碳量子点研究

碳量子点研究
碳量子点研究

摘要

碳量子点是一种以碳元素为主体的新型荧光碳纳米材料,碳量子点具有许多优良性质主要包括:荧光稳定性高且耐光漂白、激发光宽而连续、发射光可调谐、粒径小分子量低、生物相容性好且毒性低和优良的电子受体和供体等特性还有比传统金属量子点更为优越的特点。碳量子点不但克服了传统有机染料的某些缺点,而且有分子量和粒径小、荧光稳定性高、无光闪烁、激发光谱宽而连续、发射波长可调谐、生物相容性好、毒性低等优点。更易于实现表面功能化,被认为是一种很好的理想材料。对近几年国内碳量子点的研究现状,对电弧法、激光剥蚀法、电化学法、模板法等合成碳量子点的方法进行了简单的介绍,以及合成碳量子的方法分类,论述了碳量子点有望取代传统半导体量子点,在生物成像、发光探针分析等领域进行广泛的应用。检测重金属离子,检测小分子,溶液的酸碱性具有越来越重要的作用,是一种新型的纳米材料。为此,开展荧光碳量子点的基础研究具有重要的理论意义和应用价值,成为近几年的研究热点。本研究中对其性质,合成以及其应用进行了几个方面的综述。

关键词:碳量子点;材料;合成;应用;

Abstract

A quantum dot is a carbon carbon as the main element of the new carbon nano fluorescent material having a plurality of quantum dots carbon excellent properties including: light stability, and high bleaching fluorescence excitation light wide and continuous light emission can be tuned to a small particle size low molecular weight, low toxicity and good biocompatibility and excellent electron acceptor and donor still more excellent characteristics than the conventional metal quantum dots characteristics. Carbon not only overcome the quantum dot certain disadvantages of the conventional organic dye, and a small molecular weight and particle size, high fluorescence stability, no light flashes continuously broad excitation spectrum, the emission wavelength can be tuned, good biocompatibility, low toxicity and so on. Easier to implement the function of the surface is considered to be an ideal material good. In recent years, research on the status of domestic carbon quantum dots, quantum dot synthesis method for carbon arc, laser ablation, electrochemical method, template method for a simple introduction, as well as the synthesis of carbon quantum method of classification, discusses carbon quantum dots are expected to replace traditional semiconductor quantum dots, in the field of biological imaging, luminescence probes for extensive analysis applications. Detection of heavy metal ions, the detection of small molecules, the pH of the solution has an increasingly important role, is a novel nanomaterials. To this end, the basic research carried out fluorescent carbon quantum dots has important theoretical significance and application value and become a research hotspot in recent years. The study was reviewed several aspects of its nature, synthesis and their applications.

Keywords: carbon quantum dots; materials; synthesis; application

目录

第1章绪论 .................................................................................................................... - 1 -

1.1 碳量子点 .............................................................................................................. - 1 -

1.2 碳量子点的优良性质 .......................................................................................... - 1 -

1.2.1 荧光稳定性高且耐光漂白 ........................................................................ - 2 -

1.2.2 激发光宽而连续 ........................................................................................ - 2 -

1.2.3 发射光可协调 ............................................................................................ - 2 -

1.2.4 粒径非常小且分子量低 ............................................................................ - 2 -

1.2.5 生物相容性良好且毒性很低 .................................................................... - 2 -

1.2.6 良好的电子受体和供体 ............................................................................ - 2 -

1.2.7 碳量子点的光学特性 ................................................................................ - 3 -

1.3 本论文的主要研究内容及意义 .......................................................................... - 3 - 第2章碳量子点的制备 .................................................................................................. - 4 -

2.1 合成材料的选择 .................................................................................................. - 4 -

2.1.1 石墨作为碳源 ............................................................................................ - 4 -

2.1.2 活性炭作为碳源 ........................................................................................ - 4 -

2.1.3 蜡烛燃烧灰作为碳源 ................................................................................ - 4 -

2.1.4 油烟等作为碳源 ........................................................................................ - 4 -

2.1.5 碳水化合物作为碳源 ................................................................................ - 4 -

2.1.6 其他含碳化合物 ........................................................................................ - 5 -

2.2 碳量子点的制备方法 .......................................................................................... - 5 -

2.2.1激光消融法 ................................................................................................. - 5 -

2.2.2 热解燃烧法 ................................................................................................ - 6 -

2.2.3 电化学方法 ................................................................................................ - 6 -

2.2.4 电弧放电法 ................................................................................................ - 7 -

2.2.5 微波法 ........................................................................................................ - 7 -

2.2.6 超声法 ........................................................................................................ - 7 -

2.2.7 强酸氧化法 ................................................................................................ - 7 -

2.2.8 水热法 ........................................................................................................ - 8 -

2.2.9模板法 ......................................................................................................... - 8 - 第3章碳量子点的应用 .................................................................................................. - 9 -

3.1碳量子点在生物标记与细胞成像中的应用 ....................................................... - 9 -

3.2碳量子点在生物分析检测中的应用 ................................................................... - 9 -

3.3 碳量子点作为荧光探针的应用 .......................................................................... - 9 -

3.3.1检测金属离子 ........................................................................................... - 10 -

3.3.2检测溶液pH值 ........................................................................................ - 10 -

3.3.3检测小分子 ............................................................................................... - 10 -

3.3.4检测具有生物活性的大分子 ................................................................... - 10 -

3.3.5在活体成像中的运用 ............................................................................... - 10 -

3.4 碳量子点的其他方面的应用 ............................................................................. - 11 - 第4章总结 .................................................................................................................. - 12 - 参考文献 .......................................................................................................................... - 13 - 致谢 ................................................................................................... 错误!未定义书签。

第1章绪论

半导体材料中,微小晶体通常被称作量子点(quantum dot)。这种量子点可以把电子锁定在一个非常微小的三维空间内,当有一束光照射上去的时候电子会受到激发跳跃到更高的能级。当这些电子回到原来较低的能级的时候,会发射出波长一定的光束。

量子点,我们还把它叫做纳米晶,其粒径一般介于1~10 am之间,因为其电子和空穴被其他量子所影响,被激发以后能发射荧光,其在医疗分析检测、光学方面等领域有很广阔的应用空间。但是量子点有某些缺点就是其中含有重金属离子,这些重金属离子对我们的身体能造成损害,我们在使用中也会对我们身边的环境造成很严重的污染,更严重的是对生物体和细胞有很强的毒性,所以寻找一种环保且物兼容性良好的荧光材料成为了我们研究的热点[1]。在2004年美国克莱蒙森大学的科学家等[2]第一次制造出一种新型的碳纳米材料一碳量子点,与传统的半导体量子点和有机染料相比,这种新型碳纳米材料不仅具有传统碳材料的优点既毒性很小、生物相容性好等特性,而且还拥有一些无可比拟的优势那就是它的发光范围可调、双光子吸收截面大、光稳定性良好、没有光闪烁、易于功能化、便宜、容易大规模合成等特性。由于碳量子点的这些优越性质,其在生物以及药物领域中的应用越来越广泛。

1.1 碳量子点

碳量子点是最近几年新发展起来的又一种新型的碳纳米材料,它不仅具有传统纳米材料的结构特点,又具有其他纳米材料没有的优点,而且还有比传统金属量子点更为优越的特性。碳量子点不仅克服了传统有机染料和纳米材料的某些缺点,而且它还具有分子量和粒径小、荧光稳定性高、无光闪烁、激发光谱宽而连续、发射波长可调谐、生物相容性好、毒性低等优点。易于实现表面功能化,被认为是一种很好的理想材料[1-3]。由于碳量子点具有以上所述的许多优点,它在生物标记与细胞成像以及无机离子的检测等领域有越来越广泛的应用。因此,对碳量子点进行一些基础研究,是有非常重要的理论意义和实用价值,是我们近几年的研究热点。

