绘制拉伸真实应力应变曲线s
应力-应变曲线

应力-应变曲线(stress-strain curves)根据圆柱试件静力拉伸试验所得拉伸图(图a),对曲线上各对应点用试件原始尺寸除拉伸力与绝对伸长所得出的应力与延伸率的关系曲线(图6)。
应力一应变曲线是金属塑性加工工作中最重要的参考资料之一。
应力及应变值按下式计算:式中σi 表示拉伸图上任意点的应力值,δi为i点的延伸率,Pi及Δli为该点的拉力与绝对伸长值,F0及l为试件的断面积和计算长度。
试件受拉伸时,先产生弹性变形,这时应力应变成比例,当出现二者不能保持线性关系的点时,表示材料已屈服而将发生塑性变形,这时的应力定义为屈服应力或流变应力,用σs表示,其求法见屈服点。
拉伸时当试件计算长度上的均匀变形阶段结束而产生细颈时,变形将集中在细颈部分。
出现细颈前材料所能承受的应力名为强度极限或抗拉强度,用σb表示σb =Pmax/F式中Pmax为拉伸图上所记录的最大载荷值。
试件出现细颈后很快即断裂,断裂应力σfσf =Pf/Tf式中Pf 是断裂时的拉力,Ff是断口面积。
试件拉断时的延伸率δf(%)或断面收缩率ψ(%)是表示材料可承受最大塑性变形能力的指标:矾一牮×100(4)£fPf=盐≯×100(5)』’0式中厶和Ff是将断开的试件对合后测定的试件长度和断口处的面积。
抗拉强度靠及延伸率d或断面收缩率妒是材料性能的两个基本指标,在工程上有着广泛的应用。
屈服应力民(或乱:)是金属塑性加工时变形体开始产生塑性变形所必需的最小应力,它是计算变形力的一个重要参数。
应力-应变曲线表征材料受外力作用时的行为。
材料受力后即发生弹性变形,这时应力应变呈简单的线性关系,继续增加作用力至一定大小后材料将出现塑性变形,以后变形与应力的关系复杂,当塑性变形至一定程度以后,试件破断则变形过程终结。
所以任何变形过程均包括弹性变形、塑性变形及破断3个典型阶段。
金属的塑性加工过程处于弹性变形与破断二者之间。
首先要创造一定的应力状态条件使金属能发生塑性变形,其次是安排一个使塑性变形尽可能大又不致发生破坏的热力学条件。
真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443
材料拉伸试验应力-应变曲线

材料拉伸试验应力-应变曲线材料力学是物理学的分支,主要研究物质的形变与内部应力之间的关系以及材料在外部受到力的作用下的性能变化。
在工程学领域中,材料力学是一个非常重要的领域,因为它对于各种结构的设计、材料的选择和生产过程中质量的控制都有很大的影响。
拉伸试验是材料力学中最常用的测试方法之一,它能够测定材料的力学性质,如杨氏模量、屈服强度、抗拉强度、断裂强度等。
在拉伸试验中,材料在单向应力下被拉伸,在一定的控制条件下测定它的应变和应力,并通过绘制应力-应变曲线来描述它的力学行为。
接下来,我们将详细介绍拉伸试验的应力-应变曲线。
拉伸试验的应力-应变曲线是指材料在拉伸过程中应力和应变随时间的变化图像。
试验时,先将样品固定在拉伸机上,拉伸机施加一个力使其拉伸,然后测量材料的长度和外力大小。
在拉伸过程中,材料受到的拉伸力会逐渐增加,而它的截面积也会随之减小,因为拉伸后材料受到的长度变化不同导致其截面积发生变化。
应力计算公式如下:$$\sigma = \frac{F}{A_0}$$其中,$\sigma$ 表示应力,$F$ 表示拉伸过程中施加的外力,$A_0$ 表示试件的原始横截面积。
应力-应变曲线通常分为三个阶段:线弹性阶段、屈服阶段和断裂阶段。
1.线弹性阶段:在由于外力作用下,材料开始变形的时候,如果这个过程的变形程度比较小,材料会发生线弹性变形。
在这个阶段,材料的应力-应变曲线是一条直线,称为弹性阶段线。
2.屈服阶段:当变形程度比较大时,材料就会进入到屈服阶段。
在这个阶段中,材料的应变开始急剧增加,这是因为材料的内部结构开始发生变化,这是因为材料中的晶粒会逐渐发生滑移,从而使得材料的形状发生变化。
这种变化会导致材料内部的应力分布发生变化,所以材料的应力-应变曲线开始出现断崖式的变化。
