6-1定积分的概念

合集下载

第2节 定积分的概念及性质

第2节 定积分的概念及性质

其长度为 xi xi xi 1 , 在每个小区间 [ xi 1 , xi ]上
任取一点 i ( xi 1 i xi ) , 则乘积
f ( i )xi ( i 1,2,, n)
称为积分元素
7/8/2013 1:12 PM
第6章
n
函数的积分
总和
S n f ( i )xi
0
x i
O
7/8/2013 1:12 PM
i 1 i n n
1
x
第6章
函数的积分
1p 2 p n p (2) lim n n p 1
lim
n i 1 n
i n

p
1 n
x i
x p dx
1 0
i
7/8/2013 1:12 PM
第6章
函数的积分
y
A1 a A3 A2 O A4 A5 b x

b a
f ( x )dx A1 A2的代数和
7/8/2013 1:12 PM
第6章
函数的积分
3. 定积分的性质 性质1 证明

b
kf ( x )dx k f ( x )dx ( k 为常数) a a
第6章
函数的积分
若函数 f ( x ) 在区间 性质7(积分中值定理) [a , b] 上连续, 则至少存在一点 [a , b] , 使得

b
a
f ( x )dx f ( )(b a )
b
证明 由性质6 m(b a ) a f ( x )dx M (b a )
1 b m a f ( x )dx M ba

第一讲 定积分的概念和性质

第一讲 定积分的概念和性质

f ( x) g( x)dx
b a
lim f (x i ) g(x i )xi
n
0
i 1 n
lim f (x i )xi lim g(x i )xi
0
b
n
i 1
0
i 1
f ( x )dx g( x ) dx.
一点x i (x i xi ),作乘积 f (x i )x i ( i 1,2,)
并作和 S f (x i )x i ,
n
记 max{x1 , x 2 , , x n },如果不论对[a , b ]
i 1
怎样的分法, 也不论在小区间[ x i 1 , x i ] 上
x b 所围成.
A?
o
a
b x
求曲边梯形的面积 A 的思路如下:
用矩形面积近似取代曲边梯形面积:
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形的面积
曲边梯形:在直角坐标系下, 由闭区间[a, b] 上的连续曲线 y = f (x) ≥ 0, 直线 x = a,x = b 与 x 轴围成的平面图形 AabB.
当 f (x) > 0 时, 定积分在几何上表示曲边 y = f (x) 在区间 [a, b] 上方的曲边梯形面积, f ( x )dx A.
a b
如果 f (x) < 0 ,曲边梯形在 x 轴下方,
此时该定积分为负值,

6-1定积分的概念与性质

6-1定积分的概念与性质
积分中值公式
y
在区间[a, b]上至少存在
一个点 ,使得以区间[a,b]为
f ( )
底边, 以曲线 y f ( x)
为曲边的曲边梯形的面积
等于同一底边而高为 f ( ) o a b x 的一个矩形的面积。
定积分中值定理的证明

m(b
a)
b
a
f
( x)dx
M (b
a)
m
1 b
a
b
a
f
( x)dx
使
x2
x t sin
3 t
f
(t )dt
sin 3
f
()( x
2
x),
x2
lim t sin
x x
3 t
f
(t)dt
2 lim
sin 3
f
(
)
2 lim 3 f ( ) 6.
小结
1.定积分的实质:特殊和式的极限.
2.定积分的思想和方法:
分割
化整为零
近似
以直代曲
求和
积零为整
取极限
04
0
3
1 sin3
dx x
1dx, 03
4
0
3
1 sin3
dx x
3
.
定积分性质7(定积分中值定理)
如果函数 f ( x)在闭区间[a,b]上连续,
则在积分区间[a, b]上至少存在一个点 ,
使 b a
f
(
x
)dx
f ( )(b a).
积分中值公式的几何解释:
(a b)
f ( x) 0,
0 (e x x)dx 0, 2

6.1.1定积分概念

6.1.1定积分概念

练习题答案
一、1、lim f ( i )x i ;
0
i =1 n
2、被积函数,积分区间,积分变量; 3、介于曲线 y = f ( x ) , x 轴 ,直线 x = a , x = b 之间 各部分面积的代数和; b 4、 dx .
a
1 3 3 二、 ( b a ) b a . 3 1 2 2 三、 ( b a ) . 2 五、88.2(千牛).
表示成定积分.
思路:
lim f (i )xi = f ( x )dx
b 0 i =1 a
n
1 注:一般 考虑 a, b = 0,1 , n等分,xi = . n n 1 1 lim f (i ) = f ( x )dx 0 n n i =1
1 2 ( n 1) lim sin sin sin n n n n n
三、存在定理
定理1 当函数 f ( x ) 在区间[a , b]上连续时,
称 f ( x ) 在区间[a , b]上可积.
定理2 设函数 f ( x ) 在区间[a , b]上有界,
且只有有限个间断点, 则 f ( x ) 在
区间[a , b ]上可积.
四、定积分的几何意义
f ( x ) > 0, f ( x ) < 0,
i =1 n
•如果当0时, 上述和式的极限存在, 且极限值与区间[a, b] 的分法和i的取法无关, 则称此极限为函数f(x)在区间[a, b]上
的定积分, 记为 f ( x)dx , a
b
b

n i=1
lim a f (x)dx = 0 f (i )xi
积分上限

第6章定积分及其应用解析

第6章定积分及其应用解析

xi xi xi1,(i 1,2,),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2,)
n
并作和S f (i )xi ,
i 1
记||T|| max{x1, x2 , , xn } ,如果不论对[a, b]
怎样的分法,也不论在小区间[ xi1 , xi ]上
积 表
分 变
黎曼积分
达 式

[a , b] 上不可积 .
n

lim
T 0 i1
f (i )xi
不存在,则称
f (x) 在
注意:
1o. 定积分是积分和的极限,其结果是一个数,
它只与被积函数 f 和积分区间[a, b] 有关,而与
所用的积分变量的记号无关 .

