角三角形得到∠ACB=∠ADB=90°,∠OBD=45°,由M为AB的中点,根据直角三角形斜边上的中线性质得到DM=AM=BM,CM=AM=BM,则CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,理由三角形外角性质得∠AMD=2∠MBD,∠AMC=2∠MBC,则∠AMD ﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,于是可得到△CDM为等腰直角三角形.【解答】解:△CDM为等腰直角三角形.理由如下:∵△OBD和△OCA是等腰直角三角形,∴∠ACB=∠ADB=90°,∠OBD=45°,而M为AB的中点,∴DM=AM=BM,CM=AM=BM,∴CM=DM,∠MBD=∠MDB,∠MCB=∠MBC,∴∠AMD=2∠MBD,∠AMC=2∠MBC,∴∠AMD﹣∠AMC=2(∠MBD﹣∠MBC)=2∠OBD=90°,即∠CMD=90°,∵CM=DM,∴△CDM为等腰直角三角形.同理可得:第2个图中△CDM为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质和直角三角形斜边上的中线性质、三角形外角的性质,灵活利用直角三角形的斜边上的中线的性质是关键.24.(2010•渝中区模拟)如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立?请说明理由.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,求出BM=EN=MC,DM=EM=MC,然后根据等边对等角的性质可以证明∠BMD=90°,所以△BMD 为等腰直角三角形;(2)延长DM交BC于N,先根据∠EDB=∠ABC=90°证明ED∥BC,然后根据两直线平行,错角相等求出∠DEM=∠MCN,从而证明△EDM与△MNC全等,根据全等三角形对应边相等可得DM=MN,然后即可证明BM⊥DM,且BM=DM.【解答】(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.(2分)同理可证:DM=EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA=90°,(4分)∴BM=DM.∴△BMD是等腰直角三角形.(5分)(2)(1)题中的结论仍然成立.理由:延长DM与BC交于点N,(6分)∵DE⊥AB,CB⊥AB,∴∠EDB=∠CBD=90°,∴DE∥BC.∴∠DEM=∠MCN.又∵∠EMD=∠NMC,EM=MC,∴△EDM≌△MNC.(8分)∴DM=MN.DE=NC=AD.又AB=BC,∴AB﹣AD=BC﹣CN,∴BD=BN.∴BM⊥DM.即∠BMD=90°.(9分)∵∠ABC=90°,∴BM=DN=DM.∴△BMD是等腰直角三角形.(10分)【点评】本题主要考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握判定定理及性质并灵活运用是解题的关键,难度中等.25.(2011秋•昌平区校级期中)已知:如图△ABC中,∠A=90°,AB=AC,D 是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;(2)求证:S四边形AEDF=S△BDE+S△CDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF还仍然是等腰直角三角形吗?请画图说明理由.【分析】(1)连接AD,根据等腰直角三角形的性质可得AD⊥BC,AD=BD,∠1=45°,从而得到∠1=∠B,再根据同角的余角相等求出∠2=∠4,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证;(2)同理求出△ADE和△CDF全等,根据全等三角形的面积相等即可得证;(3)依然成立,连接AD,根据等腰直角三角形的性质可得AD=BD,∠CAD=45°,再根据等角的补角相等求出∠DAF=∠DBE,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证.【解答】(1)证明:如图,连接AD,∵∠A=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∴∠1=∠B=45°,∵∠EDF=90°,∴∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形;(2)解:同理可证,△ADE≌△CDF,所以,S四边形AEDF=S△ADF+S△ADE=S△BDE+S△CDF,即S四边形AEDF=S△BDE+S△CDF;(3)解:仍然成立.如图,连接AD,∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∵∠DAF=180°﹣∠1=180°﹣45°=135°,∠DBE=180°﹣∠ABC=180°﹣45°=135°,∴∠DAF=∠DBE,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质,全等三角形判定与性质,作辅助线构造出全等三角形是解题的关键.26.(2016•校级自主招生)△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.(1)如图1,作∠ADB的角平分线DF交BE于点F,连接AF.求证:∠FAB=∠FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG①依据题意补全图形;②用等式表示线段AE、BE、DG之间的数量关系,并加以证明.【分析】(1)欲证明∠FAB=∠FBA,由△ADF≌△BDF推出AF=BF即可解决问题.(2)①根据条件画出图形即可.②数量关系是:GD+AE=BE.过点D作DH⊥DE交BE于点H,先证明△ADE ≌△BDH,再证明四边形GEHD是平行四边形即可解决问题.【解答】证明:(1)如图1中,∵AD⊥BC,∠ABC=45°,∴∠BAD=45°,∴AD=BD,∵DF平分∠ADB,∴∠1=∠2,在△ADF和△BDF中,,∴△ADF≌△BDF.∴AF=BF,∴∠FAB=∠FBA.(2)补全图形如图2中所示,数量关系是:GD+AE=BE.理由:过点D作DH⊥DE交BE于点H ∴∠ADE+∠ADH=90°,∵AD⊥BC,∴∠BDH+∠ADH=90°,∴∠ADE=∠BDH,∵AD⊥BC,BE⊥AC,∠AKE=∠BKD,∴∠DAE=∠DBH,在△ADE和△BDH中,,∴△ADE≌△BDH.∴DE=DH,AE=BH,∵DH⊥DE,∴∠DEH=∠DHE=45°,∵BE⊥AC,∴∠DEC=45°,∵点G与点D关于直线AC对称,∴AC垂直平分GD,∴GD∥BE,∠GEC=∠DEC=45°,∴∠GED=∠EDH=90°,∴GE∥DH,∴四边形GEHD是平行四边形∴GD=EH,∴GD+AE=BE.【点评】本题考查三角形综合题、全等三角形的判定和性质、平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是熟练正确全等三角形判定方法,学会添加常用辅助线,构造全等三角形以及特殊四边形解决问题,属于中考常考题型.27.(2016春•东港市期末)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是AD=CF ;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗?不可能(填“可能”或“不可能”).【分析】(1)根据等腰直角三角形的性质得到∠CBA=∠CAB=45°,根据平行线的性质得到∠FBE=∠CAB=45°,根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质定理得到答案;(3)根据线段垂直平分线的性质得到AD=AF,等量代换即可;(4)根据直角三角形的直角边小于斜边解答.【解答】(1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,,∴△ACD≌△CBF;(2)∵△ACD≌△CBF,∴AD=CF,故答案为:AC=BF;(3)连接AF,∵DF⊥AE,DE=EF,∴AD=AF,∵AD=CF,∴AF=CF,∴△ACF是等腰三角形;(4)在Rt△ACF中,AC<AD,∴AC<AF,∴△ACF不可能是等边三角形,故答案为:不可能.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、等腰三角形的判定以及等边三角形的判定,掌握相关的判定定理和性质定理是解题的关键.。

相关文档
最新文档