发光碳量子点(Carbon dots ,CDs)同样具有荧光信号稳定、没有光闪烁、激发波长和发射波长可被调控等独特的光学性质,以及生物毒性小和生物相容性好等优点,逐渐成为碳纳米材料的研究热点,是碳纳米材料家族的新秀。它不仅具有与传统量子点的发光特性与小尺寸特点相似,而且还具有碳量子的水溶性好和生物毒性低等特性,使得它是传统半导体量子点在生物方面等应用中很好的原料[4]。

1.2 碳量子点的优良性质

碳量子点与其他量子点一样,如果被激发光照射以后,光性能更加良好。碳量子

点的优良性质主要包括:荧光稳定性高且耐光漂白、激发光宽而连续、发射光可调谐、粒径小而且分子量低、生物相容性好且毒性低和是优良的电子受体和供体等。碳量子点的性质概括为以下几点[4-6]:

1.2.1 荧光稳定性高且耐光漂白

如果一些碳纳米材料被连续不断的激发光照射以后,其中有机燃料的衰退速度比其他的纳米材料快,且较容易被漂白,而碳量子点具有荧光强度较高,光稳定性非常好,很难被光漂白等特点,这使得它被激发光连续不断照射数小时以后其光学强度也不会随之变化,其强弱仍然保持不变。

1.2.2 激发光宽而连续

就我们所知,许多荧光试剂的激发波长不相同而且它们的激发光谱宽度很窄,因此它们无法达到我们预期多色检测的效果,但是碳量子点的激发光谱却可从可见光区一直到延伸到近红外光区,其还具有一元激发,多元发射的优点。

1.2.3 发射光可协调

不同的碳量子点有不同的光化学性质,它们的激发光谱却相似,但是发射光谱却相差比较大,这一点与我们所知道的传统量子点极为相似。碳量子点的发射波长的范围大,从可见光区可以一直延伸到近红外光区,这一特性就弥补了传统有机荧光试剂在发射波长范围的一个缺陷。

1.2.4 粒径非常小且分子量低

同有机荧光试剂相比,传统的金属量子点的粒径相对较小,一般情况下在10 nm 以上,且分子量大部分都很大。然而最让人值得注意的是,碳量子点的粒径大多数只有几纳米,其分子量也只大约在几千到几万之间。与其他量子点比起来,碳量子点的粒径最小,由此将导致它最容易以内吞方式进入细胞内部,这种现象很容易发生。因此它在生物研究方面有很广阔的应用前景。

1.2.5 生物相容性良好且毒性很低

我们只有选用低毒甚至无毒的发光纳米材料于活细胞的研究中,只有这样细胞和生命体的活性才不会被影响。但是金属量子点一般都含有很多重金属,尽管其浓度很低,然而它的毒性却非常大,我们即使用很多种有机聚合物,其表面被加以修饰后的量子点,他们的毒性仍然存在,这样一来很容易细胞被伤害甚至严重时会发生死亡。荧光碳量子点是以低毒的特性而被广泛应用在生物领域,且是以碳元素为基质而合成的一种新型荧光纳米材料。

1.2.6 良好的电子受体和供体

碳量子点具有一些光化学性质,这些性质与其他半导体纳米晶体所类似,所以碳量子点既可作为优良的电子供体又可作为电子受体,碳量子点的发光可以被电子受体4-硝基甲苯和2,4-二硝基甲苯所猝灭,如果其被置于甲苯溶液中,而且碳量子点的发光可以更有效地被更强的电子受体所猝灭。

1.2.7 碳量子点的光学特性

碳量子点的光学特性主要有以下几点[7-9]:(a)激发依赖性;(b)光学稳定性;(c)pH 依赖性;(d)电化学发光;(e)发射上转换荧光。

最近这几年,碳量子点的基础研究和实际应用中,最引人注意的特征是它的光学性质。碳量子点荧光具有非常独特的光学性质,1)具有很好的光学稳定性,碳量子点在纯水溶液中如果被激发的荧光连续照射几个小时后,我们是观察不到的光眨眼和光漂白这种现象的;2)荧光具有激发依赖性,也就是当激发波长不同时,发光波长会发生不同显著的移动,此种现象在我们研究的碳量子点中很常见,是碳量子点所特有的性质;3)紫外区域有很强的吸收,其被表面钝化后,在一定的波长范围内,吸光率会显著的增加;4)具有pH 依赖性,当pH发生变化时,其荧光强度也发生相应的变化。但不同合成条件下制备的碳量子点对pH响应却大不相同。当pH高于或低于4.5时荧光强度会发生明显下降,并且荧光具有pH 值可逆性;5)具有电化学发光性质。当用+1.8~-1.5V电压电化学氧化石墨以后会得到约2 nm碳量子点,其具有电化学发光性质,可惜的是已经被证明它的表面有缺陷;6)能够发射上转换荧Lee 等人用电化学法制备出的碳量子点能够把低能量可见光转化成近紫外荧光。

1.3 本论文的主要研究内容及意义

最近几年碳量子点的研究非常活跃,由不同的原料和新的合成方法合成的新型荧光碳纳米材料的应用也较广泛。在生命科学领域和药物领域应用拓展也较快。但是我们对碳量子的研究仍处于起步阶段,还有许多理论知识和实际应用需要我们进一步的探讨。例如怎样找到一种简便快速合成碳量子点的方法,如何增加其荧光性能,如何拓宽其在其他领域的应用,针对以上几个问题,本论文的研究内容主要如下:1总结碳量子点的优良性质

2探索了碳量子点的合成方法,找出一种能简便快捷且能大批生产碳量子点的方法。

3概括总结其在各个领域的应用。

第2章碳量子点的制备

2.1 合成材料的选择

在以无机碳作为碳源来制备碳量子点的过程中,如果采用不同的方法,所制得的碳量子点的性能会有所差异。目前主要采用了电化学法、普通酸氧化法,超声辅助酸氧化法及激光辅助法制备等[10]。

2.1.1 石墨作为碳源

用激光来消融石墨碳靶需要在水蒸气中其中氩气为载气,然后再加入硝酸进行回流所得到的是不发光的碳纳米颗粒。实验表明在有机溶剂中用激光照射石墨粉悬浊液,可制备出粒径大小约为 3 nm 的荧光碳点,此方法制备过程非常简便,当有机溶剂发生改变,碳量子点表面包裹情况的优点也随之改变。所以此法可以制备出荧光发射波长可调的碳点。该方法是制备和钝化同时完成的,制备步骤被简化了,只要我们选择正确的溶剂,碳量子点的荧光性能就可以得到很好的提高[11]。

2.1.2 活性炭作为碳源

将活性炭作为碳源,用无水碳酸钠中和至中性,先离心除去大块杂质,然后透析除去大量离子,便得到棕黄色悬浮液的碳点。另外Li 等也用活性炭作为碳源,与一定量30%的过氧化氢相混合,在超声下处理2 h,可得到较大粒径的碳量子点[12]。2.1.3 蜡烛燃烧灰作为碳源

用蜡烛灰为碳源,硝酸氧化法所制备的碳量子点。不同的是,前者先中和透析可得到纯化的碳量子点,可是其量子产率较低[6],如果我们想要碳量子点被进一步分离可运用琼脂糖凝胶电泳对其加以处理,便得到了不同的碳量子点,这些碳量子点粒径大小不同且发射峰位置也不相同[8 ]。

2.1.4 油烟等作为碳源

用油烟作为碳源且,在磁力搅拌的作用下,硝酸氧化回流,用碳酸钠将溶液中和至中性,然后用透析袋除盐,并且当加入 3 倍体积的丙酮以后后,然后加入超纯水超声分散,再用超滤管除去我们不需要的大颗粒物质,我们便得到粒径大约为 1.5 nm 的荧光碳点。此碳量子点被加以修饰后得到的荧光性能较其他的量子点更强更稳定,而且受各种猝灭剂及环境因素的影响大大减小了[13]。

2.1.5 碳水化合物作为碳源

第一采用浓H2SO4 来脱水然后加入硝酸进行氧化便得到荧光很微弱的碳纳米颗

粒,经进一步钝化处理即得到荧光很强碳点,其量子产率被大大的提高了。Zhu[ 8]等报道了用糖类物质为碳源,把其和聚乙烯乙二醇溶解到水中,微波辅助加热便制备出碳量子点。其中该方法是制备与钝化一步完成,所得到的产物荧光性能和微波处理时间大不相同[12]。