b
b
b
f ( x)dx f (t)dt f (u)du .
例如,求由曲线y x 2 ,直线y 0, x 0, x 1所围
平面图形的面积。
公元前二百 多年前的阿 基米德就已 会用此法求 出许多不规 则图形的面 积
Aera=?
阿基米德
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
a
a
a
2o. 当 T 0, 分点个数n ;但反之不然.
3o. 若 f 在 [a, b]的某一个积分和的极限不存在 ,
或若 f 在 [a, b] 的某两个积分和的极限都存在但 极限值 不相等,则 f ( x) 在[ a , b ] 上不可积.
4o . 如果 f ( x) 在 [a, b] 上可积 , 则

6-1定积分概念(1)

6-1定积分概念(1)

n
1 1 1 n( n + 1)( 2n + 1) 1 = 1 + 2 + ,λ → 0 ⇒ n → ∞ = 3⋅ 6 n n n 6 n 1 2 1 1 1 2 x dx =பைடு நூலகம்lim ∑ ξ i ∆xi = lim 1 + 2 + = 1 . ∫0 λ → 0 i =1 n→ ∞ 6 n n 3
第一节
定积分概念(1) 定积分概念
一、 问题的提出 二、 定积分定义 三、 定积分存在定理 四、 定积分的几何意义 五、 小结
一、问题的提出
实例1 求曲边梯形的面积) 实例1(求曲边梯形的面积) 曲边梯形由连续曲线 y = f ( x ) ( f ( x ) ≥ 0) 、 x 轴与两条直线 x = a 、 x = b 所围成. 所围成. 用矩形面积近似取代曲边梯形面积
定理6.1.1 设 f ( x )在区间 [a , b] 上有定义 若积分 定理 上有定义, b f ( x )dx存在 则 f ( x )在区间 [a , b] 上有界 上有界. 存在, ∫a 证明 若 f ( x )在区间 [a , b] 上无界 则对每种分割 上无界, 至少存在一个子区间[ xi −1 , xi ], 使得 f ( x )在区间
1、 函数 f ( x ) 在[ a , b ] 上的定积分是积 分和的极限,即∫ f ( x )dx = _________ . 2、 定积分的值只与______及_______ 有关,而与_________的记法无关 . 3、 定积分的几何意义是__________. 4、区间[ a , b ]长度的定积分表示是____ . 二、 利用定积分的定义计算由抛物 线 y = x + 1 , 两直线 x = a , x = b ( b > a ) 及 横轴所围成的图形的面积 . 三、利用定积分的定义计算积分 ∫ xdx , (a<b) .

第一节 定积分在几何上的应用6-1


所围图形绕 x 轴旋转
而成的椭球体的体积. 解: 方法1 利用直角坐标方程
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)

2
b2 a2
a
(a
2

x2
)
dx
0

2
b2 a2
a2 x

1 3
x3

a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2
0
4 3 a2
3
对应 从 0 变
2 a
o
x
d
例6. 计算心形线
与圆
所围图形的面积 .
1 2cos cos 2
解: 利用对称性 , 所求面积
A
1a2 2
2

1 a2 (1 cos )2 d
2
1 2
(1

cos
2
)
1 a2 a2 (3 2cos 1 cos 2 )d
b
b
A a dA( x) a f ( x)dx.
y
妨此可得(图1)的面积: d
A
d
dA( y)
d
f ( y)dy.
y
c
c
c
(图2)的面积:
y
O
y f2(x)
y f1( x)
oa
x bx
(图2)
A
b[ a
f2(x)
f1( x)]dx
A
x=f(y)
(图1)
及 y 轴所围曲边梯形绕 y 轴的旋转体的体积计算公式

高等数学第五章第一节定积分的概念及性质课件.ppt


二、定积分定义
a x0 x1 x2 xn b ,
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
( x) dx

b a
f
(
x)
dx
lim
0
n
i1
f
(
i
)
xi
o
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
i
x xi1xi b
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
0 i1
f
(i ) xi
0
推论1. 若在 [a , b] 上

推论2.
(a b)
证: f (x) f (x) f (x)
b
b
b
a f (x) dx a f (x) dx a f (x) dx

b
b
a f (x) dx a f (x) dx
使
因此定理成立.
说明:
• 积分中值定理对
• 可把
b
a f (x) dx f ( )
ba

y f (x) y
oa bx
故它是有限个数的平均值概念的推广.
例4. 计算从 0 秒到 T 秒这段时间内自由落体的平均 速度.
解: 已知自由落体速度为
v gt
故所求平均速度
1 1 g T 2 gT
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质

定积分的概念与性质(1)


a = x0 < x1 < x 2 < ⋯ < xi −1 < xi < ⋯ < x n −1 < x n = b
把曲边梯形的底[a,b]分成 个小区间 : [ xi −1 , xi ] 分成n个小区间 把曲边梯形的底 分成 小区间长度记为: ∆x i = x i − x i −1 (i = 1,2,3, ⋯ , n ) 过各分点作垂直于x轴的直线段, 过各分点作垂直于 轴的直线段,把整个曲边梯形分 轴的直线段 个小曲边梯形, 成n个小曲边梯形,其中第 个小曲边梯形的面积记为 ∆ A i 个小曲边梯形 其中第i个小曲边梯形的面积记为 y y=f(x)
确定的极限 I , 我们称这个极限 I 为函数 f ( x ) 上的定积分 定积分, 在区间[a , b ]上的定积分, 记为
积分上限
积分和
∫a f ( x )dx = I = lim ∑ f (ξ i )∆xi λ → 0 i =1
积分 限
b
n
被 积 函 数
被 积 表 达 式
积 分 变 量
[a , b] 积分
∫a f ( x )dx = A
b
曲边梯形的面积
∫a
b
f ( x )dx = − A 曲边梯形的面积
的负值
17
一般情形, 一般情形

b
a
的几何意义为: f ( x)dx 的几何意义为:
它是介于 x 轴、函数 f ( x )及两条直线 x = a , x = b 之间的各部分面积的代 数和. 数和. 轴上方的面积取正号; 在 x 轴上方的面积取正号; 在 x 轴下方的面 积取负号. 积取负号.
1≤i≤n
对上述和式取极限就得物体以变速v(t)从时刻 到时刻 这段 对上述和式取极限就得物体以变速 从时刻a到时刻 从时刻 到时刻b这段 时间内运动的距离s, 时间内运动的距离 即

