判断输入的字符串是否回文并输出文件

判断输入的字符串是否回文并输出文件
判断输入的字符串是否回文并输出文件

【程序说明】函数int fun(char *s),判断输入的字符串是否“回文”。若是回文,函数返回1,并将回文写入D:\data.dat文件中;否则函数返回0,输出”NO”。(注:字符串顺读和倒读都一样,则是回文。如:“axa”是回文,“1234”不是回文。)

#include

int fun(char *s)

{

char *p,*q;

int n=0;

p=s;

for(;*s!='\0';s++,n++);

q=p+n-1;

for(;p<=q;q--,p++ )

if(*p!=*q)

break;

if(p

return 0 ;

else

return 1 ;

}

void main()

{

char s[80];

FILE *fp;

fp=fopen("d:\\data.txt","w");

gets(s);

if(fun(s)==1)

fprintf(fp,"%s\n",s);

else printf("NO\n");

fclose(fp);

}

最长回文子串

[转]最长回文子串O(n) 这个算法要解决的就是一个字符串中最长的回文子串有多长。这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文有多长, 这个算法有一个很巧妙的地方,它把奇数的回文串和偶数的回文串统一起来考虑了。这一点一直是在做回文串问题中时比较烦的地方。这个算法还有一个很好的地方就是充分利用了字符匹配的特殊性,避免了大量不必要的重复匹配。 算法大致过程是这样。先在每两个相邻字符中间插入一个分隔符,当然这个分隔符要在原串中没有出现过。一般可以用‘#’分隔。这样就非常巧妙的将奇数长度回文串与偶数长度回文串统一起来考虑了(见下面的一个例子,回文串长度全为奇数了),然后用一个辅助数组P记录以每个字符为中心的最长回文串的信息。P[id]记录的是以字符str[id]为中心的最长回文串,当以str[id]为第一个字符,这个最长回文串向右延伸了P[id]个字符。 原串:waabwswfd 新串:# w # a # a # b # w # s # w # f # d # 辅助数组P: 1 2 1 2 3 2 1 2 1 2 1 4 1 2 1 2 1 2 1 这里有一个很好的性质,P[id]-1就是该回文子串在原串中的长度(包括‘#’)。 (证明: 1,显然l=2*p【i】-1即为新串中以s【i】为中心的最长回文串长度。 2,以s【i】为中心的回文串定以#开头和结尾,则l-1为原串长度的2 倍 证毕) 好,我们继续。现在的关键问题就在于怎么在O(n)时间复杂度内求出P数组了。只要把这个P数组求出来,最长回文子串就可以直接扫一遍得出来了。 由于这个算法是线性从前往后扫的。那么当我们准备求P[i]的时候,i以前的P[j]我们是已经得到了的。我们用mx记在i之前的回文串中,延伸至最右端的位置。同时用id这个变量记下取得这个最优mx时的id值。(注:为了防止字符比较的时候越界,我在这个加了‘#’的字符串之前还加了另一个特殊字符‘$’,故我的新串下标是从1开始的) 好,到这里,我们可以先贴一份代码了。 复制代码 1. void pk() { int i; int mx = 0; int id; for(i=1; i i ) p[i] = MIN( p[2*id-i], mx-i ); else p[i] = 1; for(; str[i+p[i]] == str[i-p[i]]; p[i]++) ; if( p[i] + i > mx ) { mx = p[i] + i; id = i; } } } 代码是不是很短啊,而且相当好写。很方便吧,还记得我上面说的这个算法避免了很多不必要的重复匹配吧。这是什么意思呢,其实这就是一句代码。 if( mx > i) p[i]=MIN( p[2*id-i], mx-i); 就是当前面比较的最远长度mx>i的时候,P[i]有一个最小值。这个算法的核心思想就在这里,为什么P数组满足这样一个性质呢? (下面的部分为图片形式)

回文判断教学总结

实验报告 系部计算机系I班级I I学号I I姓名课程名称—数据结构I实验日期实验名称回文判断成绩 实验目的: 掌握栈的基本操作:入栈、出栈等在链式或顺序存储结构上的实现。 实验条件:PC机一台、VC++6.0编译环境 实验内容与算法思想: 内容: 输入一字符串判断其是否为回文。 算法思想: 1. 算法中主要用到的函数 ①void mai n() //主函数 ②int push_seqstack(Seqstack *s,char x) // 进栈 ③in t pop_seqstack(Seqstack *s) // 出栈 ④int gettop_seqstack(Seqstack *s) 〃取栈顶元素 ⑤int Ishuiwe n( char *s) 〃判断是否是回文 2. 函数之间的调用关系 函数之间的调用关系如图1所示:

图1函数之间的调用关系 运行结果: 运行程序输入一段字符串,运行不同的结果如图2、3所示: 图2 不是回文的判断结果 实验总结: 通过前两次的实验,使我对C语言和数据结构有许多认识。因此,这次实验 在做起来时多少有点思路,但是在实验室当中还是遇到了许多不会的问题,如回文的判断思路、以及函数的调用等等,不过这些问题在老师和同学的帮助下基本完成了这次实验。这次实验让我学到了很多知识,让我对原来所学的又重新复习了一遍,同时还学到了许多其他新知识。 附:源程序: #in clude #in clude #defi ne OK 1 #defi ne ERROR 0 #defi ne Maxsize 100 typedef struct { char elem[Maxsize]; int top; }Seqstack;

C语言学习2之字符串及输入输出

C语言学习2之字符串及输入输出 语言学习 字符串及输出和输入 :不像我们之前学到的整型,浮点型等数据那样,没有为字符串定义专门的变量类型,一般情况下将字符串放在字符数组中。下 “ * <> <> " "宏定义一个字符串 ()

{ (" () \"()); (" () \"()); } 程序 程序运行的结果如图所示: 图:程序运行结果 () \” * 函数名: 输入参数:无 输出参数:无 调用:()

被调用:无 功能:求取字符串中字符的个数 * <> <> \"(""))。而()只是一个关键字,它是用来求某一数据类型所占的字节数的;.我们可以通过宏定义的方式来定义一段字符串。其实我们还可以有另一个方法来定义一个字符串变量: [] " ." 下面我们来具体比较下()和的区别,看程序: *

函数名: 输入参数:无 输出参数:无 调用:(), () 被调用:无 程序运行的结果如图所示:

图:程序运行结果 从程序运行的结果我们可以看出()求的是数组的大小,因为我们定义的是包含个字符元素的数组,而一个字符的大小为个字节,所以该数组的大小为;()求的是该数组中字符串所包含的字符的个数(包括空格),所以其大小为. 标志 五种标志的具体具体作用如表所示: 标志意义 项目左对齐。也就是说将项目打印在 字段的左侧开始处。 有符号的数若为正则在数字前加 “”,若为负则加“” 空格有符号数若为正则在数字前加一

个空格,若为负则在数字前加 “” 和会打印出八进制和十六进制的 的前缀。对于浮点型数据,即使 没有数字,也会打印一个小数点 用前导代替空格来填充字段宽 度。如果标志与精度说明符同时 出现那么标志被忽略 表:()种标志 :用反斜杠和回车的方式。例如: (“ \ .\”) .采样字符串连接的方法。例如:

堆栈方式实现字符回文数判断(可运行)

设线性表A中有n个字符,试设计程序判断字符串是否中心对称,例如xyzyx和xyzzyx都是中心对称的字符串。 #include #include #include #include using namespace std; #define max 100 typedef char elemtype; typedef struct node { elemtype data; struct node *next; }listack; void initstack(listack *&s) { s=(listack*)malloc(sizeof(listack)); s->next=NULL; } int stacklength(listack *s) { int i=0; listack *p; p=s->next; while(p!=NULL) { i++; p=p->next; } return i; } void clearstack(listack *s) { listack *p=s->next; while(p!=NULL) { free(s); s=p; p=p->next; } } int stackempty(listack *s) { return(s->next==NULL);

void push(listack *& s,elemtype e) { listack *p; p=(listack*)malloc(sizeof(listack)); p->data=e; p->next=s->next; s->next=p; } int pop(listack *&s,elemtype &e) { listack *p; if(s->next==NULL) return 0; p=s->next; e=p->data; s->next=p->next; free(p); return 1; } int gettop(listack *s,elemtype &e) { if(s->next==NULL) return 0; e=s->next->data; return 1; } int judge(char *str) { listack *s;elemtype e; initstack(s); char *p=str; while(*p!='#') { push(s,*p); p++; } while(!stackempty(s)) { pop(s,e); if(e!=*str) return 0; str++; } return 1;

