9-简单超静定结构的解法解析
用力法求解超静定结构

用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。
用力法是一种经典的结构分析方法,常用于求解超静定结构。
本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。
一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。
用力法适用于各种类型的结构,包括梁、柱、桁架等。
二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。
2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。
通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。
3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。
平衡方程包括力的平衡条件和力的矩平衡条件。
4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。
变形方程可以根据结构的刚度和约束条件来确定。
5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。
6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。
如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。
三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。
假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。
1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。
2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。
3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。
4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。
超静定结构的解法

超静定结构的解法
迭代解法主要利用迭代计算的方法,在每次迭代中修正应力和应变的分布,直到趋于稳定。
该方法的基本步骤如下:
1.假设受力的初始状态,即假设一些节点处的节点位移和内力;
2.利用结构的几何约束和材料力学性质,计算一些节点处的内力和位移;
3.判断内力和位移是否满足力学静平衡条件,若满足则计算结束,否则进入下一步;
4.通过一定的修正方法,调整节点内力和位移;
5.重复步骤2至步骤4,直到内力和位移满足力学静平衡条件。
迭代解法的优点是通用性强,适用于各种超静定结构,但收敛速度较慢,计算量较大。
弹性势能法是利用结构的势能原理,将结构的力学行为转化为弹性势能的变化来求解结构的内力和位移。
该方法的基本步骤如下:
1.根据结构的受力情况和约束条件,建立适当的势能表达式;
2.利用力学静平衡方程,将势能表达式表示为内力和位移的函数;
3.求解势能的极值点,即通过对内力和位移偏导等于零,解得内力和位移的方程;
4.建立适当的边界条件,如位移边界条件和约束条件;
5.通过求解得到的方程,计算结构的内力和位移。
弹性势能法的优点是求解过程相对简单,收敛速度较快,但要求结构能够满足一定的连通性和对称性条件。
在解超静定结构的过程中,还可以采用其他方法来辅助计算,如虚功法、位移法、能量法等。
此外,有些超静定结构也可以通过变形补偿或者加固措施等方法使之退化为静定结构,进而采用常规的静力计算方法来求解。
总之,解超静定结构是一个相对复杂的过程,需要利用附加条件和弹性支承约束来求解。
通过迭代解法和弹性势能法等方法可以得到结构的内力和位移,为实际工程中的设计和分析提供重要的参考和依据。
超静定结构解法力法.pptx

P
EI
EI
l
P
解:
X1
l
X1=1
Pl
P
1 0
11 X1 1P 0 11 l 3 / 3EI
1P Pl 3 / 2EI
X1 3P / 2()
M M1 X1 M P
l
M1
Pl
MP
第8页/共21页
3 Pl M 2
力法基本思路小结
解除多余约束,转化为静定结构。多余约 束代以多余未知力——基本未知力。
分析基本结构在单位基本未知力和外界因 素作用下的位移,建立位移协调条件——力 法方程。
从力法方程解得基本未知力,由叠加原理 获得结构内力。超静定结构分析通过转化为 静定结构获得了解决。
第9页/共21页
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
X1
X2
X3
X1
X2
X3
去掉一个链杆或切断 一个链杆相当于去掉 一个约束
X1 X2
X3
第12页/共21页
X2 X1
X3
X3
X2 X1
X3 X1
X1 X2 X3
X2
去掉一个固定端支 座或切断一根弯曲 杆相当于去掉三个 约束.
将刚结点变成铰结 点或将固定端支座 变成固定铰支座相 当于去掉一个约束.
几何可变体系不能 X3 作为基本体系
M
1 0
1 11 1P 0
11 X1 11
力法 方程
11 X1 1P 0
1 11 l 3 / 3EI
1P ql 4 / 8EI
X1 3ql / 8() M M1 X1 M P
超静定问题

l >
B端必接触
C
40kN 1.2m
静力平衡方程
RA RB 100kN
B
变形协调条件为 l
RB
RA
A
60kN 2.4m 1.2m
轴 力 图
15kN
85kN
⊕ 25kN
C
40kN 1.2m
B
RA 103 1.2 ( RA 60) 103 2.4 RB 103 1.2 l 9 6 9 6 9 6 210 10 600 10 210 10 600 10 210 10 300 10
3
FC
A
FC
C
L
2
L
B
2
P
例题 6.10
当系统的温度升高时,下列结构中的____不会 A 产生温度应力.
A
B
C
D
例题 6.11
图示静不定梁承受集中力F和集中力偶Me作用, 梁的两端铰支,中间截面C处有弹簧支座.在下列 关于该梁的多余约束力与变形协调条件的讨论 中,___是错误的. C
RB
RA 85kN
RB 15kN
三、扭转超静定问题 扭转变形计算公式
Tl GI p
T ( x) dx GI p l
例3.两端固定的圆截面等直杆AB,在截面
C受外力偶矩m作用,求杆两端的支座反力
偶矩。
m
A C B
a
b
解:
A
m
ɑ
mA
C
B
b
m
静力平衡方程为: m A mB m 变形协调条件为:
5 ql 8
B
L
q
材料力学