济南大学高等数学C(一)5定积分及其应用-疑难解答

第六章 定积分及其应用习题6-1 定积分的概念下列定积分:利用定积分的定义计算.1⎰21;)1(-dx x[]等分个分点,把区间中插入在闭区间解:n n 12,1.10-- ,211210=<<<<<=--n n x x x x x.3)1(2Δn n x i =--= ).,,2,1(31n i i nx i =+-=[],所以因为中取右端点为在每个区间x x f i nx ξx x i i i i =+-==-)(.31,.210.3)31(ΔΔ)(111∑∑∑===⋅+-==ni i n i i i n i i ni n x ξx ξf .2)1(939393Δ)(212121+⋅+-=+-=+-=∑∑∑===n n n i n i n x ξf n i ni i ni i 即{})Δ(232)1(93lim Δ)(lim .31210210n i i n i ni i λx max λn n n x ξf xdx ≤≤∞→=→-==⎥⎦⎤⎢⎣⎡+⋅+-==∑⎰其中⎰10.)2(dx e x[]等分个分点,把区间中插入在闭区间解:n n 11,0.10-,101210=<<<<<=-n n x x x x x.1Δn x i = ).,,2,1(0n i ni n i x i ==+=[],所以因为中取右端点为在每个区间x i i i i e x f ni x ξx x ===-)(.,.210.1ΔΔ)(111∑∑∑===⋅==ni ni i n i ξi n i i ne x e x ξf i.1)1(1)(1Δ)(111211--⋅=++++=-=∑n nnn nn nni ni i e e e ne e e e nx ξf 即{})Δ(11)1(1lim Δ)(lim .311110100n i i n nn i ni i λxx max λe e e e n x ξf dx e ≤≤∞→=→=-=--⋅==∑⎰其中,说明下列等式:利用定积分的几何意义.2;12110⎰=x xd )( ;412102⎰=-πx d x )(⎰-=ππx sinxd ;)(03 ⎰⎰-=2022.24πππx cosxd x cosxd )(角形的面积,故表示如图所示的直角三)解:(⎰1021x xd.x xd 12121210=⋅⋅=⎰ ⎰-1024112圆的面积,故表示如图所示)(x d x.414111022⎰=⋅⋅=-ππx d x ⎰-ππx x sinxd 轴上方为正面积,的面积,其中表示如图所示阴影部分)(3轴下方为负面积,故x ⎰-=ππx sinxd .0⎰-2224ππx cosxd 倍,面积的的面积,它是第一象限表示如图所示阴影部分)(⎰⎰-=2022.2πππx cosxd x cosxd 故习题6-2 定积分的性质积分的大小:比较下列各题中的两个.2;,110421021dx x I dx x I ⎰⎰==)( ;,221422121dx x I dx x I ⎰⎰==)(;)(ln ,ln 34332431dx x I dx x I ⎰⎰==)( ;)1ln(,4102101dx x I dx x I ⎰⎰+==)(.)1(,5102101dx x I dx e I x ⎰⎰+==)( ,只有有限个成立的解:)"(",10)1(42x x x x =≥∴≤≤ ,,42是连续函数又x x .,21104102I I dx x dx x >>⎰⎰即故是连续函数,,又只有有限个成立的4242,)"(",21)2(x x x x x x =≤∴≤≤ .,21214212I I dx x dx x <<⎰⎰即故是连续函数,,又33)(ln ,ln )(ln ln ,1ln ,43)3(x x x x x x <∴>∴≤≤ .,)(ln ln 2143343I I dx x dx x <<⎰⎰即故.,)1ln(),10()1ln(,0)0()()(10),10(111)(,)1ln()()4(211010I I dx x dx x x x x f x f x f x x xx f x x x f ><+∴≤<<+=<≤≤<<-+='-+=⎰⎰即即单调递减,故时,故当则设.,1,)1(,0)5(21I I e x x x n l x x >∴<+∴<+>时[],证明:上连续在及设)(,)()(3b a b a x g x f .< [].0)(,0)(,0)(,)1(>≡/≥⎰ba dx x f x f x fb a 则且上,若在[][].0)(,,0)(,0)(,)2(≡=≥⎰x f b a dx x f x f b a ba 上,则在且上,若在[][]).()(,,)()(),()(,)3(x g x f b a dx x g dx x f x g x f b a ba ba ≡=≤⎰⎰上,在则且上,若在[]⎰≥∴≥ba dx x f x fb a ,0)(,0)(,)1(上,在证明:,假设⎰=ba dx x f 0)(上,知在由],[)2(b a ,0)(≡x f 矛盾,这与0)(≡/x f .0)(⎰>∴ba dx x f ,假设反证法0)())(2(≡/x f ,则至少存在一点],[b a ξ∈,使得0)(≠ξf ,0)(≥x f ,0)(>∴ξf []上连续,在b a x f ,)( 的区间包含ξ∴,],[],[21b a c c ⊆ ,可设0)(>x f ],[21c c x ∈,易知:⎰>210)(c c dx x f , ,,而⎰⎰≥≥120)(0)(c abc dx x f dx x f ⎰⎰⎰⎰>++=∴ba c a c c bc dx x f dx x f dx x f dx x f 1212.0)()()()(矛盾,这与⎰=ba dx x f 0)([].0)(,≡∴x f b a 上,假设不成立,即在,令)()()()3(x f x g x F -=,],[)()(b a x x g x f ∈≤ .0)(≥∴x F,且⎰⎰⎰=-=b a b a ba dx x f dx x g dx x F 0)()()( ,0)()2(≡x F 知由).()(x f x g ≡即习题6-3 微积分的基本公式计算下列各导数:.1;11302dt t dx d x ⎰+)( ;112422dt t dx d x x ⎰+)( ⎰x x dt t πdx d cos sin 2)cos()3( ;1331162223x x x x +=⋅+=)()原式解:(⎥⎦⎤⎢⎣⎡+-+=⎰⎰420022112x x t dt t dt dx d )原式( ⎰⎰+-+=24020211x x t dt dx d t dt dx d x x x x 2)(114)(1122324⋅+-⋅+= ;1214483xx x x +-+= []⎰⎰-=x x dt t πdt t πdxd cos 0sin 022)cos()cos()3(原式 ⎰⎰-=x x dt t πdxd dt t πdx d sin 02cos 02)cos()cos( [][]x x πx x πcos )(sin cos )sin ()(cos cos 22--= [][].cos )(sin cos sin )(cos cos 22x x πx x