微机原理实验五字符及字符串的输入输出

实验五字符及字符串的输入输出 一、实验目的 1. 学会编写简单的字符、字符串输入输出程序。 2. 掌握几种常用的DOS 系统功能调用。 二、实验环境 1. 硬件:PC 微机 2. 软件:Masm for Windows 汇编集成开发环境 三、实验讲义 1. 系统功能调用是MS-DOS 为程序员编写汇编语言源程序提供的一组子程序,包括设备管理、文件管理和目录管理等。它规定使用软中断指令INT 21H 作为进入各功能子程序的总入口,再为每个功能调用规定一个功能号,引用功能号即可进入相应的子程序入口。 使用方法: (1)传送入口参数到指定的寄存器中,有的子程序不需要入口参数; (2)把要调用功能的功能号送入AH 寄存器中; (3)用INT 21H 指令转入子程序入口; (4)相应的子程序运行结束后,可以按照规定取得出口参数,一般给在寄存器中。 常用系统功能调用的功能号有 1,10(0AH),2,9,4CH 五种: (1)键盘输入单字符——1 号系统功能调用格式: MOV AH,1 INT 21H 功能:系统等待键盘输入,将键入字符的ASCII 码送入AL 寄存器中,并通过显示器显示该字符。 (2)键盘输入字符串——0A 号系统功能调用格式: LEA DX,缓冲区首地址MOV AH,0AH INT 21H 功能:将键盘输入的字符串写入内存单元中。 (3)输出单字符——2 号系统功能调用格式: MOV DL,’单字符’/ASCII 码MOV AH,2 INT 21H 功能:将单个字符通过屏幕显示出来。将要显示的字符或者其ASCII 码先存入寄存器DL 中,再调用2 号系统功能调用。 (4)输出字符串——9 号系统功能调用格式: LEA DX,字符串首地址 MOV AH,09H INT 21H 功能:将指定的内存缓冲区中的字符串从显示器显示输出,注意字符串以字符’$’作为结束标志。 (5)返回操作系统——4CH 号系统功能调用格式:MOV AH,4CH INT 21H 功能:在用户程序结束处插入此调用,则返回到DOS 操作系统,显示器显示系统提示符。 四、实验内容 1. 从键盘输入一个大写字母,屏幕上输出其相应的小写字母。(大写字母 A-Z 的ASCII 为41H-5AH;小写字母a-z 的ASCII 码为61H-7AH)

栈和队列判断回文

(C语言版数据结构)利用栈和队列判断回文 (2010-11-03 11:51:45) 标签: it // File Name: palindrome.h // // Destination:利用栈和队列判断字符串是否是回文 // #ifndef PALINDROME #define PALINDROME #include // 链式队列结构的定义 typedef char ElemType; typedef struct Node { char data; // 元素数据 struct Node *next;// 链式队列中结点元素的指针 }QNode,*QueuePtr; typedef struct { QueuePtr front;// 队列头指针 QueuePtr rear;// 队列尾指针 }LinkQueue; // 栈结构的定义 typedef struct Stack { ElemType *base; ElemType *top; int stacksize; }SqStack;

// 链式队列的基本操作 bool InitQueue(LinkQueue *Q); bool EnQueue(LinkQueue *Q, ElemType e); bool DeQueue(LinkQueue *Q, ElemType *e); // 栈的基本操作 bool InitStack(SqStack *S); bool Push(SqStack *S, ElemType e); bool Pop(SqStack *S, ElemType *e); #endif // File Name: palindrome.cpp // // Destination:利用栈和队列判断字符串是否是回文 #include #include #include "palindrome.h" const int STACK_INIT_SIZE = 100; // 初始分配的长度 const int STACKINCREMENT = 10; // 分配内存的增量 //操作目的:初始化队列 //初始条件:无 //操作结果:构造一个空的队列 //函数参数: //LinkQueue *Q 待初始化的队列 //返回值: // bool 操作是否成功 ------------------------------------------------------------*/ bool InitQueue(LinkQueue *Q) { Q->front = Q->rear = (QueuePtr)malloc(sizeof (QNode)); if (!Q->front) { exit(0); } Q->front->next = NULL; return true; } //操作目的:在队列末尾插入元素e //初始条件:队列Q已存在 //操作结果:插入元素e作为队列新的尾结点 //函数参数:

C语言字符串的输入和输出

C语言字符串的输入和输出 字符串的输入和输出 %c人为加入\0进行输入输出 %s直接输入输出 *输入输出字符串时字符数组应有足够的存储空间,指针变量作为输入项时,指针必须已经指向确切的、足够大的存储空间 %s的使用 scanf("%s",地址值) 地址值:字符数组名、字符指针、字符数组元素的地址 例:char str[15]; scanf("%s",str); abc123 1.不读入空格和回车,从空格处结束 2.输入字符串长度超过字符数组元素个数,不报错 3.当输入项为字符指针时,指针必须已指向确定的有足够空间的连续 存储单元 4.当为数组元素地址时,从此元素地址开始存放 2.printf("%s",地址值) 输出时遇到第一个'\0'为止 3.gets和puts函数 开头必须stdio.h #include"stdio.h"

1.gets(地址值) 地址值:字符数组名、字符指针、字符数组元素的地址 4.当为数组元素地址时,从此元素地址开始存放 5.printf("%s",地址值) 输出时遇到第一个'\0'为止 6.gets和puts函数 开头必须stdio.h #include"stdio.h" 1.gets(地址值) 地址值:字符数组名、字符指针、字符数组元素的地址 7.例: char str[10]; gets(str); 包括空格符 8. 2.puts(字符串起始地址) 遇第一个'\0'结束,自动加入换行符 9.字符串数组:数组中每个元素都是一个存放字符串的数组 可以将一个二维数组看作是字符串数组 10.char ca[3][5]={"A","BB","CCC"}; A\0 B B\0 C C C\0 字符型指针数组 char*pa[3]={"a","bb","ccc"}; pa[0]pa[1]pa[2] 可以重新赋值gets(pa[2]);

回文(数据结构)

//借助栈和链队列判断序列是否回文 #include #include #define ERROR 0 #define OK 1 #define STACK_INT_SIZE 10 /*存储空间初始分配量*/ #define STACKINCREMENT 5 /*存储空间分配增量*/ typedef char ElemType; /*定义元素的类型*/ typedef struct{ ElemType *base; ElemType *top; int stacksize; /*当前已分配的存储空间*/ }SqStack; typedef struct QNode{ ElemType data; struct QNode *next; }QNode,*Queue; typedef struct{ Queue front; Queue rear; }LinkQueue; int InitStack(SqStack *S){ S->base=(ElemType *)malloc(STACK_INT_SIZE *sizeof(ElemType)); if(!S->base) return ERROR; S->top=S->base; S->stacksize=STACK_INT_SIZE; return OK; }/*InitStack*/ int Push(SqStack *S,ElemType e){ if(S->top-S->base>=S->stacksize){ S->base=(ElemType*)realloc(S->base,(STACK_INT_SIZE+STACKINCREMENT)*sizeof(ElemType)); if(!S->base) return ERROR; S->top=S->base+S->stacksize;S->stacksize=S->stacksize+STACKINCREMENT; } *S->top++=e; return OK; }/*Push*/ int Pop(SqStack *S,ElemType &e){

回文判断实验二

回文判断实验二

洛阳理工学院实验报告 系别计算机系班级B13053 学号B13053235 姓名李登辉 2 课程名称数据结构实验日期2014.3.28 实验名称栈和队列的基本操作成绩 实验目的: 熟悉掌握栈和队列的特点,掌握与应用栈和队列的基本操作算法,训练和提高结构化程序设计能力及程序调试能力。 实验条件: 计算机一台,Visual C++6.0

实验内容: 1.问题描述 利用栈和队列判断字符串是否为回文。称正读与反读都相同的字符序列为“回文”序列。要求利用栈和队列的基本算法实现判断一个字符串是否为回文。栈和队列的存储结构不限。 2.数据结构类型定义 typedef struct { char elem[MAX]; int top; }SeqStack; 顺序栈 3.模块划分 void InitStack(SeqStack *S):栈初始化模块, int Push(SeqStack *S,char x,int cnt):入栈操作 int Pop(SeqStack * S,char * x):出栈操作 void InitQuene(SeqQuene *Q):队列初始化 int EnterQuene(SeqQuene *Q,char x,int cnt):入队操作 int DeleteQuene(SeqQuene *Q,char *x,int cnt):出队操作 void main():主函数 4.详细设计 #include #include #define MAX 50 #define FALSE 0 #define TURE 1//定义栈 typedef struct { char elem[MAX]; int top; }SeqStack; //定义循环队列 typedef struct { char element[MAX]; int front; int rear; }SeqQuene; //初始化栈

