第3章 线性电阻电路的一般分析方法.
第03章电阻电路的一般分析

例3 列支路电流法方程。
a
解:
I1 7
+ 70V
–
I2
1+
5U
_
7 I3 11 +
U 2-
节点a: –I1–I2+I3=0 回路1: 7I1–11I2 - 70 +5U =0 回路2: 11I2+7I3 - 5U =0 增补方程:
b
U=7I3
(1-18)
§3.4 网孔电流法
网孔电流——假想每个网孔中有一个网孔电流。方向可 任意假设。
(1-22)
理想电流源(恒流源)支路的处理
①若恒流源支路仅有一个网孔电流穿过,则该网孔电 流= ± 该恒流源电流(同方向取+,否则取-)。 ②非上述情况时:设恒流源两端电压,当作恒压源列方 程。然后增补恒流源电流与网孔电流的关系方程。
例2 列网孔电流方程。
R1
R2 im2 I3s
+ im1 I5s
第三章
电阻电路的一般分析
重点: 1.支路电流法; 2. 网孔电流法; 3.回路电流法; 4.节点电压法。
对于简单电路,通过电阻串、并联关系或 Y—△等效变换关系即可求解。如:
i总 R
R
R i=?
+
-u
2R
2R
2R 2R
i总
i总
u 2R
+
- u 2R
111 u i i总 2 2 2 16R
例4 列网孔电流方程。
解:网孔电流方向如图所示。 (R1 + R3)i1-R3i3=-U2
+
U1 _
R1
iS
R3 i1
+
电路分析基础第3章

R11im1+ R12 im2 = us11
R21im1 + R22im2 = uS22
R11=R1+R2 R22=R2+R3 R12=R21=R2 自阻
YANGTZE NORMAL UNIVERSITY 自阻总是正
R1 i1
a
R3
网孔1所有电阻之和
网孔2所有电阻之和
互阻 网孔1、2的公共电阻
i2 R2 + im1 + uS 1 uS2 – – b
us + 2
YANGTZE NORMAL UNIVERSITY
R1
L1
L2
R2
us -
+
L
1
i2
4 3
i4
R2
5
2
i5
C
1 3
4
5
R1
i2 i4 i5
有向图
返回
YANGTZE NORMAL UNIVERSITY
§3-2 KCL和KVL的独立方程数
1、KCL的独立方程数
2
1 1 4 3 5 2 3
YANGTZE NORMAL UNIVERSITY
电路分析基础
1
YANGTZE NORMAL UNIVERSITY
第三章 电阻电路的一般分析
重点:
支路电流法
网孔电流法 回路电流法 节点电压法
YANGTZE NORMAL UNIVERSITY
目的:找出求解线性电路的一般分析方法 。 对象:含独立源、受控源的电阻网络的直流稳态解。 (可推广应用于其他类型电路的稳态分析中) 应用:主要用于复杂的线性电路的求解。 基础: 电路的连接关系—KCL,KVL定律 元件特性(约束)(对电阻电路,即欧姆定律) 相互独 立
第3章 电阻电路的一般分析总结

第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。
2、熟练地运用节点法和回路法分析计算电路。
3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
1.支路——Branch流过同一个电流的电路部分为一条支路。
2.节点——node三条或者三条以上支路的汇集称为节点。
4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。
6.回路——loop电路中的任意闭合路径,称为回路。
8.网孔——mesh一般是指内网孔。
平面图中自然的“孔”,它所限定的区域不再有支路。
例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。
树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。
一个连通图的树可能存在多种选择方法。
10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。
树一经选定,基本回路唯一地确定下来。
对于平面电路而言,其全部网孔是一组独立回路。
3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。
从而得到含2b 个变量的2b 个独立方程。
又称为“2b 法”。
2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。
3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。
第3章 电阻电路的一般分析

解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2
邱关源《电路》第五版第3章电阻电路的一般分析

第 1 步 选定各支路电流参考方向,如图 3-1 所示。 第 2 步 对(n-1)个独立节点列 KCL 方程 如果选图 3-1 所示电路中的节点 4 为参考节点,则节点 1、2、3 为独 立节点,其对应的 KCL 方程必将独立,即: 1 I1 I3 I4 0 2 I1 I 2 I5 0 3 I 2 I3 I6 0 第 3 步.对 b (n 1) 个独立回路列关于支路电流的 KVL 方程 Ⅰ: R1 I 1 R5 I 5 U s 4 R4 I 4 U s1 0 Ⅱ: R2 I 2 U s 2 R6 I 6 R5 I 5 0 Ⅲ: R4 I 4 U s 4 R6 I 6 U s3 R3 I 3 0 第 4 步.求解
第三步,网孔电流方程的一般形式
R11im1 R12im 2 R13im3 us11 R21im1 R22im 2 R23im3 us 22 R31im1 R32im 2 R33im3 us 33
式中,Rij(i=j)称为自电阻,为第 i 个网孔中各支路的电阻之和,值恒为 正。Rij(i≠j)称为互电阻,为第 i 个与第 j 个网孔之间公共支路的电阻之 和,值可正可负;当相邻网孔电流在公共支路上流向一致时为正,不一 致时为负。 usii 为第 i 个网孔中的等效电压源。其值为该网孔中各支路电
G5 1 + US
—
2 G1 G3 G2 G4
3
4
图 3-8
b.对不含有电压源支路的节点利用直接观察法列方程: G1U n1 (G1 G2 G3 )U n 2 G3U n3 0
G5U n1 G3U n (G3 G4 G5 )U n3 0
c.求解 ② 含多条不具有公共端点的理想电压源支路,如图 3-9。 a.适当选取参考点:令 U n4 0 ,则 U n1 U s 。 b. 虚设电压源电流为 I,利用直接观察法形成方程
清华考研 电路原理课件 第3章 线性电阻电路的一般分析方法