π--= 计算下列各积分:.2a ax x dx x x 02302|)21()3(1-=-⎰)(2321a a -=821|)3131()1(221334212=-=+-⎰x x dx x x )( 67|)2132()()1(30122301211-=+=+=+⎰⎰x x dx x x dx x x )(⎰⎰⎰-+=ππππdx x nxdx si dx x 2020)sin (sin 11)(4|cos |cos 20=+-=πππx x 617|31|)21()(122131022010212=+=+=⎰⎰⎰x x dx x xdx dx x f )( :3求下列极限.;lim )1(02x dt e x t x ⎰→ .sin )sin (lim )2(0320220⎰⎰→x x x dtt t dt t;11lim )1(002===→e ex x 原式解: 320220320220sin 2lim sin sin sin 2lim )2(xx x dt t xx x dt t xx xx ⋅⋅=⋅=⎰⎰→→原式3020sin 2lim xdtt xx ⎰→=.323sin 2lim 22==→x x x .)(0cos 500dxdyx y y dt t dt e .xyt的导数所确定的隐函数求由方程==+⎰⎰求导,得对解:原方程左、右两边x0cos =+x dx dy e y .1sin cos cos -=-=∴x x e x dx dy y.)(602的极值求函数⎰-=xt dt te x f .2)(x xex f -='解: ,令02=-x xe0=x 得极值点 01)0(>=''f .f x f x 0)0()(0==∴有极小值时函数[](),证明函数内可导且上连续,在在设0)(,,)(.7<'x f b a b a x f ().0)(,)(1)(<'-=⎰x F b a dt t f ax x F xa内的一阶导数在 2)()())(()(a x dtt f a x x f x F xa ---='⎰证明:)()())(())((2x ξa a x a x ξf a x x f ≤≤----= )())(()()(x ηξax ξx ηf a x ξf x f <<--'=--=,0,0,0)(>->-<'a x ξx ηf .0)(<'∴x F习题6-4 定积分的换元积分法计算下列定积分:.1;02121)3cos()3sin()1(33=-=+-=+⎰πππππx dx πx 解:;16921)49(81)49()49(41)49()2(122123123=+-=++=+-----⎰⎰x x d x x dx ;31cos 31cos cos cos sin )3(203202202=-=-=⎰⎰πππφφd φφd φφ;2)2sin 4121(22cos 1sin )cos 1()4(000202πθθθd θθd θθd θππππ=-=-==-⎰⎰⎰;232)2(31)2(2212)5(202322202202=--=---=-⎰⎰x x d x dx x x;1)6(2102dx x x -⎰,cos ),20(sin tdt dx πt t x =≤≤=令.164sin 41812141241cos cos cos 20202202202202πt t dtt os4c dt t sin tdt t sin tdt t t sin πππππ=-=-===⋅⋅=⎰⎰⎰⎰)()(原式;45)7(11⎰--xxdx;2,45,452dt tdx t x t x -=-==-则令;61)53(8185)2(45133131322=-=-=--=⎰⎰t t dt t dt t tt 原式;1)8(41⎰+xdx,2,,2tdt dx t x t x ===则令;23ln 22)1ln (2)111(212212121-=+-=+-=+=⎰⎰t t dt t t tdt 原式;2121)]21([)(21)9(11021010222---=-=--=⎰⎰--e e t d e dt te tt t;212ln 2)ln 1(2)ln 1()ln 1(ln 1ln ln 1)10(212121212121-+=+=++=+=+⎰⎰⎰-x x d x xxd x x dx .41arctan )2arctan(1)2(54)11(12122122πx x dx x x dx ==+=++=++------⎰⎰ ;32)31(31)sin 3sin 31(21)cos 3(cos 212cos cos )12(222222=--=+=+=---⎰⎰ππππππx x dx x x xdx x .34)(cos 32)(cos 32cos cos cos cos sin cos )sin (cos sin cos )cos 1(cos cos cos )13(202302232002200222222223=-=-=⋅+-==-⋅=-------⎰⎰⎰⎰⎰⎰⎰ππππππππππππx x xd x x d x xdx x dx x x dxx x dx x x dx x x .22sin 2sin 2cos 2cos 2cos 2cos 22cos 1)14(2202200020=-=-===+⎰⎰⎰⎰⎰πππππππππx x dx x dx x dxx dx x dx x 列定积分:利用函数奇偶性计算下.2;1arcsin 1212122dx xx ⎰--)()(.12sin )2(552432dx x x x x ⎰-++ 为偶函数,故)(解:221arcsin )()1(xx x f -=;324arcsin 32arcsin 21arcsin 232103210221022πx x arcsin d x dx xx ===-=⎰⎰)()()(原式.012sin )()2(2432=++=为奇函数,故原式x x x x x f 证明下列各题:.3;)0(11)1(11212⎰⎰>+=+xx x xdx x dx ;)1()1()2(1010dx x x dx x x mnnm⎰⎰-=-.cos 2cos )3(2010010dx x dx x ππ⎰⎰=右边;左边令证明:=+=+=+-=-==⎰⎰⎰xx x x dx t dt t dt t dt t dx t x 1121121122211111,1,1)1( 右边;左边,则令=-=-=--=-=-==-⎰⎰⎰dx x x dt t t dt t t dt dx t x t x nmnmnm101001)1()1()()1(,,11)2(,cos cos cos )3(2102010010xdx xdx xdx ππππ⎰⎰⎰+=则令,,dt dx t πx -=-=,cos cos )(cos cos 201020100210210xdx tdt dt t xdx πππππ⎰⎰⎰⎰==-= .cos 2cos cos cos 201020102010010xdx xdx xdx xdx ππππ⎰⎰⎰⎰=+=故习题6-5 定积分的分部积分法计算下列定积分:.1);1(414121121ln 21)21(ln ln )2(21221212121+=-=⋅-==⎰⎰⎰e xe dx x x x