关于C语言中的字符串数组输入输出控制符的若干问题

关于C语言中的字符串数组输入输出控制符的若干问题示例一: #include void main() { int i; int a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%d",&(a[i])); } printf("%d,%d,%d,%d,%d,%d",a[0],a[1],a[2],a[3],a[4],a[5]); //printf("%d",a); 这是错误做法,没有输出若干个实数的控制符,只能一个个输出。 } 实例二: #include void main() { int i; char a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%s",&(a[i])); //只可从键盘输入一个字符,否则输出将每次输入多余的部分丢弃。 //不可写成:scanf("%c",&(a[i])); } printf("%c%c%c%c%c%c",a[0],a[1],a[2],a[3],a[4],a[5]); //不可用%s%s%s%s%s%s //也可以这样写:printf("%s",a); } 示例三: #include void main() { int i; char a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%c",&(a[i])); getchar(); //如果用%c作为输入一个字符控制符用,后面必须加此句; } a[6] = '\0'; //如果用%c作为输入一个字符控制符用,后面必须加此句; printf("%s",a); }

回文串实验报告

回文串实验报告 课程名称:数据结构 实验名称:单链表 学生姓名:杜克强 学生学号: 201207092427

实验一回文串的基本操作及其应用 一、实验目的 1、掌握栈和队列的顺序存储结构和链式存储结构,以便在实际中灵活应用。 2、掌握栈和队列的特点,即后进先出和先进先出的原则。 3、掌握栈和队列的基本运算,如:入栈与出栈,入队与出队等运算在顺序 存储结构和链式存储结构上的实现。 二、实验内容和要求 [问题描述] 对于一个从键盘输入的字符串,判断其是否为回文。回文即正反序相同。如“abba”是回文,而“abab”不是回文。 [基本要求] (1)数据从键盘读入; (2)输出要判断的字符串; (3)利用栈的基本操作对给定的字符串判断其是否是回文,若是则输出“Yes”,否则输出“No”。 [测试数据] 由学生任意指定。 三、实验步骤 1.需求分析 本演示程序用C语言编写,完成对一个字符串是否是回文字符串的判断 ①输入一个任意的字符串; ②对输入的字符串进行判断是否为回文串;

③输出判断结果; ④测试数据: A.依次输入“abccba”,“asddas”等数据; B.输出判断结果“Yes”,“No”等 四、算法设计 1、算法思想: 把字符串中的字符逐个分别存储到队列和堆栈中,然后逐个出队和出栈并比较出队列的数据元素和退栈的数据元素是否相等,若相等则是会文,否则不是。 2、模块设计 (1)int Palindrome_Test()判断字符序列是否为回文串; (2)Status main()主函数; (3)Status CreatStack(SqStack &S)创建一个栈; (4)Status Push(SqStack &S,SElemType e)入栈; (5)Status Pop(SqStack &S ,SElemType &e)出栈; (6)Status CreatQueue(LinkQueue &Q)创建一个队列; (7)Status EnQueue(LinkQueue &Q,QElemType e)入队; (8)Status DeQueue(LinkQueue &Q,QElemType &e)出队;

字符及字符串输入输出与顺序程序设计实验样本

微机原理第二次实验字符及字符串输入输出与顺序程序设计实验 班级: 姓名: 学号: 日期:

2.2 字符及字符串输入输出与顺序程序设计实验 2.2.1 实验目 1、学习和掌握字符及字符串输入输出办法。 2、掌握顺序程序设计办法。 3、进一步掌握调试工具用法。 2.2.2 实验预习规定 1、复习DOS功能调用中用于字符输入(功能号01H)、字符输出(功能号02H)、字符串输入(功能号 为0AH)以及字符串输出(功能号09H)调用办法(详见教材5.5.6)。 2、复习BCD码运算调节指令。 3、依照“2.2.3 实验内容”中给出源程序框架编写完整源程序,以便实验时调试。 4、从“2.2.4 实验习题”中任选一道题目,编写源程序,以便上机调试。 2.2.3实验内容 从键盘输入两个一位十进制数,计算这两个数之和,并将成果在屏幕上显示出来。 1、问题分析 例如使用功能号为01H用于实现单个字符输入DOS功能调用接受从键盘输入两个十进制数8和6,这时计算机内部得到是这两个数ASCII码值38H和36H。由于数字0 9ASCII码值与其代表数值之间相差30H,因而将其减去30H即可得到以非压缩型BCD数形式表达十进制数08H和06H,使用ADD指令对它们进行相加后成果为0EH(00001110B),显然需要用非压缩型BCD数加法调节指令对ADD运算成果进行调节,调节后得到两个非压缩型BCD数01H和04H,将它们分别加上30H后变为其相应ASCII码31H(1ASCII码)和34H(4ASCII码),然后调用功能号为02H用于单个字符输出DOS功能调用将它们显示出来。综上所述,需要考虑如下问题。 (1)从键盘输入一种一位十进制数办法 通过功能号为1DOS功能调用实现从键盘输入一种字符,格式如下:

数据结构C语言版判断回文数试验报告

. 数据结构实验报告判断回文数 级班: 内序号班: 名生姓学: 教师导指: 时间: 201124月年10日

一、实验目的'. . 熟悉栈和队列的各项操作,区别栈和队列的操作原理。 二、实验内容 利用栈的操作完成读入的一个以*结尾的字符序列是否是回文序列的判断。 回文序列即正读与反读都一样的字符序列,例如:43211234*是回文序列,而789678*不是。三、数据结构及算法思想 算法思想:从键盘上读取一个字符,同时存储在顺序栈与链队列之中,直到字符序列的最后一个字符为*停止插入。在程序中设置了一个标志位flag,将输入的序列分别做入栈、出栈、入队、出队操作,若出栈与出队的数据完全一致,则将flag标志为1,否则为零。Flag为1,则表示该序列是回文序列,否则,为非回文序列。 四、模块划分 1.对各个模块进行功能的描述 (1)void InitStack(SeqStack *S):栈初始化模块,即初始化一个空栈,随后对该空栈进行数据的写入操作; (2)int Push(SeqStack *S,char x,int cnt):入栈操作,即给空栈中写入数据,数据长度有宏定义给出; (3)int Pop(SeqStack * S,char * x):出栈操作,即将栈中的数据输出,由于栈的操作是先进后出,因此,出栈的数据是原先输入数据的逆序; (4)void InitQuene(SeqQuene *Q):队列初始化,即初始化一个空队列,最后对该空队列进行数据的写入操作; (5)int EnterQuene(SeqQuene *Q,char x,int cnt):入队操作,即给空队列中写入数据,数据长度一样有宏定义给出; (6)int DeleteQuene(SeqQuene *Q,char *x,int cnt):出队操作,即将队列中的数据输出,由于队列的操作是先进先出,因此,出队的数据室原先输入数据的正序; (7)void main():主函数,用于调用前面的模块,进行出队数据与出栈数据的比较,判断输入的序列是否是回文序列。 2.模块之间关系及其相互调用的图示 '. .

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如:AV,S-VIDEO 转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如:AV,S-VIDEO 转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。

TV接口 TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV 接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

求回文子串 O(n) manacher算法

求回文子串O(n) manacher算法 回文串定义:“回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。 回文子串,顾名思义,即字符串中满足回文性质的子串。 经常有一些题目围绕回文子串进行讨论,比如HDOJ_3068_最长回文,求最长回文子串的长度。朴素算法是依次以每一个字符为中心向两侧进行扩展,显然这个复杂度是O(N^2)的,关于字符串的题目常用的算法有KMP、后缀数组、AC自动机,这道题目利用扩展KMP 可以解答,其时间复杂度也很快O(N*logN)。但是,今天笔者介绍一个专门针对回文子串的算法,其时间复杂度为O(n),这就是manacher算法。 大家都知道,求回文串时需要判断其奇偶性,也就是求aba和abba的算法略有差距。然而,这个算法做了一个简单的处理,很巧妙地把奇数长度回文串与偶数长度回文串统一考虑,也就是在每个相邻的字符之间插入一个分隔符,串的首尾也要加,当然这个分隔符不能再原串中出现,一般可以用‘#’或者‘$’等字符。例如: 原串:abaab 新串:#a#b#a#a#b# 这样一来,原来的奇数长度回文串还是奇数长度,偶数长度的也变成以‘#’为中心的奇数回文串了。 接下来就是算法的中心思想,用一个辅助数组P记录以每个字符为中心的最长回文半径,也就是P[i]记录以Str[i]字符为中心的最长回文串半径。P[i]最小为1,此时回文串为Str[i]本身。 我们可以对上述例子写出其P数组,如下