返回目录
3.2 回路电流法(Loop Current Method)
基本思想 以假想的回路电流为未知量列写回路的KVL方程。 若回路电流已求得,则各支路电流可用回路电流线性组合表 示。 a 选图示的两个独立回路, 设回路电流分别为il1、 il2。 支路电流可由回路电流表出
I1 R1 US1
+ –
+ : 流过互阻的两个回路电流方向相同 - : 流过互阻的两个回路电流方向相反 0 : 无关
uSlk: 第k个回路中所有电压源电压升的代数和。
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,标明回路电流及方向; (2) 对l个独立回路,以回路电流为未知量,列写 其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示); 网孔电流法(mesh-current method) 对平面电路( planar circuit ),若以网孔为独立回 路,此时回路电流也称为网孔电流,对应的分析方法称 为网孔电流法。
本章重点 本章重点 3. 3. 1 1 支路电流法 支路电流法 3. 3. 2 2 回路电流法 回路电流法 3. 3. 3 3 节点电压法 节点电压法
重点 本章重点 � 本章
• 熟练掌握电路方程的列写方法 � 支路电流法 � 回路电流法 � 节点电压法
返回目录
3.1 支路电流法 (Branch Current Method)
支路电流法: 以各支路电流为未知量列写电路方程分析电路的方法。 举例说明 2
支路数 b=6
R4
节点数 n=4
i2
1
R2 i3 R3 R1 i1 R6
+ 4
(1) 取支路电流 i1~ i6为独立变
电工技术-电子教案 第3章 电阻电路的一般分析方法

3.2 回路电流法(续6)
例1 试用网孔电流法求图示电路各个支路电流。
解: 选三个网孔为独立回路, 网孔电流分别为 im1 、 im2 及 im3 。 可写出网孔方程为
解此方程得
im11A, im20.5A, im31.5A
各支路电流为 i1im11A, i2im1im20.5A
3.2 回路电流法(续7)
回路电流法
回路电流法是以各回路电流作为未知变量来列写电路方程,
Байду номын сангаас
并求解回路电流,进而求取各支路电流和支路电压的方法。此 时所得方程称为回路方程。 只需对独立回路列写KVL方程,方程数为b- ( n-1)。 回路电流是假设的沿着每个回路边界构成的闭合路径自行流 动的电流。 支路电流等于流经该支路的回路电流的代数和。 若所选回路正好是网孔,则以各网孔电流作为未知变量来列 写电路方程,并求解网孔电流,进而求取各支路电流和支路电
压的方法称为网孔电流法。
3.2 回路电流法(续1)
回路方程的列写
该电路有6条支路、4个节点,因 此,该电路的独立回路所包含的回 路数为3。选回路1、2、3为独立回 路,这3个回路的回路电流分别用il1 、 il2 、 il3表示,则各支路电流与回 路电流的关系为
3.2 回路电流法(续2)
以回路电流为电路变量,对回路1、2 、3列写KVL方程
联立解得
故
3.3 结点电压法
结点电压法
结点电压法是以各结点电压作为未知变量来列写电路方程,
并求解结点电压,进而求取各支路电压和支路电流的方法。此 时所得方程称为结点方程。 只需对独立结点列写KCL方程,方程数为n-1。 在电路中任意选择某一节点为参考节点,则其它节点与参考 节点之间的电压称为节点电压,其参考方向由其它节点指向参 考节点。 任一支路都连接在两个节点上,所以支路电压等于节点电压 或相关两个节点电压之差。
第3章 电阻电路的一般分析方法

(2) 列KCL方程: iR出= iS入
结点 1 i1+i6=iS3 代入支路特性(用结点电压表示):
结点 2
un 2 un 2 un3 un 2 un3 un1 un 2 is 2 (2) R2 R3 R4 R6
i2 + i3 + i4 – i6= -iS2
电路物理量的关系 (电流、电压)
本课程主要研究电路分析,其基本方法: 确定变量 根据约束关系列方程 求解
特点:不改变电路结构,由根据约束关系建立方程求解。
回路电流法(网孔法)和结点电压法。
根据列方程时所选变量的不同可分为支路电流法、
章目录 上一页 下一页
3.1 支路电流法
一、支路电流法:以各支路电流为未知量列写电路, 方程分析电路的方法,称为支路电流法。 步骤:
方法2:选取独立回路时,使理想电流源支路仅仅属 于一个回路, 该回路电流即IS 。
R3 _ Ui + US1_ R1 I1=IS -R2I1+(R2+R4+R5)I2+R5I3=-US2 R1I1+R5I2+(R1+R3+R5)I3=US1
章目录 上一页 下一页
+
I3
R4 I2 R5
IS R2 I1 _ US2 +
u2=R2(iL1-iL2)
章目录 上一页 下一页
回路电流法的一般步骤: (1) 选定独立回路,并在图中标出。 (2) 对独立回路,以回路电流为未知量,列写其 KVL方程。
注意自电阻总是正,互电阻可正可负; 沿着回路绕行方向,电源压升为正,压降 为负; (3)当电路中有受控源或无伴电流源时需另行处理; (4) 求各支路电流(用回路电流表示);