x x xd xdx x e e e ee;2sin 2)cos (cos )cos (sin )3(2020202020πx πdx x x x x xd xdx x πππππ-=+-=---=-=⎰⎰⎰;2ln 33cos ln 33cos cos 133cos sin 33tan tan tan sec cos )4(303030303030302302-=+=+=-=-===⎰⎰⎰⎰⎰⎰πx πx d x πdx x x πdx x x x x d x dx x x dx xx ππππππππ;ln )5(41dx xx ⎰,2,2tdt dx t x t x ===,则令;42ln 8)22ln 4(2)214ln 2(2)ln ln (2ln 22ln 212221212212212-=-=⋅⋅-=-===⎰⎰⎰⎰dt t tt t d t t t dt t tdt t t 原式.214)arctan (218)111(2181121arctan 21)21()6(10102102210210210-=--=+--=+⋅-==⎰⎰⎰⎰πx x πdx x πdx x x x x x arctamxd xarctamxdx ).2(51cos ,2cos 5cos 42)2cos cos (2)cos (22sin sin sin cos )7(202202202202202202202202202202-=∴-=--=⋅-+=--=⋅-==⎰⎰⎰⎰⎰⎰⎰⎰ππx ππxπx ππx πxππxππx πxπxπxe xdx e e xdx e xdxe e dx e x x e e x d e e dxe x x e x d e xdx e 故;)sin(ln )8(1⎰edx x,,dt e dx e x t x ln t t ===,则令,sin 11cos 1sin )sin cos (1sin cos 1sin cos sin sin sin )sin(ln 101010101110101dt e t e e dt e t t e e tde e dt e t t e tde dt e t dx x t tt t tttte⎰⎰⎰⎰⎰⎰⎰⋅-+-=⋅+-=-=⋅-==⋅=.21)1cos 1(sin sin )sin(ln ,1)1cos 1(sin sin 210110+-=⋅=+-=⋅∴⎰⎰⎰e dt e t dx x e dt e t tet 故.12ln 23ln 31ln ln )1ln()9(32323221--=⋅-==+⎰⎰⎰dt t t t t tdt dx x ;sin )10(20dx x π⎰,2,2tdt dx t x t x ===,则令.2sin 22cos 2cos 2)cos (22sin 00000πtπdt t t t t d t dt t t πππππ=+=+-=-=⋅=⎰⎰⎰原式.22)1(111ln ln ln )ln (ln )11(1111111111e e e e e dxx x dx x x dx x dx x dx x eeeee e e e -=--+-+-=-++-=+-=⎰⎰⎰⎰⎰利用递推公式计算:.2.)1()2(;sin )1(299102990100100dx x J xdx x J π⎰⎰-==.212,)12(2)12()12(sin )12(sin )12(sin cos ]cos )12([sin cos sincos )cos (sin sin ,sin )1()1(22)1(222)1(2020220120120120120122022----------=∴-=---=---+=-++-=-===⎰⎰⎰⎰⎰⎰⎰m m m m mm πmπm πm 2-2m πm πm πm πm m πm m J mm J J m mJ J m J m xdxx m xdx x m xdx x dxx x sin m x x x x x x x xd x xdx sin x x J xdx x J 故则设解:.2196959897100999897100991009910011000482492492502100J J J J J J ⋅⋅⋅⋅==⋅==-==⨯⨯⨯⨯ 故.224969810013959799,22100200πJ πxdx J π⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===⎰ 故而.224969810013959799sin )sin ()(sin ,sin ]2,0[,cos )2(10020990299πdt t dt t t J tdt dx πt t x ππ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-=-=∈=⎰⎰ ,则令习题6-6 广义积分算广义积分的值:收敛性,如果收敛,计判别下列各广义积分的.1;4141)4(41)3(040404=-=--=∞+-∞+-∞+-⎰⎰xx xex d e dx e.21sin ,1sin 2,sin 1]sin sin [1sin 1cos 1cos cos )cos (sin )4(00000000000==∴-=+-=-=-=-+-=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+-∞+-∞+-∞+-∞+-∞+-∞+-+∞-+∞-+∞-+∞-dx x e dx x e dx x e dx x e x e x d e dx x e dxx e xe x d e dx x e xxxx xxxx xxx 故.)2(2)2arctan(1)2(54)5(22πππx x dx x x dx =--=+=++=++∞+∞-∞+∞-∞+∞-⎰⎰ .1]1)1([lim 1)1(21lim 1)6(21210221102=+--=---=---→→⎰⎰b x x d dx x x b b b ;1()7(203⎰-)x dx .1(1,1,1111,,11203103013103013113113发散)都发散,原式,则令⎰⎰⎰⎰⎰⎰⎰-∴+==-=-=-==-----x dx dt t dt t dt tdt t dt t dt t dt dx t x t x.1)8(21⎰-x xdx.38)3(2)1(22)1(,2,1,1110310210222=+=+=+==+==-=-⎰⎰t t dt t dt t t t tdt dx t x t x t x 原式,则令 )1()(ln 111ln ln )(ln )(ln 212≠+⋅-==-∞+⎰⎰⎰k C x k x x d x x dx k k x x dxk .k k k k 解:取得最小值?为何值时,这广义积分当发散?为何值时,这广义积分收敛?