函数值域的求法大全
函数值域的13种求法

函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的几种常用方法

求函数值域的几种常用方法函数的值域是指函数在定义域上所有可能的输出值的集合。
求函数值域的方法可以分为几种常用的途径,包括图像法、解析法、等价关系法和数列法等。
下面将详细介绍这些方法。
一、图像法图像法是通过绘制函数的图像来确定函数的值域。
具体步骤如下:1.根据函数的定义域,确定合适的坐标系并绘制出函数的图像。
2.观察图像的上下边界,确定最小值和最大值,并将这些值确定为函数的值域的下边界和上边界。
二、解析法解析法是通过对函数进行化简和分析,找出函数的特性来确定值域。
具体步骤如下:1.根据函数的定义表达式,观察函数的性质,例如函数的奇偶性、周期性等。
2.利用函数的性质,找出函数的最小值和最大值,并将这些值确定为函数的值域的下边界和上边界。
三、等价关系法等价关系法是通过将函数与其他已知函数进行比较来确定函数的值域。
具体步骤如下:1.将函数的定义表达式进行变形,使其更容易与已知函数进行比较。
2.将函数与已知函数进行比较,找出它们的区别和相似之处。
3.根据已知函数的值域,可以确定函数的值域的下边界和上边界。
四、数列法数列法是通过构造特定的数列来逼近函数的值域。
1.根据函数的定义域,构造一个数列,使得数列中的每一个数都在函数的定义域内。
2.计算函数在数列中每一个数的值,并将这些值确定为函数的值域的一部分。
3.根据数列的性质,可以逼近函数的值域的下边界和上边界。
需要注意的是,这些方法都只能对一些简单的函数有效,对于复杂的函数,求值域可能需要借助数学分析工具、数值计算方法或者计算机模拟来进行。
此外,不同的方法可以结合使用,以增加求值域的准确性。
求函数值域的方法大全

求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
函数值域求法十一种

函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。
例如,求函数 $y=\frac{1}{x}$ 的值域。
解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。
2.配方法配方法是求二次函数值域最基本的方法之一。
例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。
解:将函数配方得:$y=(x+1)^2+2$。
由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。
故函数的值域是:$[2,4]$。
3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。
解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。
1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。
2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。
4.反函数法例如,求函数 $y=3x+4$ 的值域。
解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。
例13.求函数y sinx cosx的值域。
解:由三角函数的性质可知。
1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。
函数求值域的15种方法

函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
函数值域求法十一种

函数值域求法十一种函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x1y =的值域。
解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2xy 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x222=++-(1)∵R x ∈ ∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥∆,仅保证关于x 的方程:0y x )1y (2x222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的12种方法