在这个阶段中,材料的应力达到最大值,然后开始发生下降,这个时候可以测定材料的屈服强度。
3.断裂阶段:在超过屈服强度的作用下,材料会进入断裂阶段。
金属塑形成形原理实验

第二部分金属塑性成形原理实验实验一拉伸实验:绘制真实应力—应变曲线一、实验目的掌握单向静力拉伸真实应力—应变曲线的绘制方法,二、实验原理根据位伸图的P-△L曲线,建立条件应力σ与相对伸长ε关系曲线:σ=P/ F0 (1)ε=△L/ L0(2)式中:P为拉伸载荷;F0为试样原始截面积;△L为试样伸长值;L0为试样标距长度;根据σ—ε关系曲线绘制以对数应变表示的真实应力—应变曲线:在出现缩颈之前:条件应力S=σ(1+ε)对数应变∈=ln(L/L0)=ln(1+ε)在出现缩颈之后,对数应变∈由式(4A)计算,真实应力S由(S)计算:E=LN(FS/F)(4A)S=σ(1+ε)/(1+d/8ρ)(S)式中d为缩颈处试样截面积:ρ为缩颈处试样外形的曲率半径。
三、实验设备、工具和试样1.实验设备:WI—60型液压万能材料试验机。
2.工具:游标卡尺;圆规;手锤;冲子;3.试样:每组两件,材料;15钢(或低碳钢);四、实验步骤1.在试样上标定标距L0=100MM,用游标卡尺测量试样直径并记录。
2.在材料试验机上进行拉伸试验,并记录P—△L曲线。
3.测量拉伸试样出现缩颈后的d和ρ的三个瞬时值。
4.记录最大拉伸力P max和试样断裂时的伸长△L断,试样断裂后的直径。
五.记录数据及实验报告内容1.记录数据:(1)记录下表数据(2)记录P—△L曲线2.实验报告内容(1)简要说明实验目的、步骤,列出实验所获得的数据。
(2)绘制真实应力—应变曲线。
(3)说明所获得的真实应力—应变曲线塑性失稳点的特性。
(4)写出所获得的真实应力—应变曲线的经验方程(5)对本实验的讨论和改进意见。
真实应力应变曲线

基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线
真实应力-应变曲线分类
真实应力,简称真应力,也就是瞬时的流动应力Y,用单向均匀拉
伸(或压缩)时各加载瞬间的载荷P与该瞬间试样的横截面积A之比
来表示,则
YP A
真实应力-应变曲线可分为三类:
(1)Y ;(2)Y ;(3)Y
基于拉伸实验确定真实应力-应变曲线
2、变形速度对真实应力-应变曲线的影响 速度增加→位错运动加快→ 需要更大的切应力→流动应力提高 速度增加→硬化得不到恢复→ 流动应力提高
但如果速度很大→温度效应大→ 流动应力降低
在冷变形时,温度效应显著,强化被软化所抵消,最终表现出的是: 变形速度的影响不明显,动态时的真实应力—应变曲线比静态时略高 一点,差别不大。
基于拉伸实验确定真实应力-应变曲线
1、标称应力(名义应力、条件应力)-应变曲线
标称应力-应变曲线上的三个特征点
oc(弹性变形阶段)——cb(均匀塑性变 形阶段)——bk(局部塑性变形阶段)
屈服点c:
弹性变形与均匀塑性变形的分界点,对应
应力为屈服点 s ,或屈服强度 0.2
基于拉伸实验确定真实应力-应变曲线
Y- ∈曲线的修正
由于缩颈,即形状变化而产生应力升高的现象称 形状硬化。
基于压缩实验和轧制实验确定真实应力-应变曲线
1.基于圆柱压缩实验确定真实应力—应变曲线
拉伸Y- ∈曲线受塑性失稳的限制,精度较低, ∈<0.3,实际塑性成
形变形量较大,如锻造≤1.6,反挤≤2.5,拉伸试验曲线不够用。需要
压缩Y- ∈曲线。
换算:σ1=0, σ3=p, ∈2=0, σ2=p/2
1
2
拉伸试验应力应变曲线

拉伸试验应力应变曲线
拉伸试验是材料力学性能测试中常用的一种试验方法,用于测定材料在拉伸过程中的应力应变关系。
下面是拉伸试验中典型的应力应变曲线的一般特征:
1. 弹性阶段(OA 段):
在拉伸试验开始时,应力应变曲线呈现线性关系,材料在这个阶段表现出弹性行为。
在弹性阶段,材料在去除载荷后能够完全恢复到原来的形状,没有永久变形。
2. 屈服阶段(AB 段):
当应力增加到一定值时,材料开始出现屈服现象,应力应变曲线出现非线性部分。