新串:# a # b # a # a # b # P[] : 1 2 1 4 1 2 5 2 1 2 1 我们可以证明P[i]-1就是以Str[i]为中心的回文串在原串当中的长度。 证明: 1、显然L=2*P[i]-1即为新串中以Str[i]为中心最长回文串长度。 2、以Str[i]为中心的回文串一定是以#开头和结尾的,例如“#b#b#”或“#b#a#b#”所以L减去最前或者最后的‘#’字符就是原串中长度的二倍,即原串长度为(L-1)/2,化简的P[i]-1。得证。 依次从前往后求得P数组就可以了,这里用到了DP(动态规划)的思想,也就是求P[i]的时候,前面的P[]值已经得到了,我们利用回文串的特殊性质可以进行一个大大的优化。我先把核心代码贴上: for(i=1;ii) { p[i]=Min(p[2*id-i],MaxId-i); } else { p[i]=1; } while(a[i+p[i]]==a[i-p[i]]) { p[i]++; } if(p[i]+i>MaxId) { MaxId=p[i]+i; id=i; } }

回文判断

设计题目<二>: 3.4.4回文判断P59 1.设计要求 1.1问题描述 试写一个算法,判断依次读入的一个以@为结束符的字母序列,是否为形如“序列1&序列2”模式的字符序列。其中序列1和序列2中都不含字符“&”,且序列2是序列1的逆序列。例如:“a+b&b+a”是属该模式的字符序列,而“1+3&3-1”则不是。 1.2需求分析 这是一个利用栈结构完成的程序。为了实现算术优先算法,我们使用两个工作栈,一个称为操作符栈(OPTR),用以寄存运算符;一个称为操作数栈(OPND),用以寄存操作数或运算结果。算法的基本思想是: (1)输入测试数据组数,接着分组输入字符串,以@结尾。 (2)输入序列总长不超过(MAX_N = 10005)/2个。将序列1先入栈,接着处理序列2,同时出栈判断。 (3)将序列1全部入栈,接着输入序列2,同时出栈判断。 (4)如果序列满足题目要求,则输出“回文序列”;否则,输出“非回文序列”。 (5)测试数据: qwer&rewq@ qwerrewq@ qwer&rewq 12364&23131@ 2. 概要设计 2.1主界面设计 回文判断的程序界面设计并不复杂,有提示字符串输入及结束符号的信息即可。运行界面如下图所示:

图2.1 2.2数据结构 本系统采用顺序栈结构类型(stack)存储用户输入的字符串以便判断是否为回文。 typedef struct { char elem[Stack_Size]; //用来存放栈中元素的一维数组 int top; //用来存放栈顶元素的下标 }SeqStack; 使用结构体,内部定义数组模拟栈。top为栈顶指针,指向当前元素的下一个位置。 3 模块设计 3.1模块设计: 本程序包含3个模块:主程序模块,判断模块,和顺序栈操作模块,调用关系如下: 主程序回文判断模块顺序栈操作模块 图2.2 3.2 功能模块的调用关系图

回文问题

问题描述:编程序判断一个字符列是否是回文。回文是指一个字符序列以中间字符为基准两边字符完全相同。要求程序从键盘输入一个字符串,字符串长度小于等于80,用于判断回文的字符串中不包括字符串的结束标记符。 基本要求: (1)要求字符序列个数n可由用户随意确定,且有0top=0; } int StackNotEmpty(SeqStack S) //判断顺序堆栈S非空否,非空时返回1,否则返回0 { if(S.top<=0) return 0; else return 1; }

回文判断实验报告

回文判断实验报告 一.实验题目:回文判断 二.实验目的: 对于一个从键盘输入的字符串,判断其是否为回文。回文即正反序相同。如“abba”是回文,而“abab”不是回文。 三.实验需求: 1.数据从键盘读入; 2.输出要判断的字符串; 3.利用栈的基本操作对给定的字符串判断其是否是回文,若是则输出“Yes”否则输出“No” 四.主要实现函数 (1)建立顺序栈存储结构 typedef struct { } (2)初始化 int initstack(Sqstack &s,int maxsize) (3)入栈 int enstack(Sqstack &s, char e) (4)出栈 int popstack(Sqstack &s,char &e) (5)判断是否为回文 int main() { int r; //用于判断是否为回文 Sqstack L,Q; //定义两个栈

initstack(L,20); initstack(Q,20); int l; //用于记录输入字符的长度cout<<"请输入字符串长度"; cin>>l; if(l<=0)exit(1); cout<<"输入字符"<>p; enstack(L,p); //入栈 L } cout< using namespace std; typedef char SElemType; typedef struct { SElemType *base; SElemType *top; int stacksize;

