(整理)自变量x和因变量y有如下关系
变量之间的关系

第四章变量之间的关系【知识点梳理】一、自变量与因变量1、若Y随X的变化而变化,则X是自变量 Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
2、自变量与因变量的区别与联系联系:1、两者都是某一过程中的变量;2、两者因研究的侧重点或先后顺序不同可以互相转化。
区别:先发生变化或自主发生变化的量后发生变化或随自变量变化而变化的量。
3、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2 ④本息和=本金+利率×本金×时间。
⑤总价=单价×总量。
⑥平均速度=总路程÷总时间4、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.二、变量关系的表现方法1、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
2、关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
3、图像法:利用图像来表达自变量与因变量之间关系的一种表达方式,运用非常广泛。
注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点.三、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y 随着自变量x 的增加(大)而增加(大));2. 随着自变量x 的逐渐增加(大),因变量y 逐渐减小(或者用函数语言描述也可:因变量y 随着自变量x 的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x 的逐渐增加(大),因变量y 逐渐增加(大)等等. 四、估计(或者估算) 对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x 每增加一定量,因变量y 的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y 的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.【例题讲解】例1: 某蓄水池开始蓄水,每时进水20米3,设蓄水量为V (米3),蓄水时间为t (时) (1)V 与t 之间的关系式是什么?(2)用表格表示当t 从2变化到8时(每次增加1),相应的V 值? (3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水? (4)当t 逐渐增加时,V 怎样变化?说说你的理由。
一次函数及二次函数

一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
专题12 二次函数(解析版)

专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2 +bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=- (2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c )(4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大;当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾y x O已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c )5.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
函数的性质知识点总结

函数的性质知识点总结导读:一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
函数相关知识总结大全

一次函数一、定义与定义式:自变量x和因变量y有如下关系y=kx+b,则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k 为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;2)描点;3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和 y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
自变量x和因变量y影响关系的解释 人大经济论坛

自变量x和因变量y影响关系的解释人大经济论坛自变量x和因变量y之间的关系是指x对y的变化或程度的影响。
在统计学中,自变量是独立变量,用于解释因变量(或目标变量)的变化。
因变量则是被解释、受影响的变量。
在经济学研究中,自变量和因变量的关系分析对于了解经济现象、预测经济走势以及制定经济政策都至关重要。
下面将从经济学的角度,探讨自变量x和因变量y之间的关系。
首先,自变量x的选取必须基于经济理论或现实问题。
经济学研究关注的是经济活动和经济行为,因此自变量往往涉及到与经济相关的变量,比如收入、价格、利率、就业率等。
在研究中,我们可以通过控制其他自变量的影响来研究某个自变量对因变量的单独影响。
其次,因变量y的选取通常与经济目标相关。
比如,我们可能想了解某个政策对经济增长的影响,那么经济增长率就是我们的因变量。
或者我们想了解某个产品的需求量对价格的影响,那么产品需求量就是我们的因变量。
因变量的选取需要符合研究目的,并体现经济理论与实际问题之间的关系。
然后,通过统计方法进行自变量和因变量之间关系的分析。
在经济学中,常用的分析方法包括回归分析、相关分析以及实证研究等。
回归分析是一种常用的方法,通过建立数学模型来描述自变量与因变量之间的关系。
通过分析回归方程的系数和显著性水平,可以判断自变量对因变量的解释程度和影响方向。
最后,需要进行解释和推论。
当得到统计结果后,我们需要对自变量和因变量之间的关系进行解释。
这可以通过经济理论的解释、实证分析和直观理解来完成。
在解释过程中,我们可以讨论自变量对因变量的直接影响、间接影响以及相互作用效应。
推论则可以根据统计结果,预测未来或进行政策分析。
在人大经济论坛中,研究者经常使用经济数据进行自变量和因变量之间关系的解释。
比如,研究中国经济增长率的影响因素时,可以将自变量设定为投资、消费、出口等,因变量为经济增长率。
通过分析这些自变量对经济增长率的影响程度和方向,可以为经济决策提供参考和决策支持。
高一数学函数总结大全

(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
指数函数指数函数的一般形式为(0,1)a且y x a a=>≠(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
奇偶性1.定义:一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言,②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理:奇函数的图像关于原点成中心对称图表,偶函数的图象关于y 轴或轴对称图形。
高一数学期末考试试卷及答案2023