2.1.6 其他含碳化合物

采用一种较简单而有效的新方法来合成碳量子点,并研究量子产率提高的有效途径以及可能的发光机理。以EDTA盐为前驱体,在300℃低温下热解制备出碳纳米粒子,再对其进行表面修饰,可实现进一步的表面功能化,从而实现从亲水到亲油的转变。所的产物表面带负电荷,且易溶于水,量子产率高达32-40%。如果以乙二胺和四氯化碳混合后回流干燥得到的碳氮聚合物粉末,把其放入管式炉中,在600℃焙烧,并且有氮气参与,将收集到的棕色烟灰分散到乙醇中便得到棕黄色的悬浮液,在滤除我们不需要的大颗粒后用不同分子量的透析袋透析以除去有机小分子,可分离出发不同强的荧光的碳量子点的悬浮液[12]。采用此方法制得的碳量子点不需要任何表面钝化[11]。

2.2 碳量子点的制备方法

目前合成荧光碳量子点的方法可以分成两类[7]:一是由上到下的合成方法主要包括电弧放电、激光剥蚀、电化学氧化和水热法等;二是从下到上的合成方法,包括燃烧法和热解法等,这种方法的特点是要选择合适的含碳前驱物。一般来讲,用这两种方法合成的水溶性碳量子点表面含有羧基,需要进一步借助离心、透析或电泳等分离手段得到水溶性高效荧光碳量子点。

目前制备碳量子点的方法很少,现有三种技术被报道来制备具有荧光性质的量子点[12-14]:

(1)高温高压切除法

用激光从石墨粉表面切下碳纳米粒子,将其与有机聚合物混合后,便获得具有光致发光特性的碳量子点。

(2)蜡烛燃烧法

通过收集和酸处理蜡烛灰,得到表面具有梭基和轻基的亲水性碳量子点,直径约1nm 。

(3)热解法

2.2.1激光消融法

美国克莱蒙森大学的孙亚平等[2]课题组在2006年最早使用的激光消融技术合成了荧光CDs,他们的合成方法是碳粉与粘合剂的混合物经热压、分级烘烤、固化、热处理制得碳靶,碳靶在氩气和水蒸气的流动气流中经激光消融,最后在硝酸中加热回流

12 h以上制备出粒径为3.10 am的CDs,被进一步表面钝化后,便呈现出稳定的强荧光。

2.2.2 热解燃烧法

热解法大多以含碳有机物为前驱体,然后加入胺类配体混合共热,来制备出表面含有氨基N掺杂CDs[14]。柠檬酸钠是一种我们常见的碳源,当分别与不同链长的含氨基配体在不同极性的溶剂中共热时,就能能制得亲水与疏水CD[15]。

碳前驱体都可用于合成CDs,且结构越疏松、孔径越大越容易被氧化,生成量子产率高的CDs。

在2007 年,刘等[15]研究组人员用铝箔或玻璃片收集蜡烛灰被HNO3氧化,经过离心透析后分离得到荧光碳量子点。相似地,Chen等[15]人也发现天然气燃烧以后产生的灰经过相同的处理后能发出蓝色荧光。热解法指选择某种合适的前驱物在一定温度下将其热解碳化,然后进一步分离提纯便得到了荧光碳量子点。

2.2.3 电化学方法

电化学反应具有比一般我们常见的基本化学反应具有更强的氧化能力和还原能力,所以在荧光CDs的合成与发光机理的探究中占有很重要的地位。在“up-to.bottom”的合成方法中,多壁碳纳米管和石墨烯是我们所用的两种主要的碳源。调节扫描电压和控制电解速度以后,能将大块碳材料氧化分解制得到小粒径的发光碳纳米颗粒。此外,电解质溶液的选择也是研究碳纳米颗粒电化学方法合成中非常重要的部分。现有两种方法简单介绍如下[14-16]:

(1)电化学扫描法:在乙睛和四丁基高氯酸钱支持电解质中,通过电化学循环伏安扫描,使四丁基高氯酸按进入碳纳米管的间隙,从碳纳米管的缺陷处剥落下碳量子点(直径约2.5llln)。此方法制备的碳量子点相对前两种方法, 电化学法更易实现大规模快速生产。实验研究表明,上述制备方法经处理可以得到高密度、尺寸分布均一的球形碳量子点,其量子效率为4%-10 %,无“光闪烁”缺陷,发光性质十分稳定,而且具有很长的荧光寿命。

(2)电化学氧化:Zhou等首次提出了用电化学氧化多壁碳纳米管的方法合成CDs,即用脱气后的四丁铵高氯酸盐乙腈溶液为支持电解质,以经过化学气相沉积法生长在碳膜上的多壁碳纳米管为工作电极,铂丝为对电极,Ag/AgClO4为参比电极,随着所加循环电压时间的变化,溶液由无色变为黄色、深棕色。后经过分离、纯化等步骤得到了粒径为2.8 ± 0.5 nm 的CDs。该CDs 的荧光量子产率为 6.4%,但是整个合成过程是在有机溶剂中进行且相对复杂,不适合大批量制备。虽然Zhao 等的方法相对绿色环保,但其荧光量子产率仅为 1.2%。为了解决这一问题,Lu 等结合离子液的特性(如蒸汽压可忽略性,热稳定性,电位窗宽,粘性低,离子导电性良好和可回

收性等),提出了用离子液来替代有机溶剂,用辅助电化学法剥脱石墨电极合成了CDs。该方法相对环保,而且实验研究表明,只要通过改变离子液与水的比例就可以合成出不同形态的碳纳米材料,并可实现CDs的荧光发射波长从紫外区到可见光区的调控。

2.2.4 电弧放电法

在2004 年,Xu 等[16]首次通过从上到下(电弧放电)的方法,在不经意间发现由电泳分离可得到不同大小和分子量的碳管颗粒,在2006 年,孙亚平课题组用激光剥蚀石墨产生的足够小的碳颗粒,然后被聚合物包裹后,就能得到在可见区域荧光可调的碳颗粒,我们把它称之为碳量子点。如果进一步改进了上面的方法,把碳量子点的合成和表面钝化同时进行,在2007 年Zhou 等第一次利用多壁碳纳米管作为电极通过电化学法合成了粒径~3 nm 的碳量子点。其他研究组通过改变前驱物和电解液等制备具有光致发光和电致发光信号的碳量子点。在2010 年,我们课题组利用首次利用水热法切割石墨烯纳米片,得到大小约10 nm 左右的蓝色荧光石墨烯量子点。最近,Huo 研究组用活性炭为前驱物,制备了生物兼容性的碳量子点。

2.2.5 微波法

微波合成法具有加热均匀、操作简捷,尤其能够很显著缩短反应时间等特点,近几年来受到人们的广泛关注。在“up-to.bottom’’的合成方法中,主要以碳水化合物为碳源,酸、碱、金属阳离子、阴离子等均能影响微波反应的速率。此外,微波法还能结合成核与修饰两个步骤为一体,一步法制备表面钝化的CDs。Yang等通过微波加热混合溶液,此混合溶液是蔗糖与PEG200的混合物,制得钝化的CDs[17]。

2.2.6 超声法

超声化学法是近年来备受瞩目的一种新型制备方法,在很短时间内便能产生瞬间的高温和高压及超过1010 K/s的冷却速度,而且伴随强烈的冲击波和射流及放电发光作用,使我们在传统条件下难以进行的反应反而在较短时间内能顺利进行在葡萄糖中直接加入碱或酸,且在超声辅助下就得到了分散性和水溶性都很好的CDs,荧光量子产率为7%。其红外光谱表征表明该CDs 表面富含羟基,且其发射波长从可见光区延伸到近红外光区,是生物领域和药物领域很好的标记物。因此在纳米材料的合成中,超声法发挥着举足轻重的作用[7]。