屈服阶段的起始点称为屈服点(yield point),此时材料开始发生塑性变形。
3. 塑性阶段(BC 段):
在屈服点之后,材料进入塑性阶段,应力应变曲线呈现非线性关系。
在这个阶段,材料发生永久性变形,即使去除载荷也无法完全恢复到原来的形状。
4. 强化阶段(CD 段):
在塑性阶段之后,应力应变曲线继续上升,但斜率逐渐减小。
这
个阶段称为强化阶段,材料的强度逐渐增加,但塑性变形也在不断增加。
5. 颈缩阶段(DE 段):
当应力达到材料的极限强度时,材料开始出现颈缩现象,即局部截面缩小。
在颈缩阶段,应力应变曲线迅速下降,最终导致材料断裂。
需要注意的是,拉伸试验应力应变曲线的具体形状和特征会因材料的性质和试验条件而有所不同。
以上描述的是一般情况下典型的应力应变曲线特征。
第4章 真实应力——应变曲线
➢ 简单拉伸的名义应力——名义应变曲线
D B
名 义 应
C A
力
O
名义应变
➢ 简单拉伸的真应力—真应变曲线
D B
真应力名义应力
C A
O
名真义应应变变
三、拉伸真实应力——应变曲线塑性失稳点的特征
设某一瞬间,轴向力P、断面F、真实应力S
当在塑性失稳点时,P有极大值
dp=0
在塑性失稳点,S=Sb 、∈=∈b 、代入上式: ∈=1 失稳点特性
材料的硬化认为是线性的。 其数学表达式为
s
S s B2
➢适合于经过较大的冷
变形量之后,并且其加
工硬化率几乎不变的金 属材料
O
S
幂指数硬化材料模型的数学表达式为
n=1
n = 0.3
适合于大多数金属材料
硬化指数n 是表明材料加工硬化特性的一个重要参数, n 值越大,说明材料的应变强化能力越强。对金属材 料, n 的范围是0 < n < 1 。B 与n 不仅与材料的化学 成分有关,而且与其热处理状态有关,常用材料的B 和n 可查相关手册。
第4章 真实应力——应变曲线
一、拉伸图和条件应力-应变曲线
条件应力----应变曲线 最大拉力点b----强度极限。b点以后继续拉伸 ,试样断面出现局部收缩,形成所谓缩颈,此后,应力逐渐减小,曲 线下降,直至k点发生断裂。
对于大多数金属,没有明显的屈服点(屈服平台),典型的应力-应变曲线如下图 所示。这时的屈服应力规定用ε=0.2%时的应力表示,即σ0.2
n=0 理想刚塑性 线弹性
抛物线型真实应力——应变曲线的经验方程
在失稳点b处, 由于
【材料成型原理——锻压】第七章 真实应力应变曲线
7.3.拉伸真实应力-应变曲线塑性失稳点的特性
如某一瞬间的轴向力为P,试样断面积为F,真实 应力为S,则有:
因为
故
P SF
ln l ln F0 ,可得如下关系式
铝合金,青铜,镍等,则没有明显的屈服点,这时的屈
服应力规定用
时的应力表示。
0.2%
试样在屈服点以上继续拉伸,应力随变形程度的增加
而上升,直到最大拉力点b,这时的条件应力即强度极 限。 b点以后继续拉伸,试样断面出现局部收缩,形成 所谓缩颈。此后,应力逐渐减小,曲线下降,直至k点 发生断裂。
下面介绍一下材料的另一个特性——包申格效应
式中 l —试样的瞬时长度; dl —瞬时的长度改变量。
l l 当试样从
拉伸至
0
时1 ,总的真实应变为
l l1d l1 dl ln 1
l l0
l0 l
0
在出现缩颈以前,试样处于均匀拉伸状态,因此上述三种应变
间存在以下关系
ln l1 l0
ln(l0
l0
l
)
ln(1
(*) )
或 e 1
7.1 拉伸图和条件应力-应变曲线 1.拉伸图及条件应力-应变曲线
下图所示为退火低碳钢的拉伸图。图的纵坐标表示载 荷,横坐标表示标距的伸长。
将拉伸图的纵坐标除以试样原始断面积,即得条件应力
0
P P0
将拉伸图的横坐标除以试样标距长度,即得相对伸长
l
l0
根据上两式可由拉伸图作出条件应力-应变曲线。
S B n
第六节真实应力应变曲线教学课件
通过建立精细化模型和采用高性能计 算技术,实现对复杂结构和材料的精 确模拟与预测。
在未来工程领域的应用前景
航空航天领域
新材料与新技术的出现为航空航天领域提供了更 轻量化和高性能的结构方案。
新能源领域