高一数学期末考试试卷及答案2023高一上学期数学期末考试试卷及答案考号班级姓名一、选择题(每小题5分,共60分)1.已知a=2,集合A={x|x≤2},则下列表示正确的是( ).A.a∈AB.a/∈ AC.{a}∈AD.a⊆A2.集合S={a,b},含有元素a的S的子集共有( ).A.1个B.2个C.3个D.4个3.已知集合M={x|x3},N={x|log2x1},则M∩N=( ).A. B.{x|04.函数y=4-x的定义域是( ).A.[4,+∞)B.(4,+∞)C.-∞,4]D.(-∞,4)5.国内快递1000g以内的包裹的邮资标准如下表:运送距离x (km) 0邮资y (元) 5.00 6.00 7.00 8.00 …如果某人在南京要快递800g的包裹到距南京1200km的某地,那么他应付的邮资是( ).A.5.00元B.6.00元C.7.00元D.8.00元6.幂函数y=x(是常数)的图象( ).A.一定经过点(0,0)B.一定经过点(1,-1)C.一定经过点(-1,D.一定经过点(1,1)7.0.44,1与40.4的大小关系是( ).A.0.4440.41B.0.44140.4C.10.4440.4D.l40.40.448.在同一坐标系中,函数y=2-x与y=log2x的图象是( ).A. B. C. D.9.方程x3=x+1的根所在的区间是( ).A.(0,1)B.(1,2)C.(2,3)D.(3,4)10.下列函数中,在区间(0,+∞)上是减函数的是( ).A.y=-1xB.y=xC.y=x2D.y=1-x11.若函数f (x)=13-x-1 +a是奇函数,则实数a的值为 ( ).A.12B.-12C.2D.-212.设集合A={0,1},B={2,3},定义集合运算:A⊙B={z︳z= xy(x+y),x∈A,y∈B},则集合A⊙B中的所有元素之和为( ).A.0B.6C.12D.18二、填空题(每小题5分,共30分)13.集合S={1,2,3},集合T={2,3,4,5},则S∩T= .14.已知集合U={x|-3≤x≤3},M={x|-115.如果f (x)=x2+1(x≤0),-2x(x0),那么f (f (1))= .16.若函数f(x)=ax3+bx+7,且f(5)=3,则f(-5)=__________.17.已知2x+2-x=5,则4x+4-x的值是 .18.在下列从A到B的对应: (1)A=R,B=R,对应法则f:x→y=x2 ; (2) A=R,B=R,对应法则f:x→y=1x-3; (3)A=(0,+∞),B={y|y≠0},对应法则f:x→y=±x;(4)A=N__,B={-1,1},对应法则f:x→y=(-1)x 其中是函数的有 .(只填写序号)三、解答题(共70分)19.(本题满分10分)计算:2log32-log3329+log38- .20.(本题满分10分)已知U=R,A={x|-1≤x≤3},B={x|x-a0}.(1)若A B,求实数a的取值范围;(2) 若A∩B≠,求实数a的取值范围.21.(本题满分12分)已知二次函数的图象如图所示.(1)写出该函数的零点;(2)写出该函数的解析式.22.(本题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).(1)求函数h(x)的定义域;(2)判断函数h(x)的奇偶性,并说明理由.23.(本题满分12分)销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=35t,Q=15t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;(2)总利润y的最大值.24.(本题满分14分)已知函数f (x)=1x2.(1)判断f (x)在区间(0,+∞)的单调性,并用定义证明;(2)写出函数f (x)=1x2的单调区间.试卷答案一、选择题(每小题5分,共60分)1.A2.B3. D4.C5.C6.D7.B8.A9.B 10.D 11.A 12.D[二、填空题(每小题5分,共30分)13.{2,3}14.[-3,-1]∪[1,3] 15.5 16.11 17.23 18.(1)(4)三、解答题(共70分)19.解原式=log34-log3329+log38-3=log3(4×932×8)-3=log39-3=2-3=-1.20.解(1)B={x|x-a0}={x|xa}.由A B,得a-1,即a的取值范围是{a| a-1};(2)由A∩B≠,则a3,即a的取值范围是{a| a3}.21.(1)函数的零点是-1,3;(2)函数的解析式是y=x2-2x-3.22.解(1)由2+x0,2-x0,得-2(2) ∵h(-x)=lg(2-x)+lg(2+x)=h(x),∴h(x)是偶函数.23.解(1)根据题意,得y=35x+15(3-x),x∈[0,3].(2) y=-15(x-32)2+2120.∵32∈[0,3],∴当x=32时,即x=94时,y最大值=2120.答:总利润的最大值是2120万元.24.解(1) f (x)在区间(0,+∞)为单调减函数.证明如下:设0因为00,x2-x10,x2+x10,即(x2-x1)( x2+x1)x12x220.所以f (x1)-f (x2) 0,即所以f (x1) f (x2),f (x)在区间(0,+∞)为单调减函数.(2) f (x)=1x2的单调减区间(0,+∞);f (x)=1x2的单调增区间(—∞,0).高一数学知识点总结大全一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自变量x和因变量y有如下关系:y=kx+b (k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。
即:y=kx (k为任意不为零实数)定义域:自变量的取值范围,自变量的取值应使函数有意义;若与实际相反,。
一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0) (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角) 形。