当为何值时,广义积分当时,当1=k ⎰x x dx ln C x xxd +==⎰ln ln ln ln⎪⎩⎪⎨⎧≠⋅-==∴∞+-+∞∞+⎰1|)(ln 1111|ln ln )(ln 2122k x k k x x x dx k k时,当1)1(=k .,原广义积分发散原式+∞= 时,当1)2(<k .,|)(ln 1121发散原式+∞=-=∞+-k x k=>时,原式当1)3(k .,)2(ln 111|)(ln 111121收敛-∞+--=⋅-k k k x k 时,当1>k 则记,)2ln 1(11)(1--=k k k f12)2(ln 1)1(1)(---='k k k f )2ln 1ln()2ln 1(111--+k k ).2ln ln 11()2(ln 1)1(11+---=-k k k ,令0)(='k f ,1>k 从而,0)2ln 1(111≠-∴-k k,02ln ln 11=+-k ,2ln ln 11-=k 即.值为唯一驻点此k时,当2ln ln 11->k 时,即02ln ln 11<+-k .0)(>'k f时,当2ln ln 11-<k .0)(该驻点是极小值点,∴<'k f时,即当1>k .)(),1(处的极小值就是最小值故唯一驻点没有边界值进行比较,时,在此区间上k f k ∞+∈习题6-7 定积分的几何应用形的面积:求由下列各曲线所围图.1 ).0(ln ,ln ,0,ln )7(;1,,)6(;2,1)5(;(8,2)4(;2,3)3(;,0,)2(;,)1(2222>>===========+==-======-a b b y a y x x y x e y e y x x y xy x y x y x y x y e y x e y x y x y x x x 与两部分都要计算).61)()1(10⎰=-=dx x x S 面积解:.1)()2(10⎰=-=dx e e S x 面积 .332)23(),6,3(),2,1(32)3(1322⎰-=--=--⇒⎩⎨⎧-==dx x x S B A x y x y 面积.342)218()4(22221⎰+=--=-πdx x x S 阴影部分的面积 .346)34282-=+-=πππS (另一部分的面积.2ln 23)1()5(21⎰-=-=dx x x S 面积.21)()6(10⎰-+=-=-ee dx e e S xx 面积.)0(,ln )7(ln ln ⎰-=-==⇒=ba yy a b dy e S e x x y 面积转的旋转体的体积:围平面图形绕指定轴旋求下列各题中的曲线所.2轴;轴绕y x x y x y ,,2,0,)1(3=== 轴;绕y y x x y ,,)2(22== 轴;绕x y x ,16)5()3(22=-+ ).0(,)4(222>>==+a b b x a y x 绕,7128)()1(2203πdx x πV x ==⎰解:,33y x x y =⇒=dy y πdy πV y ⎰⎰⋅-⋅=8023802)(2.56459632πππ=-=,)2(2y x x y =⇒=.10352)()(1022102πππdy y πdy y πV y =-=⋅-⋅=⎰⎰,165,165:16)5()3(222122x y x y y x --=-+==-+得由dx y y πdx y πdx y πV x )(22442144224421-=⋅-⋅=⎰⎰⎰---.160162102442πdx x π=-⋅=⎰-,,,:)4(22222122222y a b R y a b R y a x a y x --=-+=-±==+设得由dy R πdy R πV aa aa b ⎰⎰---=2221dy R R πaa )(2221-=⎰-dy y a b πaa 2222-⋅⋅=⎰-b a π222=.3列各题中立体的体积的立体体积公式计算下用平行截面面积为已知..)1(的正劈锥体为高底圆直径的线段为顶,的圆为底,平行且等于以半径为H R .)()2(的球缺的球体中高为半径为R H H R <.)20(1)3(2222的平面所截的劈形立体轴且与底面夹角的椭圆柱体被通过底面为椭圆πααx b y a x <<≤+ 截面的面积为:解:)1( [],,,221)(2222R R x x R h h x R x A -∈-=-⋅=:故此正劈锥体的体积为.21)(222h R πdx x R h dx x A V R R R R ⎰⎰--=-==截面的面积为:)2( [],,),()(22R H R y y R πy A -∈-=故球缺的体积为:).31()(222H R H πy d y R πV RH R -=-=⎰- 截面的面积为:)3( [],,,tan 1121)(2222ααx αax b a x b x A -∈-⋅-=故劈形立体的体积为: .tan 32tan )1(21)(2222αab dx αa x b dx x A V a a a a ⎰⎰--=-==习题6-8 定积分的经济应用.1000257)(1,求总成本函数,固定成本为已知边际成本为xx C .+=' .5071000)257(1000)()0()(00⎰⎰++=++='+=x x x x dx xdx x C C x C 解:.30202100)(.3应追加的成本数时,增加到,求当产量由已知边际成本==-='x x x x C:解:应追加的成本数为.500)2100()(30203020=-='⎰⎰dx x dx x C.0260)(430)(.4)(设固定成本为,求最大利润,边际收益为已知边际成本x x R x x C -='+=').0(230230)430()(22固定成本为解:x x C x x dx x x C +=++=+=⎰.60)260()(2C x x dx x x R +-=-=⎰,60)(,0,0)0(2x x x R C R -=∴=∴=,33023060)()()(222x x x x x x x C x R x L -=---=-=∴ ,06)(,5,0630)(<-=''==-='x L x x x L .75)5(5=-=L x 利润为时,有最大利润,最大故当 支出增加多少?费亿元时,购买冰箱的消亿元增加至,当居民收入由的函数,的变化率是居民总收入消费支出某地区居民购买冰箱的942001)()(.5xx W x x W =').(10012001)(9494亿解:=='⎰⎰dx xdx x W .1001亿增加故购买冰箱的消费支出.20)3(20)2()1(.10100106价值万元时,求收益的资本当应满足的方程);万元时,求内部利率(当本?为何值时,公司不会亏元收入年后报废,公司每年可备使用万元购买某设备,该设(连续复利)贷款某公司按利率==b b b b %.