2.2.7 强酸氧化法

采用强酸氧化法制备CDs时,此方法的优点是碳源比较丰富、易得,且成本较低,此方法主要是通过强氧化酸硝酸氧化一些大颗粒的碳纳米颗粒,这些颗粒主要包括回流蜡灰、天然气烟灰和炭灰等来制备发光CDs。Li等[5]首次提出将收集到的蜡灰用硝

酸回流处理12小时后,经过离心,然后用碱中和过量的硝酸及透析等一系列步骤以后,我们就得到了CDs。此方法得到的CDs 粒径非常不均匀,如果这些产物经过电泳凝胶法处理以后,便得到9种不同粒径的CDs。而且更有趣的是虽然它们的发射波长会随粒径的不同而发生改变,但是它们的激发光谱却基本相同,这为多种标记物的同时检测带来很大希望,同时因其表面含有羧基,所以可在N–羟基琥珀酰亚胺的作用下键合成生物大分子,生物相容性就大大增加了,该方法制得的CDs 可以不需要任何修饰就能成功用于细胞示踪,而且还可实现毫克级CDs的制备。虽然氧化法得到的CDs 均含有羧基,有利于进一步的加以修饰,但是所得产物的荧光其量子产率较低,而且粒径不够均一,分离步骤也相对麻烦。从以上所诉我们可知,此方法虽然原料易得而且价格便宜,但是产率很低,粒径大小不同,探究一种产率好,原料易得的方法是我们要面临的任务。

2.2.8 水热法

Peng等[3]提出用碳水化合物作为碳源,被浓硫酸脱水和硝酸氧化以后便得到碳纳米颗粒,然后经过一种化合物修饰,此化合物末端必须含有氨基,便得到了具有发光性质的CDs。本方法可以通过使用不同的碳水化合物和改变硝酸氧化作用的时间来合成不同粒径的CDs,从而实现对其荧光发射的调控,但需要一定的表面修饰,Zhang 等提出了一种新的方法就是将L–抗坏血酸溶于乙醇中,在180℃的高压反应釜中反应4小时以后,得到粒径为2.0 nm、荧光量子产率为6.79%CDs。所得产物无需任何强酸处理和其他的表面修饰,并能在室温下稳定半年,而且在较宽的pH和离子强度范围内荧光强度不发生改变,显然该方法相对前者更为方便快捷。

2.2.9模板法

Zong等[8]先以十六胺作为表面活化剂,以正硅酸乙酯为前驱体合成了介孔氧化硅球(MS),然后以该MS为反应模板,柠檬酸为碳源,将MS浸泡在柠檬酸溶液后,再烧得了CDs/MS复合物,该复合物经过NaOH的蚀刻除去MS,无需进一步的其他修饰便得到了荧光量子产率为23%的CDs。从以上我们可以得知,模板法可使产率显著增加。

第3章碳量子点的应用

碳量子点被修饰后,荧光明显增强且更加稳定,分子量和粒径都比传统量子点较小,其表面含有氨基,所以它的生物相容性好,毒性很低,成为目前最具应用前景的环境友好型纳米材料尤其是应用于生物医学领域。在分析检测和生物分析检测方面碳量子有广泛的应用前景[18],而且在生物标记与细胞成像方面有着越来越重要的作用。随着对其研究的深入和日趋成熟,它在其他领域的应用前景也是不可估量的[6]。3.1碳量子点在生物标记与细胞成像中的应用

近几年来,荧光碳量子点因其具有独特的光学性能其应用日益更加广泛,不仅在化学生物检测领域,其更主要用于生物标记、细胞成像等方面。Sun等[9]和Liu等[18]将表面钝化后的碳量子点用来标记大肠杆菌细胞,激发波长不同,发出不同颜色的荧光。Yang[10]等研究了掺杂ZnS的碳量子点在老鼠淋巴管中的迁移情况。由于碳量子点粒子小,其在细胞中迁移快,也能可以通过肾脏排出体外,整个实验过程中没有表现出毒性反应。Cao等将碳量子点应用到人体乳腺癌细胞的标记中,他们发现碳量子点可以到达细胞膜和细胞质,但不会到达细胞核,不同粒径的碳量子点到达细胞内的部位也不同,借此可用不同粒径的碳量子点来标记细胞的不同部位Li 等利用由不同试剂钝化后得到的碳量子点与癌细胞融合而荧光成像,他们的实验结果表明:在与细胞孵育后碳量子点能成功进入细胞。如果能与细胞特异作用的转铁蛋白修饰碳量子点表面后,碳量子点能更好地与癌细胞结合,荧光显微成像更加显著。因此碳量子点是一种非常好的荧光标记和成像试剂,为单分子水平研究细胞动力学提供了强有力的手段,在生物医学和细胞成像领域中有广阔的应用前景。

3.2碳量子点在生物分析检测中的应用

荧光碳量子点在生物分析检测中的应用见诸报道的主要是用来测定溶菌酶、葡萄糖、DNA及巯基化合物。刘利芹还用其制备的碳量子点对溶菌酶进行了检测,实验选择pH值为7.4400倍的金属离子,2000倍的糖类,66倍的氨基酸类等不影响测定,其原理可能是溶菌酶加入后能与碳量子点发生静电作用而形成复合物使碳量子点周围负电荷减少。故本法具有较好的实用性,可直接应用于实际样品的检测。本方法简单快速、灵敏度高、选择性好,已成功用于血清样中总巯基化合物的测定[19]。

3.3 碳量子点作为荧光探针的应用

基于CDs的荧光探针己被很广泛的研究,主要可分为两种:一种是基于“荧光猝灭"(turn off)的响应模式,另一种是基于“荧光增强”(turn on)的响应模式,后者的选择性和灵敏度更优于前者,这两种模式都适用于设计基于CDs的荧光探针[11]。

3.3.1检测金属离子

大部分CDs金属离子传感器的响应模式是基于金属离子猝灭CDs荧光。杜迎翔等嗍发现柠檬酸水热法合成的CDs对Fe2+有较好的响应,根据此原理可用于检测氨基磺酸亚铁[10]。此外,曲晓刚等[11]课题组还建立了基于CDs的能量共振转移(FⅪ玎)检测K+的方法,冠醚通过氕哪·相互作用吸附于石墨烯表面,表面修饰氨基的CDs与冠醚发生相互作用而结合,随后就导致荧光猝灭。当加入K+后,冠醚与K+特异性结合使CDs从石墨烯表面脱离,荧光恢复,就实现了溶液中对K+浓度的检测。

3.3.2检测溶液pH值

东北大学徐淑坤等[12]以L.半胱氨酸为碳源水热法制备了荧光CDs,该法合成的CDs对pH呈荧光响应,检测pH线性范围为3.0到5.0。严秀平课题组利用发光石墨烯量子点检测溶液的离子强度及pH,他们发现离子强度增大,荧光强度明显略微下降,当加入氢离子后,荧光就恢复。同时,与非晶形的碳量子点相类似,石墨烯量子点的荧光强度随着pH值的增大呈现下降的趋势,且这种变化具有可逆性。

3.3.3检测小分子

由“荧光增强”法设计的探针可以有效降低不相关背景信号的干扰,所以能够提高检测灵敏度。西南大学黄承志课题组运用此机理,基于磷酸根对Eu3+诱导CDs聚集荧光猝灭的调节作用,实现了磷酸根离子(Pi)的检测。我们知道葡萄糖是动物体内重要的能源物质和新陈代谢的中间产物,检测葡萄糖的浓度具有越来越重要的生理意义。一些研究人员还发现CDs具有类过氧化氢酶的性质,能够催化H202氧化使其本身颜色发生变化,由于其兼具电子的给体和电子的受体的特性,所以CDs有类似过氧化氢酶的特点。而且在催化氧化的过程中,TMB长链中氨基的电子转移到CDs上,发生氧化,溶液便由无色变为蓝色。据此发展了检测葡萄糖的方法[7]。