在风力发电、核能等领域,真实应力应变曲线的 研究有助于提高设备的稳定性和可靠性。
生物医疗领域
根据真实应力应变曲线的分析和失效原因的确定,可以制定有效的 预防措施,提高结构的可靠性和安全性。
Cห้องสมุดไป่ตู้APTER
实验目的与要求
掌握真实应力应变曲 线的测量原理和方法。
培养实验操作技能和 数据处理能力。
了解材料的力学性能 和变形行为。
实验设备与材料
材料
不同种类和规格的金属材料
设备
万能材料试验机、引伸计、计算机及数据处理软件
总结实验结论。
CHAPTER
新材料与新技术的出现
高强度轻质材料
如碳纤维复合材料、钛合金等, 具有更高的强度和轻量化特性, 能够显著提升构件的承载能力。
智能材料
如形状记忆合金、压电陶瓷等, 具有自适应和传感功能,可用于 监测结构健康状况和实现自适应 控制。
实验方法的改进与创新
新型测试技术
如光学显微镜、X射线衍射等,能够 实现非破坏性和原位测试,提高测试 精度和效率。
使用。
行为和承载能力的信息,有助于保证结
构的安全性和稳定性。
CHAPTER
直接测量方法
01
02
03
拉伸试验
通过拉伸试样直接测量真 实应力应变曲线,需要使 用高精度测力计和拉伸机。
压缩试验
通过压缩试样直接测量真 实应力应变曲线,需要使 用高精度测力计和压缩机。
1.应力应变曲线
材料的力学性能材料力学性能:材料抵抗变形和断裂的能力。
保持设计要求的外形和尺寸,服役过程:保证在服役期内安全地运行。
拉伸应力-应变曲线示意图应力腐蚀破裂发生具有如下三个基本特征拉伸性能通过拉伸试验可测材料的弹性、强度、延性、应变硬化和韧度等重要的力学性能指标,它们是材料的基本力学性能。
力作用于材料弹性变形弹塑性变形断裂静力拉伸试验-模型图静力拉伸试验-实物图拉伸试验结果➢L0-原始标距(original gauge length)➢L c -平行长度(parallel length)➢S 0-试件工作部分的原始横截面积低碳钢的拉伸图——加载后标距间的长度变化量∆L ~载荷F 关系曲线应力-应变曲线工程应力(或名义应力,也简称作应力)R ---力除以试件的原始截面积即得工程应力,R =F /S 01伸长率(或工程应变,也简称作应变)e ----伸长量除以原始标距长度即得工程应变,e =ΔL /L 0,ΔL =L -L 0,其中L 为加载中伸长后的标距长度2低碳钢的工程应力-工程应变曲线弹性变形单纯弹性变形过程中应力与应变的比值。
比例极限R p (原标准,符号为σp )应力和应变成严格的正比关系的上限应力。
弹性模量E eR E /=弹性极限R e (原标准,符号为σe )材料发生可逆的弹性变形的上限应力值。
对于多数材料,与比例极限接近。
低碳钢的工程应力-工程应变曲线规定塑性延伸强度所谓规定塑性延伸强度,是拉伸中当试样的塑性伸长率等于L 0的某一百分率时,所对应的应力值。
规定塑性延伸强度求规定塑性伸长率为0.2%的强度塑性伸长率为0.2%的点R p0.2工程上最常用的强度指标,传统使用的符号为σ0.2。
R p0.01,R p0.5测力弹簧?石油管线钢?炮管钢?A B 有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)屈服在拉伸试验期间,出现力不增加但仍旧能发生塑性变形的现象叫作屈服或不连续屈服。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
金属拉伸试验
3、强度性能指标
(抗拉强度Rm)
4、塑性性能指标
(断后伸长率A、屈服点伸长率Ae、最大力下的 总伸长率Agt、最大力下的非比例伸长率Ag和断面 收缩率Z)。
2008.11
4
金属拉伸试验
1、物理屈服性能指标 具有物理屈服现象的金属材料,其拉伸曲
线有如下几种类型。
2008.11
5
金属拉伸试验
拉伸试验---是金属材料力学性能测试中最 重要的试验方法之一。
2008.11
2
金属拉伸试验
一、测定金属材料的强度及塑性指标 1、物理屈服性能指标
(上屈服强度ReH、下屈服强度ReL)
2、规定微量塑性伸长强度指标