年后的总收益::年后这笔贷款的本利和解:10,10010010)1(101.0e e =⨯),1(101001)10(1.0⎰---=e eb dt e b t ),1(101001--=e eb e 若公司不亏本,则.1101--=eb 则 ,则设内部利率为ρ)2(),1(202010010100ρtρe ρdt e ---==⎰.1510ρe ρ--=即投入资金的现值收益流现值资本价值-=)3( 100201001.0-=⎰-dt e t.20010010020020011---=--=e e总习题六计算下列极限:.1.1lim 11lim )1(11111e edt e x xx x t x ==-→→⎰ .111)(1lim 21121)(lim .1)(lim )(,1)(lim )2(2220=⋅=+=⋅+==++∞→+∞→+∞→+∞→⎰x f xx xx x f t f t f x dt t f x x t xx 原式连续且其中计算下列积分:.2.22ln 2ln 2cos 1sin ,2ln )cos 1ln(cos 1)cos 1(cos 1sin ,2ln 22tan 2tan 2tan 22sec 2sec 22cos 2cos 1,cos 1sin cos 1cos 1sin )1(2020202020202020220220220202020ππdx x x x x x x d dx x x πdx x x x x d x x dx x dx x x dx x x dx x x dx x x dx x x dx x x x ππππππππππππππ=+-=++=+-=++-=+-=-=====++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰故而而 ;42)2(22⎰-+xdx.122tan 22sec 2122cos 212)cos 111(cos 1cos cos 22cos 2,cos 2]2,0[,sin 220202202202020-=-=-=-=+-=+=+==∈=⎰⎰⎰⎰⎰πt πdt t πdtt πdt t t tdt t tdt tdt dx πt t x ππππππ原式,则令).12(2)sin cos ()cos (sin )cos (sin )sin (cos cos sin )cos (sin cos sin 2cos sin 2sin 1)3(2440244020202202220-=--++=-+-=-=-=-+=-⎰⎰⎰⎰⎰⎰ππππππππππx x x x dx x x dx x x dx x x dxx x dx x x x x dx x .22)tan 2arctan(211)tan 2(tan 2211tan 2tan 1tan 2sec 1tan 21tan sin 2cos cos sin sin 1)4(202022022022222202222202πx x x d x x d dx x x dx x x x x xdx x x dx πππππππ==+=+=+=++=++=+⎰⎰⎰⎰⎰⎰ 且说明理由:指出下列计算中的错误4..01lim 1)3(;01,11)2(;2]1[arctan )1(1)1(1)1(4343112112111211112112=+=+=+∴+-=+-=-=+-=+⎰⎰⎰⎰⎰⎰⎰-+∞→∞∞---=----b bb tx xdx x x dx x x dx t dt x dx πx x x d x dx.0)1(2x x 以,故不能分子分母同除可以取为第一步到第二步错,因解:.2)4(4arctan 111112πππx x dx =--==+⎰--正确的做法: .x tx 0,1)2(就取不到因为这样不能令=.)3(是没有关系的限设法错误,因为它们第二步中定积分的上下解下列几何问题:.5;轴旋转的旋转体的体积所围图形绕求由y y x x y 0,4,)1(23===;轴旋转的旋转体的体积绕求圆盘y y x 1)2()2(22≤+- .940,1,,.0]1,0[)0,0()3(22积最小轴旋转而成的旋转体体,且使图形绕为所围图形的面积与直线的值,使抛物线试确定时,,且当过原点设抛物线x y x c bx ax y c b a y x c bx ax y ==++=≥∈++=应取何值?所围图形面积最小时,与抛物线)点,当直线过(已知直线b a x y b ax y b ax y ,1,0)4(2=+=+=.7512128)(4)1(80348023280212πdy y ππdy y πdy πV V V =-=⋅-⋅=-=⎰⎰⎰解:故旋转体的体积为,得由],1,1[121)2()2(222-∈-±==+-y y x y x.418124)12()12(211211221122112πdy y πdyy πdy y πdy y πV =-=-⋅=----+=⎰⎰⎰⎰----,896,94)(,0)3(1022=+=++==⎰b a dx bx ax bx ax y c 故,故由已知轴旋转体的体积绕x ),235()(22102abb a πdx bx ax πV ++=+=⎰)],98(12131)98(1801[),98(61222b b b b πV b a -++-=∴-=.0,35,2,0151,2,0]152151[22满足条件时,故当故=-==>⋅===-=c a b πdb V d b b πdb dV )(即由已知11)4(=+=b ax y ,即它所围面积,则两交点的横坐标为与抛物线设直线⎰-+=<=+=21)1()(,1221212x x dx x ax A x x x x x y ax y ),(31)()(23132122122x x x x x x a A ---+-=,01122=--⇒⎩⎨⎧=+=ax x xy ax y 是此方程的两根,有设21,x x ,1,2121-==+x x a x x ,44)(2)(221212212122212+=-+=-+=-a x x x x x x x x x x ,4))(()(,4212122122212+=-+=-+=-a a x x x x x x a x x 又 .)4(64)1(314421),1(4]))[((232222222221212123132+=++-+++=++=-+-=-a a a a a a A a a x x x x x x x x 故.1,0480,0,0)4(18212=====+=b a A a a a a dadA ,故有最小值时,故当则令解下列经济应用问题:.6?台的平均利润各为多少台与后台时,前售出台电视机的总利润售出试求的边际利润为已知某商场销售电视机需求出满足的方程)万元,求内部利率(只年,每年收益厂投产期万元扩建一个工厂,该某企业投资少?单位时,总成本减少多单位减少到由问当产量成本已知生产某产品的边际303060.2.401),20(10250)()3(.2020232)2(312,30183)()1(2.x xx L x x x x C ≥-='+-='.11120232)2(.756)30183()()1(202001232123ρtρeρ.6dt e ρdx x x dx x C C --⎰⎰⎰-===+-='=,解得:,则设内部利润为减少的成本解:,20250)10250()(.1)3(2C x x dx x x L +-=-=⎰,20250)(,0,0)0(2x x x L C L -=∴=∴=.9920)40(40=L 台电视机的总利润为:售出,5.24830745530)30(,7455)30(.2===L L ,5.24530)30()60(,7365)30()60(,14820)60(=-=-=L L L L L.5..5245302483060台的平均利润为,后台的平均利润为台时,前故售出(注:本资料素材和资料部分来自网络,仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高 等 数 学 (下)
1
知识框架
极限
连续
微分 导数、微分
导数的应用