3.3.4检测具有生物活性的大分子

郑鹄志[5]课题组发展了利用CDs检测DNA的方法,此方法基于亚甲基蓝(MB)吸附于CDs表面后,发生共振能量转移导致CDs的荧光猝灭;当加入靶标DNA双链后知MB因嵌入DNA分子的双螺旋结构而从CDs表面脱离,导致CDs的荧光恢复。陈国南课题组习将CDs吸附在玻碳电极表面的高氟化离子交换树脂中,并在其表面吸附抗体胎蛋白(AFP),当抗体与抗原特异性相结合后,CDs的电致化学发光强度大大下降,实现了CDs在免疫检测中的应用。

3.3.5在活体成像中的运用

康振辉等[20]课题组以在硫酸和硝酸的混合溶液中回流单壁碳纳米管和多壁碳纳米管混合物法合成发射范围覆盖可见到近红外区的CDs,并用于活体体内荧光成像,

有效地避免了生物体的自发荧光。除了作为近红外成像的探针外,CDs在成像领域也同样具有更广阔的应用前景就是它的转换性能。Gu[7]等把石墨烯量子点这种上转换荧光纳米粒子应用于成像中。此种上转换发光是被近红外光激发以后,不仅具有较高的组织穿透力,而且能有效避免生物体自发荧光的干扰,大大降低了对细胞的伤害。此外,CDs还有望替代传统的半导体量子点成为廉价、低污染的敏化剂,被用于太阳电池中。

3.4 碳量子点的其他方面的应用

经过近几年的发展,碳量子点已成功用做生物荧光探针在体内和体外成像。与传统的染料分子和半导体量子点相比,碳量子点有无毒或低毒的特性,良好的生物相容性和环境安全性以及水溶性,这些特性确保了碳量子点可以安全地应用于活体细胞的检测,荧光材料对活体细胞的影响而导致误诊的疑虑就消除了,也可以长时间研究细胞中生物分子之间的相互作用[12]。目前,已有多篇文献报道碳量子点被用作荧光探针应用于细胞和活体的荧光观测。Chen[10]等人利用天然气灰制备发光碳量子点,也可以被用作独特的结构载体,在其上多种过渡金属可以被沉积,从而制得功能化的纳米复合材料。再将功能化的生物兼容性的碳量子点用作纳米传感器,能够检测环境中H (II)的存在,进一步扩大了碳量子点的应用范围。

实验研究表明,碳量子点作为生物标记物在生物体内进行长时间的检测。此外,它还具有宽的激发波长范围,有利于碳量子点作为生物标记物进行多样品的同时检测。最重要的是,它较以往的荧光材料更具有生物安全性, 比其他荧光标记物对生物分子的活性干扰小。实验证明它可以通过细胞的内吞作用进入癌细胞的细胞膜和细胞质而不影响细胞核,所以碳量子点作为生物标记的材料有望可以解决以往荧光材料在生命研究中的安全问题[20]。

第4章总结

通过以上所诉我们可知碳量子点具有粒径小,水溶性好,化学惰性高,易于功能化,耐光漂白、低毒性而且具有良好的生物相溶性等优良的性质,是众多研究者的研究热点。本论文集结了众多研究者对其制备方法的叙述,首先就其合成材料来说如果选用石墨为碳源,虽然其过程简单,但是得到的粒径较小,以活性炭为碳源就弥补了这一缺点。如果是油烟,则得到的碳量子点荧光更强更稳定,我们如果想要提高量子产率,碳水化合物是最好的选择了。其次针对碳量子的制备方法,电化学反应比其他的反应具有更强的氧化能力和还原能力,在荧光CDs中占有很重要的地位,如果我们想要生产大批的碳量子,便可采用电化学扫描法,此方法得到的碳量子高密度,尺寸均一,性质稳定且寿命很长。而电化学氧化法要选择电解质、有机溶剂,其过程相对复杂,而且也不适合大批生产。对于电弧放电法得到碳量子虽然荧光性能好,但其产率较低。如果我们需要在较短的时间内制备出碳量子,微波法能满足这一需要,因此需要探究出一种既能大批生产、荧光性能好、产率高、操作简捷快速的一种新型制备方法是我们需要解决的问题。

碳量子因其荧光性能其用途日益广泛,在生物领域和化学领域有很好的应用前景。在分析检测,尤其生物标记和细胞成像,碳量子点是一种非常好的荧光标记和成像试剂,为单分子水平研究细胞动力学提供了强有力的手段,在生物医学和细胞成像有着越来越重要的作用,解决了我国在生物学和医学方面的许多难题。而且它比其他纳米材料应用更加广泛,比如检测重金属离子、测定溶液的检测溶液pH值、检测小分子等都有着良好的结果。还有就是由于它的低毒性,所以能大大降低对细胞的伤害能成功的被应用于活体成像中,此外,CDs还有望替代传统的半导体量子点成为廉价、低污染的敏化剂,被用于太阳电池中,其应用前景不可估量。虽然我国对碳量子点的研究还处于初级阶段,各个方面的技术还不成熟,它的应用还有一些的限制,比如在医学方面还有某些方面的不足,一些疾病的诊断还有些困难,所以需要我们更加努力的去探究,取得一些突破性的发展。

参考文献

[1]Li H,Wang X.Single quantum dot-micelles coated with gemini surfactant for selective recognition of a cation and an anion in aqueous solutions[J].Sensors and Actuators B:Chemical,2008,134(1):238-244.

[2]Hart M,Gao X,Su J Z,et a1.Quantum-dot-tagged mierobeads for multiplexed optical coding of biomolecules[J].Nature biotechnology,2001,19(7):631—635.

【3】Bruchez M,Mororme M'Gin P,et a1.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281(5385):2013-2016.

[4】Chan W C W,Maxwell D J,Gao X,et a1.Luminescent quantum dots for multiplexed biological detection and imaging[J].Current opinion in biotechnology,2002,l 3(1):40-46.【5】Jaiswal J K,Mattoussi H,Mauro J M,et a1.Long—term multiple color imaging of live cells using

quantumdot bioconjugates叨.Nature biotechnology,2002,2 1(1):47-5 1.

【6】Spanhel L,Haase M,Weller H,et a1.Photochemistry of colloidal semiconductors.20.Surface modification and stability of strong luminescing CdS particles[J].Journal of the American Chemical Society,1 987,109(1 9):5649—5655.

【7】Chan W C W,Nie S.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281(5385):2016-2018

[8】Larson D&Zipfel W R Williams R M,et a1.Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J].Science,2003,300(5624):1434-1436.

【9】Robelek R,Niu L,Schmid E L,et a1.Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and s[1]胡胜亮,白培康,曹士锐,等.脉冲激光制备发光碳纳米颗粒[J].高等学校,2009,30(8) : 1497-1453

[10]廖秋林,陈晓东,丁彦青.脉冲激光制备发光碳纳米颗粒[J].中国病理生理杂志,2008, 24(5) : 40-45

[11]刘亭廷,彭程,马云川,欧阳,等.碳量子点荧光成像法应用于聚丙烯酰胺凝胶电泳[J].化学学报,2013,71(23) : 962-966

[12]张静姝,田磊.发光碳量子点的合成与毒性[J].应用化工,2013,42(8) : 1509-1511

[13]He Shao-Jian , Lin Jun?, Tan Zhan-Ao.Development of Colloidal Quantum Dots based Light-Emitting Diodes[J]物理学进展,2013,33(1) : 27-34

[14]傅英,徐文兰.碳量子点的表征[J].物理学进展,2001,21(13): 255-277

[15]王浩,廖常俊,王金东,刘颂豪.碳量子点的研究进展[J].物理学进展,2006(5),2: 441-451

[16]Oertel D C, Bawendi M G, Arango A C, Bulovic V. Appl. Phys. Lett., 2005, 87 (35): 213503-213505

[17]Konstantatos G, Howard I, Fischer A, Hoogland S, Cliord J, Klem E, Levina L, Sargent E H. Nature, 2006, 442(56): 180-183

[18] Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B, Mauro J M. Nature mater., 2003, 52(6): 630-638

[19] Geissler D, Charbonniere L, Ziessel R, Butlin N, Lohmannsroben H, Hildebrandt N. Angew. Chem. Iint. Edit., 2010, 49 (26): 1396-1401

[20]刘炜.胶体量子点电致发光器件的研究进展[J].物理学进展,2011, 31 (2): 60-69 pectrometry[J].Analytical chemistry,2004,76(20):6160-6165.