取。
象。
交。
减一次函数的图像及性质1.作法与图形:通过如下3个步骤(1)列表[一般取两个点,根据两点确定一条直线];(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.函数不是数,它是指某一变量过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b时:当k>0,b>0, 这时此函数的图象经过一,二,三象限。
当k>0,b<0, 这时此函数的图象经过一,三,四象限。
当k<0,b<0, 这时此函数的图象经过二,三,四象限。
当k<0,b>0, 这时此函数的图象经过一,二,四象限。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
4、特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K 值的乘积为-1)确定一次函数的表达式已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
一次函数在生活中的应用1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
常用公式(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)5.求两一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式得到y=y0 则(x0,y0)即为y1=k1x+b1 与y2=k2x+b2 交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)k b+ + 在一、二、三象限+ - 在一、三、四象限- + 在一、二、四象限- - 在二、三、四象限8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b29.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1应用一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小。
利用一次函数的性质可解决下列问题。
一、确定字母系数的取值范围例1. 已知正比例函数,则当m=______________时,y随x的增大而减小。
解:根据正比例函数的定义和性质,得且m<0,即且,所以。
二、比较x值或y值的大小例2. 已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是()A. x1>x2B. x1<x2C. x1=x2D.无法确定解:根据题意,知k=3>0,且y1>y2。
根据一次函数的性质“当k>0时,y随x 的增大而增大”,得x1>x2。
故选A。
三、判断函数图象的位置例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限解:由kb>0,知k、b同号。
因为y随x的增大而减小,所以k<0。
所以b<0。
故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。
故选A . 典型例题:例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.解:由题意设所求函数为y=kx+12则13.5=3k+12,得k=0.5∴所求函数解析式为y=0.5x+12由23=0.5x+12得:x=22∴自变量x的取值范围是0≤x≤22一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.例2.如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。
解:(1)若k>0,则可以列方程组-2k+b=-116k+b=9解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6(2)若k<0,则可以列方程组-2k+b=96k+b=-11解得k=-2.5 b=4,则此时的函数解析式为y=-2.5x+4此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k <0,则y随x的增大而减小。
一次函数解析式的几种类型①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数.正比例函数属于一次函数,正比例函数是一次函数的特殊形式.即当一次函数y=kx+b 若b=0,则此为正比例函数.图像做法1.列表2.描点3.连线(一定要经过坐标轴的原点)其次,正比例函数的图像是经过原点和(1,k)[或(2,2k),(3,3k)等]两点的一条直线。
其他:当k>0时,它的图像(除原点外)在第一、三象限,y随x的增大而增大当k<0时,它的图像(除原点外)在第二、四象限,y随x的增大而减小总结:y=kx(k不等于0)而以方程的角度来说,只要将正比例函数上的一个点的坐标给出,就能确定这个解析式若求正比例函数与一次函数,二次函数或反比例函数的交点坐标,就是将两个已知的方程联立成方程组求出其x,y值便可正比例函数在线性规划问题中体现的力量也是无穷的比如斜率问题就取决于K值,当K越大,则该函数图像与x轴的夹角越大,反之亦然还有,Y=Kx是Y=K/x 图像的对称轴.1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:②正比例关系两种相关联的量的变化规律:对于比值为正数的,即y=kx(k>0),此时的y与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关系.注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例.例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系.。