求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数值域的求法大全题型一 求函数值:特别是分段函数求值例1 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别.跟踪训练4 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)]. 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f [f (1)]=f (23)=23+123+2=58.5.已知函数f (x )=x 2+x -1. (1)求f (2),f (1x);(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f (1x )=1x 2+1x -1=1+x -x 2x2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或x =-3. (3)4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________. 答案 6解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3,f (3)=f (2)+1=4,f (4)=f (3)+1=5,f (5)=f (4)+1=6.二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。
求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k x ky 的定义域为{x|x ≠0},值域为{y|y ≠0};二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b ac y y 4)4(|2-≤}.例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像)解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②略③ 当x>0,∴x x y 1+==2)1(2+-xx 2≥, 当x<0时,)1(x x y -+--==-2)1(2----xx -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数xx y 1+=的图像为:二次函数在区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;解:∵3)2(1422--=+-=x x x y ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R ,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y ≥-3 }. ②∵顶点横坐标2∉[3,4],当x=3时,y= -2;x=4时,y=1;∴在[3,4]上,min y =-2,m ax y =1;值域为[-2,1].③∵顶点横坐标2∉ [0,1],当x=0时,y=1;x=1时,y=-2, ∴在[0,1]上,min y =-2,m ax y =1;值域为[-2,1].④∵顶点横坐标2∈ [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6, ∴在[0,1]上,min y =-3,m ax y =6;值域为[-3,6].注:对于二次函数)0()(2≠++=a c bx ax x f ,⑴若定义域为R 时, ①当a>0时,则当a bx 2-=时,其最小值a b ac y 4)4(2min -=; ②当a<0时,则当a bx 2-=时,其最大值ab ac y 4)4(2max -=; ⑵若定义域为x ∈ [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b]. ①若0x ∈[a,b],则)(0x f 是函数的最小值(a>0)时或最大值(a<0)时, 再比较)(),(b f a f 的大小决定函数的最大(小)值.②若0x ∉[a,b],则[a,b]是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.练习:1、求函数y =3+x 32-的值域解:由算术平方根的性质,知x 32-≥0,故3+x 32-≥3。
∴函数的值域为[)+∞,3.2、求函数[]5,0,522∈+-=x x x y 的值域 解: 对称轴 []5,01∈=x[]20,420,54,1max min 值域为时时∴====∴y x y x1 单调性法例3 求函数y=4x -x 31-(x ≤1/3)的值域。
设f(x)=4x,g(x)= -x 31-,(x ≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-x 31-在定义域为x ≤1/3上也为增函数,而且y ≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y ≤4/3}。
小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
练习:求函数y=3+x -4的值域。
(答案:{y|y ≥3})2 换元法例4 求函数x x y -+=12 的值域解:设t x =-1,则)0(122≥++-=t t t y[)(]2,21,01max ∞-∴==∴+∞∈=值域为,时当且开口向下,对称轴y t t点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。
这种解题的方法体现换元、化归的思想方法。
它的应用十分广泛。
练习:求函数y=x x --1的值域。
(答案:{y|y ≤-3/4} 求xx xx cos sin cos sin 1++的值域;例5 (三角换元法)求函数21x x y -+=的值域解: 11≤≤-x ∴设[]πθθ,0cos ∈=x[][]2,12,1)4sin(2sin cos sin cos -∴-∈+=+=+=原函数的值域为πθθθθθy小结:(1)若题目中含有1≤a ,则可设)0,cos (22,sin πθθπθπθ≤≤=≤≤-=a a 或设 (2)若题目中含有122=+b a 则可设θθsin ,cos ==b a ,其中πθ20<≤(3)若题目中含有21x -,则可设θcos =x ,其中πθ≤≤0 (4)若题目中含有21x +,则可设θtan =x ,其中22πθπ<<-(5)若题目中含有)0,0,0(>>>=+r y x r y x ,则可设θθ22sin ,cos r y r x ==其中⎪⎭⎫⎝⎛∈2,0πθ3 平方法例5 (选)求函数x x y -+-=53 的值域解:函数定义域为:[]5,3∈x[][][][]2,24,21,0158,5,31582)5()3(2222原函数值域为得由∴∈∴∈-+-∈-+-+-+-=y x x x x x x x y4 分离常数法 例6 求函数21+-=x x y 的值域 由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为)(bc ad dcx c adb c a y ≠+-+=,用复合函数法来求值域。
练习 求函数6412+-=x x y 的值域 求函数133+=x xy 的值域求函数 y =1212+-x x 的值域;(y ∈(-1,1))例7 求13+--=x x y 的值域解法一:(图象法)可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图,观察得值域{}44≤≤-y y解法二:(不等式法)414114)1(134)1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 同样可得值域练习:1y x x =++的值域 )[∞+,1例8 求函数[])1,0(239∈+-=x y xx的值域解:(换元法)设t x=3 ,则 31≤≤t 原函数可化为[][]8,28,3;2,13,121,2max min 2值域为时时对称轴∴====∴∉=+-=y t y t t t t y 例9求函数xx y 2231+-⎪⎭⎫ ⎝⎛= 的值域解:(换元法)令1)1(222+--=+-=x x x t ,则)1(31≤⎪⎭⎫⎝⎛=t y t由指数函数的单调性知,原函数的值域为⎪⎭⎫⎢⎣⎡+∞,31例10 求函数 )0(2≤=x y x的值域解:(图象法)如图,值域为(]1,0 (换元法)设t x=+13 ,则()111131113113>-=+-=+-+=t t y xx x 101101<<∴<<∴>y tt()1,0原函数的值域为∴例13 函数1122+-=x x y 的值域解法一:(逆求法)110112<≤-∴≥-+=y yyx[)1,1-∴原函数的值域为解法二:(换元法)设t x =+12,则原函数值域即得∴<≤-∴≤<∴≥112201y tt解法三:(判别式法)原函数可化为 010)1(2=++⋅+-y x x y 1) 1=y 时 不成立2) 1≠y 时,110)1)(1(400≤≤-⇒≥+--⇒≥∆y y y11<≤-∴y综合1)、2)值域}11|{<≤-y y 解法四:(三角换元法)∴∈Rx 设⎪⎭⎫⎝⎛-∈=2,2tan ππθθx ,则()(]1,12cos ,22cos tan 1tan 122-∈∴-∈-=+--=θππθθθθ y∴原函数的值域为}11|{<≤-y y 例14 求函数34252+-=x x y 的值域解法一:(判别式法)化为0)53(422=-+-y yx yx1)0=y 时,不成立 2)0≠y 时,0≥∆得500)53(8)4(≤≤⇒≥--y y y y 50≤<∴y综合1)、2)值域}50|{≤<y y解法二:(复合函数法)令t x x =+-3422,则ty 5=11)1(22≥+-=x t2550≤<∴y 所以,值域}50|{≤<y y例15 函数11++=xx y 的值域 解法一:(判别式法)原式可化为 01)1(2=+-+x y x(][)∞+-∞-∴-≤≥∴≥--∴≥∆,31,1304)1(02 原函数值域为或y y y解法二:(不等式法)1)当0>x 时,321≥∴≥+y xx 2) 0<x 时,12)(1)(1-≤∴-≤⎥⎦⎤⎢⎣⎡-+--=+y x x x x综合1)2)知,原函数值域为(][)∞+-∞-,31,例16 (选) 求函数)1(1222->+++=x x x x y 的值域 解法一:(判别式法)原式可化为 02)2(2=-+-+y x y x[)∞+∴-≤∴->-≤≥⇒≥---∴≥∆,221220)2(4)2(02原函数值域为舍去或y x y y y y解法二:(不等式法)原函数可化为 当且仅当0=x 时取等号,故值域为[)∞+,2例17 (选) 求函数)22(1222≤≤-+++=x x x x y 的值域解:(换元法)令t x =+1 。