量子点的制备及应用进展

龙源期刊网 https://www.360docs.net/doc/8b7485315.html, 量子点的制备及应用进展 作者:于潇张雪萍王才富倪柳松等 来源:《科技视界》2013年第29期 【摘要】本文分别从量子点的概念、特性、制备方法、表面修饰等方面对量子点进行了 描述及讨论,在此基础上,对量子点在生物传感器方面的应用进行了,最后分析了量子点生物传感器的存在的问题,对其未来发展趋势进行了展望。 【关键词】量子点;光学;生物传感器 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。国内外关于量子点传感器的研究非常广泛,例如在生命科学领域,可以用于基于荧光共振能量转移原理的荧光探针检测,可以用于荧光成像,生物芯片等;在半导体器件领域,量子点可以用于激光器,发光二极管、LED等。本文对量子点 的制备方法和应用领域及前景进行了初步讨论。 1 量子点的基本特性及其制备方法 1.1 量子点的特性及优势 量子点的基本特性有:量子尺寸效应、表面效应、量子限域效应、宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应,这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。 (2)量子点可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。正是由于量子点具有以上特性使其在生物识别及检测中具有潜在的应用前景,有望成为一类新型的生化探针和传感器的能量供体,因此备受关注。 1.2 量子点的制备方法 根据原料的不同分为无机合成路线和金属-有机物合成路线,两种合成方法各有利弊。

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序

微波法制备碳量子点及其光学性能研究

摘要 传统的有机染料、半导体量子点等的制备方法复杂,设备和原料成本较高,合成环境 不友好,还容易发生光漂白,并且量子产率较低。作为碳纳米材料领域中的一名新成员,碳量子点(CDs)具有极好的荧光稳定性、水溶性、化学惰性、低毒性、抗漂白性以 及生物相容性,激发波长和发射波长可调控,无闪光现象等优点。另外,碳量子点还有 合成过程简单,仪器设备和原料成本低廉,制备过程可控等优点,使得它可以在生物标 记[1],生物成像和生物传感[2],分析检测[3,4]、光催化[5]和光电器件[6]等领域被 广泛的研宄与应用。 目前已经有很多方法成功合成了具有荧光性能的碳量子点,然而很多合成方法因为制 备过程繁琐,原料相对昂贵,反应时间长,荧光量子产率低等缺点,对碳量子点的应 用前景造成阻碍。因此,当前最重要的是寻找一种合成设备和仪器简单,原料成本低廉,并且能快速有效合成碳量子点,以实现荧光碳量子点的大批量合成。微波法制备 过程简单,反应条件能够程序控制,反应速度快,一步完成合成与钝化,并且荧光量 子产率相对较高,因此能够广泛用于荧光碳量子点的合成。 本实验采用微波合成的方法,以柠檬酸为碳源,尿素为表面修饰剂一步合成具有荧光 的碳量子点。通过改变反应温度、时间,结果得到的碳量子点的碳化程度不一样。此外,对所制备的碳点进行了形态、结构的表征及光学性质的研究。该方法合成操作简单,加热和反应速度快,所需时间短,能量高且均匀,所用原料价格低廉易得,绿色 环保,适用于碳点的大批量生产。 第一章绪论 纳米世界在原子和分子等微观世界和宏观物体世界交界过度区域,纳米的长度量级为 10-9 m。二十世纪后期新兴的纳米材料,其在光学、电学、热学、力学、磁学以及化 学等方面具有优良的特性,使其受到了人们广泛的研究。纳米材料即纳米量级结构材 料的简称。纳米材料狭义上是指用晶粒尺寸为纳米级的微小颗粒制成的各种材料,其 粒径为0.1-100nm。广义上所说的纳米材料包括二维纳米薄膜和纳米材料的超晶格等, 一维纳米线、纳米管、纳米棒等,以及零维的纳米粒子。现在,各种纳米材料在物理,化学,材料科学,临床医学以及生命科学等领域具有广泛应用[7]。 纳米效应是在纳米尺度下,物质的电子波性和原子间的相互作用会受到尺寸大小的影响,此时物质表现出的性质完全不同,纳米材料的熔点,磁性,电学,光学,力学以

量子点发光材料综述

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

碳量子点光催化

Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI Microsphere Yuan Chen 1,2,Qiuju Lu 1,Xuelian Yan 1,2,Qionghua Mo 1,3,Yun Chen 1,Bitao Liu 1*,Liumei Teng 1,Wei Xiao 1,Liangsheng Ge 1and Qinyi Wang 4 Background The exploration and construction of new photocatalysts with high catalytic efficiency in sunlight is a core issue in photocatalysis all the time and is also significant in solv-ing current environment and energy problems [1–3].Recently,bismuth oxyhalides (BiOX,X =Cl,Br,and I)as a novel ternary oxide semiconductor have drawn much attention because of their potential application in photo-catalysis.Among them,BiOI is photochemically stable and has the smallest band gap (about 1.7–1.9eV),which can be activated by visible light irradiation [4–6].How-ever,the narrow band gap could also lead to a quick re-combination of the photogenerated electron –hole pairs.Hence,inhibiting the recombination of the photogener-ated electron –hole pairs was the key point to enhance the photocatalytic property. Carbon quantum dot (CQD),as a novel issue of re-cently found nanocarbons,exhibits excellent photophysi-cal properties.Especially,the strong size and excitation wavelength-dependent photoluminescence (PL)behav-iors would enhance the photocatalytic properties of the CQD-based composites [7,8].Previous studies have shown that the electron-accepting and transport properties of car-bon nanomaterials provide a convenient way to separate photogenerated electrons;thus,enhanced photocatalytic performance can be achieved through the construction of semiconductor/carbon composites [9,10].Notably,the design of complex photocatalysts (TiO 2/CQDs,Ag 3PO 4/CQDs,Bi 2MoO 6/CQDs)to utilize more sun-light has been reported [11–13].Considering such re-markable properties of CQDs and the limitations of the BiOI photocatalytic system,the combination of CQDs and BiOI may be regarded as an ideal strategy to con-struct highly efficient complex photocatalytic systems.In this work,we prepared a CQD/BiOI nanocomposite photocatalyst via a facile hydrothermal process.The re-sults indicated that the CQDs were successfully com-bined with the BiOI microsphere and the introduction of CQDs could efficiently increase the concentration and the migration ratio of the photogenerated carrier,which was the key for the increased photocatalytic property. Methods Reagents All chemicals used in this study were of analytical grade (ChengDu Kelong Chemical Co.)and were used without *Correspondence:liubitao007@https://www.360docs.net/doc/8b7485315.html, 1 Research Institute for New Materials Technology,Chongqing University of Arts and Sciences,Yongchuan,Chongqing 402160,China Full list of author information is available at the end of the article ?2016Chen et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0International License (https://www.360docs.net/doc/8b7485315.html,/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made. Chen et al.Nanoscale Research Letters (2016) 11:60 DOI 10.1186/s11671-016-1262-7

量子点发光材料综述

量子点发光材料综述

————————————————————————————————作者:————————————————————————————————日期: ?