积分
不定积分

无穷级数 定积分
微分方程 二重积分
一元 函数 微积 分学
多元 函数 微积 分学
2
第六章 定积分
不定积分 积分学
定积分
3
第一节
第六章
定积分的概念
一、定积分问题举例
二、 定积分的定义
在本节中我们将从一些实际问题的计算里 提炼出一类关于“和式极限”计算的数学问 题,从而引申出定积分的概念,并探讨它的性 质、几何意义。
思路:把整段时间分割成若干小段,每小段上速度 看作不变,求出各小段的路程再相加,便得到路程 的近似值,最后通过对时间的无限细分过程,求得 路程的精确值
11
(1)分割T1 t0 t1 t2 tn1 tn T2
ti ti ti1
(2)近似部分路程近似值 si v( i ) ti
2) 近似. 在第i 个窄曲边梯形上任取 i [xi1 , xi ] 作以[xi1 , xi ] 为底 , f (i ) y
为高的小矩形, 并以此小
矩形面积近似代替相应
窄曲边梯形面积
得 O a x1
Ai f (i )xi (xi xi xi1 )
xi1 xi
i
9
3) 求和.
n
路程的精确值
s

lim
0
i 1
v(
i
)ti
n
而曲边梯形面积 A
lim
0
i 1
f (i )xi
还有其它许多实际问题(如“收益问题”等)的解决都
将归结于这种特殊类型的和式极限。人们把这类极限
称为定积分,进行专门研究。
13
二.定积分定义 (P220 )
a x0 x1 x2 xn b ,
5
(2)求曲边梯形面积的意义:由平面曲线所围成的任意
平面图形的面积都可以转化为曲边梯形面积的代数和.
y
y
y
oa
b x oa
bx o a
bx
(3)求由连续曲线 y f (x) ( f (x) 0) 和三条直线x=a,
x=b,y=0所围成的曲边梯形的面积.
6
矩形面积 梯形面积
用矩形面积近似代替曲边梯形面积
n
n
A Ai f (i )xi
i1
i1
4) 取极限. 令
则曲边梯形面积
n
A

lim
0
i1
Ai
n

lim
0

i1
f
(i
)xi
y O a x1 xi1 xi
i
10
实例2:变速直线运动的路程
设某物体作直线运动, 已知速度

求在运动时间内物体所经过的路程 s.
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
(
x)
dx

b
n
f ( x)d x lim
a
0 i1
f ( i ) x i
O
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
i
xi1xi b x
14
积分上限
[a , b] 称为积分区间
15
(2)定积分仅与被积函数及积分区间有关,而与积分变量
使用什么字母表示无关.即
b f (x)dx
b f (t)dt
b
f (u)du
a
a
a
(3)定积分与区间的分割方法无关,与 i 的取法无关.
(4)当函数f (x)在区间[a,b]上的定积分存在时,称 f (x)
在区间[a,b]上可积.否则称 f (x)在区间[a,b]上不可积.
A3
A4 A5
y A1
b
A3
A a f ( x) dx
A5
a
A2 O
A4
bx
4. b f ( x)dx 的几何意义:它是介于x轴、函数 f (x)的图形 a
及两条直线x=a,x=b之间的各部分面积的代数和. 且
x轴上方的面积取正号;在x轴下方的面积取负号.
n
b
(5)曲边梯形面积 A lim
0
变速直线运动的路程 s

i 1

f ( lim
0
i )xi
n
v(
i 1
i
f
a
)t
(x
i
)dx.
vT2
T1
(
t
)dt
16
三.定积分的几何意义
b
1.当 f (x) 0 时, f ( x)dx A
曲边梯形的面积
a
2. 当 f (x) 0 时,b f ( x)dx A 曲边梯形面积的负值 a
n
(3)求和 s v( i )ti i 1
ti1 ti t i
i t
(4)取极限 max{t1,t2 ,,tn }
n
s

lim
0
i 1
v(
i
)ti
12
上述两个问题的共性:
• 解决问题的方法步骤相同 :
“分割 , 近似 , 求和 , 取极限 ”
• 所求量的极限结构式相同: 和式的极限
4
一、定积分问题举例
实例1:求曲边梯形的面积.
(1)曲边梯形定义: 由一条连续曲线 y f (x)
和三 条直线 x=a, x=b, y=0 所围成的封闭图形.
y y f (x)
y y f (x)
y y f (x)
oa
bx o a
曲线弧y f (x) :曲边
bx
oa
bx
直线段[a,b] :底边
b
n
a
f ( x)d x lim 0 i1
f ( i ) x i
积分下限 被 积 函 数
被积 积分 表变 达量
积 分 和

注意:
b
(1) f ( x)dx与 f ( x)dx的区别: 定与不定的区别? a
b f ( x)dx 是一个确定的常数. f Βιβλιοθήκη x)dx是f (x)的所有原函 a
y
y
o
a
b
(四个小矩形)
xo
a
bx
(九个小矩形)
显然:小矩形越多,矩形总面积越接近曲边梯形面积.
7
处理该类问题的基本思路: 无限细分(化曲为直)、无限求和!
y y= f (x)
Oa
bx
8
解决步骤 :
1) 分割. 在区间 [a , b] 中任意插入 n –1 个分点
a x0 x1 x2 xn1 xn b 用直线 x xi 将曲边梯形分成 n 个小曲边梯形;
y y f (x)
y a
b
A
o
x
A
oa
bx
y f (x)
b
n
a
f (x)dx lim 0 i1
f ( i ) x i
17
b
3. 当 f (x) 在[a,b]上有正有负时, f ( x)dx表示各部分 a
面积的代数和.

b a
f
( x)dx

A1
A2
相关文档
最新文档