(规定非比例延伸强度RP、规定总延伸强度Rt、 规定残余延伸强度Rr)
2008.11
Re L
FeL So
2008.11
6
金属拉伸试验
ReH
FeH So
ReL
FeL So
2008.11
7
金属拉伸试验
ReH
FeH So
ReL
FeL So
2008.11
8
金属拉伸试验
ReH
FeH So
ReL
FeL So
2008.11
9
ab
金属拉伸试验
2、规定微量塑性伸长强度指标
规定非比例延伸强度 ( Rp )
2008.11
12
金属拉伸试验
3、强度性能指标 (抗拉强度Rm) 抗拉强度(Rm) ---试样拉伸过程中最大试验
力所对应的应力。
Rm
Fm So
2008.11
13
金属拉伸试验
4、塑性性能指标 (断后伸长率A、屈服点伸长率Ae、最大力 下的总伸长率Agt、最大力下的非比例伸长 率Ag和断面收缩率Z)。
最小横截面积 Sμ。
S 0 Sμ 100% S0
2008.11
18
金属拉伸试验
二、拉伸真实应力应变曲线s-ψe及lgs—lge 曲线的绘制
真实应力: S= F/A
真实伸长率: e l de ln l
l l 0
l0
A dA A
真实断面收缩率:
ψe
ln
A A0
A0
金属拉伸试验
实验内容
1、测定单向拉伸时金属材料的强度及塑性指 标。ReL、Rm、A、Z
2、绘制拉伸真实应力应变曲线s-ψe及lgs—lge 曲线, 根据曲线确定 D 、n,并测定Sb、 SK。
2008.11
1
实验原理
金属拉伸试验
拉伸试验---对一定形状的试样施加轴向试 验力( F)将试样拉至断裂。
n=tgβ
2008.11
β
0
lg|Ψe|
23
金属拉伸试验
真实抗拉强度:
Sb=Fm/A
真实断裂强度:
SK =Fk/Ak
2008.11
24
金属拉伸试验
实验报告要求
1、记录试验过程中的原始数据。 2、按原始数据绘制曲线并计算出各性能指
标。
2008.11
25
THE END
2008.11
26
2008.11
14
金属拉伸试验
断后伸长率---试样拉断后,标距部分的残余伸
长与原始标距的百分比。
断后伸长率A的测定:将拉断后的试样的断裂
部分在断裂处紧密对接在一起,测出试样断裂后 标距间的长度Lμ。
A Lμ L0 100% L0
2008.11
ห้องสมุดไป่ตู้15
金属拉伸试验
试样断裂位置对A的大小有影响 1)直测法 : 断裂处到最邻近标距端点的距离大
于L0/3
2)移位法 : 断裂处到最邻近标距端点的距离小
于或等于L0/3
2008.11
16
金属拉伸试验
Lμ:AO+OB+2BC
2008.11
Lμ:AO+OB+BC+BC1
17
金属拉伸试验
断面收缩率 Z --试样拉断后,颈缩处横截面的
最大缩减量与原始横截面积的百分比。
断面收缩率Z的测定:测出断裂后试样颈缩处
金属拉伸试验
均匀变形阶段 S=ken
lgs=lgk+nlge
在双对数坐标下真实应力应变曲线是一条直线。
n 为直线的斜率,即硬变硬化指数。
e ψe
lg S- lg e
lgs - lg|ψe|
2008.11
22
金属拉伸试验
绘制出lgS-lge( lgs - lg|ψe|)曲线,求得n。
lgs
---试样标距部分的非比例伸长达到规定的原始标 距百分比时的应力。
2008.11
10
金属拉伸试验
例如,非比例伸 长率εp为0.1%、 0.2%和0.5%时 的应力分别为 Rp0.1、Rp0.2、Rp0.5
2008.11
11
金属拉伸试验
根据 力一伸长曲线 测定规定非比例延伸强度。
Rp
Fp So
2008.11
27
2008.11
28
2008.11
29
2008.11
30
2008.11
19
金属拉伸试验
S = F/A
F . . .
A dA A
ψe
A0
A
ln A0
d
. . .
2008.11
20
金属拉伸试验
形变强化模数 D
将 s-ψe 曲线的直线部分向两端延长,它的斜率
看作常数。
S
D ds tgα
α
dψe
2008.11
0
|Ψe|
21
e ψe