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm错误!未找到引用源。。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构错误!未找到引用源。。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化错误!未找到引用源。。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响错误!未找到引用源。。 1.2.3量子隧道效应

碳量子点的合成、性质及其应用

文章编号:1001G9731(2015)09G09012G07 碳量子点的合成二性质及其应用? 李一婷1,唐吉龙1,方一芳1,2,房一丹1,方一铉1,楚学影1,李金华1, 王一菲1,王晓华1,魏志鹏1 (1.长春理工大学理学院,高功率半导体激光国家重点实验室,长春130022; 2.南昌大学材料所,南昌330047) 摘一要:一碳量子点(C Q D s,CGd o t s o r C D s)是一种新型的碳纳米材料,尺寸在10n m以下,具有良好的水溶性二化学惰性二低毒性二易于功能化和抗光漂白性二光稳定性等优异性能,是碳纳米家族中的一颗闪亮的明星.自从2006年[1]报道了碳量子点(C Q D s)明亮多彩的发光现象后,世界各地的研究小组开始对C Q D s进行了深入的研究.最近几年的研究报道了各种方法制备的C Q D s在生物医学二光催化二光电子二传感等领域中都有重要的应用价值.这篇综述主要总结了关于C Q D s 的最近的发展,介绍了C Q D s的合成方法二表面修饰二掺杂二发光机理二光电性质以及在生物医学二光催化二光电子二传感等领域的应用. 关键词:一碳量子点;光致发光;生物成像;光催化 中图分类号:一T B34;O469文献标识码:A D O I:10.3969/j.i s s n.1001G9731.2015.09.003 1一引一言 碳量子点是一种新型的碳纳米材料,尺寸在10n m以下,是X u等[2]在2004年首次发现的一种未知的荧光碳纳米材料.普通的碳是一种黑色物质,通常被认为发光弱,水溶性弱,然而碳量子点却具有良好的水溶性和明亮的荧光,被称为碳纳米光.过去几年里,在C Q D s的合成二性质二应用等方面都取得了巨大的进步.与传统的半导体量子点和有机染料相比,发光C Q D s具有高水溶性二强化学稳定性二易于功能化二抗光漂白性以及优异的生物特性,良好的生物相容性,在生物医学(生物成像二生物传感二药物传输等)有潜在的应用前景.同时,C Q D s具有优良的光电性质,既可以作为电子给体又可以作为电子受体,这使得它在光电子二催化和传感等领域有广泛的应用价值. 本文主要阐述了近几年在C Q D s领域中的新发展,主要包括C Q D s的合成方法二光学性质二发光机理和在生物医学二光催化二光电子二传感等领域的应用.2一碳量子点的合成二掺杂及纳米混合物 过去的十年,各种制备碳量子点的方法被提出来,这些方法大致分为 自上而下(T o pGd o w n) 和 自下而上(B o t t o mGu p) ,如图1所示.在C Q D s的合成过程中,可以对C Q D s掺杂,制备其纳米混合物. 图1一碳量子点的合成二掺杂及其纳米混合物的示意图 F i g1S c h e m a t i c i l l u s t r a t i o no fC Q D s p r e p a r a t i o nv i a t o pGd o w n a n d b o t t o mGu p a p p r o a c h e sa n d i t s d o p i n g a n dn a n oGh y b r i d 2.1一合成方法 2.1.1一化学烧蚀法 化学烧蚀法是利用强氧化性酸将碳化材料氧化分解成碳量子点.M a o等[3]将收集到的蜡烛燃烧残渣置于5m o l/L H N O3溶液中回流,冷却后,进行离心二渗析二电泳等,得到具有不同发光性质的碳量子点.T i a n 等[4]收集天然气燃烧的残渣,在浓硝酸中回流,调节溶液p H值为中性,除去杂质后,得到粒径不同的碳量子点.这种方法的优点是原材料选择广泛,但是反应条件苛刻,反应过程激烈,碳量子点纯化步骤繁琐,制得的碳量子点粒径难以控制. 2.1.2一电化学氧化法 电化学氧化法用各种体相碳材料作为前驱体来制备碳量子点的一种强大而有效的方法.Z h o u等[5]首先报道了用电化学法合成碳纳米量子点,当电介质溶 2109 02015年第9期(46)卷 ?基金项目:国家自然科学基金资助项目(61076039,61204065,61205193,61307045);高等学校博士学科点专项科研基金资助项目(20112216120005);吉林省科技发展计划资助项目(20121816,201201116);高功率半导体激光国家重点实验室基 金资助项目(9140C310101120C031115) 收到初稿日期:2014G08G10收到修改稿日期:2014G10G20通讯作者:方一芳,唐吉龙,EGm a i l:j l_t a n g c u s t@163.c o m 作者简介:李一婷一(1990-),女,山西朔州人,在读硕士,师承王晓华教授,从事纳米半导体材料研究.

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

量子点总结

量子点总结

1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos 和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发

射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。

碳量子点及其性能研究进展_史燕妮_李敏_陈师_夏少旭_吴琪琳

10.14028/j .cnki.1003-3726.2016.01.006收稿:2015-03-19;修回:2015-05- 05;基金项目:上海市教育委员会重点创新项目(14zz069)、同济大学先进土木工程材料重点实验室开放基金(201301);作者简介:史燕妮(1991-),女,硕士,主要从事碳量子点的制备及其性能研究。E-mail:YanniShi@o utlook.com;*通讯联系人,E-mail:wq l@dhu.edu.cn.碳量子点及其性能研究进展 史燕妮1,2,李 敏2,陈 师2,夏少旭2,吴琪琳1, 2* (1.东华大学纤维材料改性国家重点实验室,上海 201620;2.东华大学材料科学与工程学院,上海 201620 ) 摘要:碳量子点(Carbon Quantum Dots,CQDs)是一种新型的碳纳米材料,因其强的量子限域效应和稳定的荧光性能等一系列优异性能,吸引了化学、物理、材料和生物等各领域科学家的广泛关注。相比传统半导体金属量子点,CQDs还具备优异的低毒性和生物相容性,更拓宽了其在生物领域内的研究前景。本文简要地介绍了CQDs的制备方法,主要包括自上而下和自下而上两个方向。除此之外,本文综述了CQDs突出的物理化学性质和性能,包括CQDs的荧光性能、生物相容性和上转换效应,并对CQDs在其在生物成像上的应用进行了归纳。 关键词: 碳量子点;荧光;低毒性;上转换效应;生物成像从上世纪90年代初日本科学家IIJIMA首次发现碳纳米管开始,到2010年两位俄罗斯科学家Andre Geim和Konstantin  Novoselov因在石墨烯材料研究上的卓越贡献获得诺贝尔物理学奖,科学家们对于碳纳米材料的研究热潮一直持续高涨[1,2] 。碳量子点(Carbon Quantum Dots,CQDs),通常定义为尺寸在20nm以下的新型碳材料, 由于量子限域效应表现出稳定的荧光性能,尤其是其生物相容性和低毒性大大突破了传统金属量子点材料在生物领域的应用限制[3~5] 。2004年JACs上首次报道了Scrivens等在分离碳纳米管时发现了具备荧光性能的碳纳米粒子,但是其荧光产率很低[6] 。2006年美国 克莱蒙森大学Ya-Ping Sun教授领导的科研小组报道了激光剥离碳源的方法制备的具备较好荧光性能的碳纳米粒子,通过有机分子聚乙二醇等表面修饰,荧光产率可达10%以上并首次称之为碳点。 作为一种新型的荧光材料,CQDs具备更宽而连续的激发光谱、稳定的荧光性能及其良好的生物相容性和低毒性,并且可通过化学修饰的手段实现功能化,在生物成像、标记和检测等领域有着良好的应用 前景[7~11] 。本文就三个研究热点进行了综述,包括碳量子点的制备方法、性能表征以及应用探索并针对 碳量子点在发展过程中存在的问题进行了讨论。 1 碳量子点的制备 从材料学的角度分析,碳量子点的制备方法目前主要探索了两大类:自下而上和自上而下。自下而上的方法具体是指以小分子作为前体通过一系列的化学反应制备碳量子点,尽管理论上可以实现形貌可控,对碳量子点表面边界结构的修饰也比较便捷,但步骤太繁琐,对设备的要求也比较高,例如微波 法[12]、溶液化学法[13] 等。自上而下的方法的主体思路是通过物理或化学的方法将大尺寸的二维碳网平 面结构切割成小尺寸的碳量子点。目前主要采用具有大尺寸的石墨烯薄片的原材料,激光刻蚀法、电化 学氧化法[14]、水热法[15] 都是自上而下的典型代表。其中激光刻蚀法是最早报道的用来制备碳量子点的 方法之一,通常产物尺寸比较大(30~50nm),荧光效应比较弱,有些甚至几乎检测不到,还需经过有机小分子的表面修饰后才表现出强荧光效应,而且对激光设备的要求也比较高。自上而下的方法可以通过调 节各自的反应参数达到对产物尺寸的调控,而对边界结构的控制通常是不容易实现的[ 16] 。研究者用电化学氧化法通过外加电势调节碳量子点尺寸的大小,制备了1~3nm大小的碳量子点, 并发现其荧光性· 93· 第1期 高 分 子 通 报