C语言中的输入输出函数总结

putchar ():把变量中的一个字符常量输出到显示器屏幕上; getchar ();从键盘上输入一个字符常量,此常量就是该函数的值; printf ();把键盘中的各类数据,加以格式控制输出到显示器屏幕上; scanf ();从键盘上输入各类数据,并存放到程序变量中; puts ():把数组变量中的一个字符串常量输出到显示器屏幕上; gets ():从键盘上输入一个字符串常量并放到程序的数组中. sscanf(); 从一个字符串中提取各类数据。 putchar() 输出一个字符 getchar() 输入流中获取一个字符 例如: char c = getchar(); putchar(c); 格式化输入输出scanf()和printf()是最有用的,所以重点讲一下。 printf(): 一般形式: printf("格式控制".输出列表); eg : printf("a=%d,b=%f,c=%c\n",a,b,c); 1;格式控制. 格式控制是用双引号括起来的字符串,也称"转换控制字符串",它包含以下两部分信息. 格式说明:由"%"和格式字符组成,如%d,%f,%c,他的作用是把输出数据转换为指定格式输出,格式的说明总是由"%"字符开始的. 普通字符:需要原样输出的字符,或者是一些有特殊含义的字符,如\n,\t。 2;输出列表 就是需要输出的一些数据,也可以是表达式,如果在函数中需要输出多个变量或表达式,则要用逗号隔开. 一些特殊字符的输出: 单引号,双引号,和反斜杠的输出在前面加转义字符”\” 如:”\’” , “\””, “\\” %的输出用两个连在一起的%%,即printf(“%%”); 常用的格式说明如下: 格式字符 d 以十进制形式输出带符号整数(正数不输出符号) o 以八进制形式输出无符号整数(不输出前缀O) x 以十六进制形式输出无符号整数(不输出前缀OX) u 以十进制形式输出无符号整数 f 以小数形式输出单精度实数 lf 以小数形式输出双精度实数

输入一个整数,将其转换为字符串输出

例9-15 编写函数,输入一个整数,将其转换为字符串输出。例如,输入整数86556,输出字符串"86556"。 首先确定函数头,函数输入一个long型整数,输出一个char型字符数组,因此可以定为void long2string(long lNum,char chWord[])。注意这里的整数可能比较大,不要定为int型。 函数中,可以首先利用循环和%和/运算符,依次取得整数的每个位。思路如下:例如86556,我们可以将其对10取余,得到个位6;将86556除10余8655,继续对10取余,得到十位5;……以此类推,直到该数变为0为止。这样就可以将整数的每个位分离出来。 在上述的循环过程中,将分离出的数字依次保存到字符数组中。但是要注意,字符数组中保存的是字符,是数字的ASCII码,而不是数字本身的值。因为ASCII码表中阿拉伯数字的码值是连续的,因此一个常用的技巧是,字符0加数字值即为该数字的ASCII码值。 上述过程结束后,字符数组里存放了整数的每个位,但是不符合题目的要求,顺序正好相反。这可以用一个循环对数组进行转置:字符串第一个元素和最后一个元素对换;第二个元素和倒数第二个元素对换;……程序循环进行字符串长度/2 次(如果字符串长度为奇数,中间元素正好不用处理)。 数据要求 问题中的常量: 无 问题的输入: long lNum /*输入的long型数据*/ 问题的输出: char chWord[50] /*转换后的字符串*/ 初始算法 1.初始化变量lNum; 2.调用函数得到字符串; 3.程序输出结果后退出。 算法细化 步骤2的细化 2.1 初始化临时变量 2.2 lNum!=0时,循环执行得到各个位的数字 2.2.1 转换数字ASCII码 2.2.2 i变量增1 2.2.3 lNum=lNum/10,本步骤的目的有两个,一是结束循环,二是正确的 得到数字 2.3 字符串最后加标志 2.4 循环进行数组的逆序 2.5 结束 流程图

相关文档
最新文档