量子点的制备方法综述及展望

量子点的制备方法综述及展望 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。英语论文。 量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点” 。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。硕士网为你提供计算机硕士论文。 量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。 本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有可制备量子点的种类多、改进纳米颗粒性能的方法多及所量子点的量子产率高等优点,其粒径分布可用多种手段控制,因而成为目前制备量子点的主要方法。 2.1 单核量子点的制备1993 年,Murray 等采用有机金属试剂作为反应前驱物,在高温有机溶剂中通过调节反应温度,合成了量子产率约为10%、单分散(± 5%)的CdSe 量子点。他们采用TOPO 作为有机配位溶剂,用Cd(CH3)2 和TOP-Se 作为反应前驱物,依次将其注入到剧烈搅拌 的350℃TOPO 溶液中,在短时间内生成大量的CdSe 纳米颗粒晶核,然后迅速降温至240℃以阻止CdSe 纳米颗粒继续成核,随后升温 到260~280℃并维持一段时间,根据其吸收光谱监测晶体的生长,当晶体生长到所需要的尺寸时,将反应液冷却至60℃。加入丁醇防止TOPO 凝固,随后加入过量的甲醇,由于CdSe 纳米颗粒不溶于甲醇,通过离心便可得到CdSe 纳米颗粒。通过改变温度,可以将粒径控制在2.4~13nm 之间,且表面的TOPO 可以用吡啶、呋喃等代替。此后,Peng 等又通过进一步优化工艺条件 ,将两组体积不同,配比一定的Cd (CH3) 2、 Se、TOP 的混合溶液先后快速注入高温 TOPO 中的方法制得了棒状的 CdSe量子点,从而扩展了该合成方法对量子点纳米晶粒形状的控制。利用这种方法合成的量子点受到杂质和晶格缺陷的影响,因此量子产率较低。由于Te 更容易被氧化,所以制备高质量的CdTe 要比制备CdSe,CdS 难得多。2001 年,Dmitri.V 等用DDA(十二胺)代替TOPO作反应溶剂合成高质量的CdTe 量子点,量子产率可达65%,且窄的发射光谱覆盖红色和绿色

碳量子点应用简介

碳量子点与各种金属量子点类似,碳量子点在光照的情况下可以发出明亮的光。它在包括改进生物传感器、医学成像设备和微小的发光二极管的很广的领域中都有应用前景。这项研究将发表在6月7日的《Journal of the American Chemical Society》杂志上。 1碳量子点简介 相对于金属量子点而言,碳量子点无毒,对环境的危害小,造价也更便宜。由它制成的传感器可以用来探测爆炸物和炭疽热等生化战剂。克莱蒙森大学化学博士孙亚平说:“碳不是半导体,发光碳纳米粒子不管是从理论角度还是从应用角度看都是非常有意思的。它代表着发光纳米粒子研究的一个新的平台。” 最近几年,量子点的研究非常活跃,尤其是关于它在生物和医学中的应用。量子点一般是从铅、镉和硅的混合物中提取出来的,但是这些材料一般有毒,对环境也有危害。所以科学家们开始在一些良性化合物中提取量子点。 因为碳纳米粒子具有很大的表面积,所以长期以来科学家们一直认为这种纳米粒子相比宏观碳,具有非常奇特的化学和物理性质。孙亚平和同事从石墨中提取出碳纳米粒子,并且证明这些粒子表面覆盖一种特殊的聚合物后,在光照下可以发出非常明亮的光,就像是微小的光球一样。科学家们认为这种光致发光现象可能是由于碳量子点表面的空洞可以储存能量造成的。而金属量子点的发光机制则稍微有些不同。 量子点一般是从铅、镉和硅的混合物中提取出来的,但这些量子点一般有毒,对环境也有很大的危害。所以科学家们寻求在一些良性的化合物中提取量子点。相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉。它的研究代表了发光纳米粒子研究进入了一个新的阶段。 2制备和应用 目前制备碳量子点的方法很少,报道的制备具有荧光性质的碳量子点的方法有: (l)高温高压切除法 利用激光从石墨粉表面切下碳纳米粒子,将其与有机聚合物混合后,即获得直径小于5nm且具有光致发光特性的碳量子点。 (2)蜡烛燃烧法 通过收集和酸处理蜡烛灰,得到表面具有羧基和羟基的亲水性碳量子点,直径约1nm。 (3)电化学扫描法 在乙腈和四丁基高氯酸铵支持电解质中,通过电化学循环伏安扫描,使四丁基高氯酸铵进入碳纳米管间隙,从碳纳米管的缺陷处剥落下碳量子点(直径约2.8 nm)。相对前两种方法,电化学法更易实现大规模快速生产。

碳量子点研究

摘要 碳量子点是一种以碳元素为主体的新型荧光碳纳米材料,碳量子点具有许多优良性质主要包括:荧光稳定性高且耐光漂白、激发光宽而连续、发射光可调谐、粒径小分子量低、生物相容性好且毒性低和优良的电子受体和供体等特性还有比传统金属量子点更为优越的特点。碳量子点不但克服了传统有机染料的某些缺点,而且有分子量和粒径小、荧光稳定性高、无光闪烁、激发光谱宽而连续、发射波长可调谐、生物相容性好、毒性低等优点。更易于实现表面功能化,被认为是一种很好的理想材料。对近几年国内碳量子点的研究现状,对电弧法、激光剥蚀法、电化学法、模板法等合成碳量子点的方法进行了简单的介绍,以及合成碳量子的方法分类,论述了碳量子点有望取代传统半导体量子点,在生物成像、发光探针分析等领域进行广泛的应用。检测重金属离子,检测小分子,溶液的酸碱性具有越来越重要的作用,是一种新型的纳米材料。为此,开展荧光碳量子点的基础研究具有重要的理论意义和应用价值,成为近几年的研究热点。本研究中对其性质,合成以及其应用进行了几个方面的综述。 关键词:碳量子点;材料;合成;应用;

Abstract A quantum dot is a carbon carbon as the main element of the new carbon nano fluorescent material having a plurality of quantum dots carbon excellent properties including: light stability, and high bleaching fluorescence excitation light wide and continuous light emission can be tuned to a small particle size low molecular weight, low toxicity and good biocompatibility and excellent electron acceptor and donor still more excellent characteristics than the conventional metal quantum dots characteristics. Carbon not only overcome the quantum dot certain disadvantages of the conventional organic dye, and a small molecular weight and particle size, high fluorescence stability, no light flashes continuously broad excitation spectrum, the emission wavelength can be tuned, good biocompatibility, low toxicity and so on. Easier to implement the function of the surface is considered to be an ideal material good. In recent years, research on the status of domestic carbon quantum dots, quantum dot synthesis method for carbon arc, laser ablation, electrochemical method, template method for a simple introduction, as well as the synthesis of carbon quantum method of classification, discusses carbon quantum dots are expected to replace traditional semiconductor quantum dots, in the field of biological imaging, luminescence probes for extensive analysis applications. Detection of heavy metal ions, the detection of small molecules, the pH of the solution has an increasingly important role, is a novel nanomaterials. To this end, the basic research carried out fluorescent carbon quantum dots has important theoretical significance and application value and become a research hotspot in recent years. The study was reviewed several aspects of its nature, synthesis and their applications. Keywords: carbon quantum dots; materials; synthesis; application

量子点发光材料简介

量子点发光材料综述 1.1 量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm 左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2 量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又称为宏观量子隧道效应[6][7]。 1.2.4 介电限域效应

相关文档
最新文档