5 Pa RD a RD a 6 EI 3EI 3EI
如何得到?
A D
P
B
自行完成
C D
RD
例题 6
图示结构AB梁的抗弯刚度为EI,CD杆的抗拉刚度为EA,
已知P、L、a。求CD杆所受的拉力。
D
a
A
C
L
2
L
B
2
P
解:变形协调条件为 wC lCD
D
a
C
FC
A
( P FC ) L wC 48EI FC L lCD EA
温度应力:
FB E t A
6 1 12 . 5 10 碳素钢线胀系数为 C0
温度应力:超静定结构中,由于温度变化,使构
件膨胀或收缩而产生的附加应力。
不容忽视!!!
路、桥、建筑物中的伸缩缝 高温管道间隔一定距离弯一个伸缩节
例题 11
图示阶梯形杆上端固定,下端与支座距离=1mm, 材料的弹性模量E=210GPa,上下两段杆的横截 面面积分别为600平方毫米和300平方毫米。试 作杆的轴力图。
C
A
FA
B
L2
FC
FA FB FC qL 0
L2
M
A
0
FB
变形协调方程
L qL2 FC FB L 0 2 2
3 FB qL 16
FA 3 qL 16
C q C FC 0
7.5kNm
5qL4 FC L3 5 0 FC qL 8 384 EI Z 48EI Z
由于超静定结构能有效降低结构的内力及变形,在 工程上(如桥梁等)应用非常广泛。
●超静定问题的解法:
超静定结构的解法

力法的基本思路
超静定计算简图 解除约束转 化成静定的 基本结构承受荷 载和多余未知力
基本体系受力、变形解法已知
力法的基本思路
用已掌握的方法,分析单个基本未 知力作用下的受力和变形
位移包含基本未知力Xi
同样方法分析 “荷载”下的 受力、变形
为消除基本结构与原结构差别,建立位移协调条件
11 12 1P 1 21 22 2 P 2
11 X 1 1n X n 1 P 1 X X nn n nP n n1 1
或写作矩阵方程
δ X P
(3) 作基本结构在单位未知力和荷载(如果 有)作用下的弯矩(内力)图 M i , M P (4) 求基本结构的位移系数
小结:力法的解题步骤
(1) 确定结构的超静定次数和基本结构(体系)
超静定次数 = 基本未知力的个数
= 多余约束数
= 变成基本结构所需解除的约束数
(3 次)
或
(14 次)
或
(1 次)
(6 次)
(4 次)
确定超静定次数时应注意: (a) 切断弯曲杆次数3、链杆1,刚结变单铰1, 拆开单铰2。总次数也可由计算自由度得到。 (b) 一个超静定结构可能有多种形式的基本 结构,不同基本结构带来不同的计算工作量。 因此,要选取工作量较少的基本结构。 (c) 可变体系不能作为基本结构 (2) 建立力法典型方程
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
由于从超静定转化为静定,将什么 约束看成多余约束不是唯一的,因此 力法求解的基本结构也不是唯一的。
9-简单超静定结构的解法解析

例4 两铸件用两钢杆1、2连接如图,其间距为 l=200mm。现需 将制造得过长e=0.11mm的铜杆3装人铸件之间,并保持三杆 的轴线平行且有等间距a。试计算各杆内的装配应力。已知: 钢杆直径d=10mm,铜杆横截面为20mm 30mm的矩形,钢的 弹性模量E=210GPa,铜的弹性模量E=100GPa。铸件很厚,其 变形可略去不计。
最后,补充方程变为
7 qa4 FNa3 FNl 12 EI EI EA
解得
FN
7qa4 A 12(Il Aa3 )
B
D
在静定问题中,只会使结构的几 何形状略有改变,不会在杆中产生 附加的内力。如1杆较设计尺寸过长, C 仅是A点的移动。
3
1 aa
2
A''
A'
e
A
在超静定问题中,由于有了多余 约束,就将产生附加的内力。
附加的内力称为装配内力,与之相 应的应力则称为装配应力,装配应力 是杆在荷载作用以前已经具有的应 力,也称为初应力。
土建工程中的预应力钢筋混凝土构件,就是利 用装配应力来提高构件承载能力的例子。
(2)温度应力
静定问题:由于杆能自由变形,由温度所引起的变 形不会在杆中产生内力。
超静定问题:由于有了多余约束,杆由温度变化所 引起的变形受到限制,从而将在杆中产生内力。这 种内力称为温度内力。
与之相应的应力则称为温度应力。
M x 0, M A M B M e 0
变形协调条件:根据原超静定杆的约束情况,基 本静定系在B端的扭转角应等于零, 即补充方程为
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
超静定结构的解法1位移法

P
力法计算,9个基本未知量
位移法计算, 1个基本未知量
4.3 位移法
一.单跨超静定梁的形常数与载常数
1.等截面梁的形常数 杆端位移引起的杆端内力称为形常数.
i=EI/l----线刚度
2.等截面梁的载常数 荷载引起的杆端内力称为载常数.
4.3 位移法
一.单跨超静定梁的形常数与载常数
4.3 位移法
一.单跨超静定梁的形常数与载常数 二.位移法基本概念 三.位移法基本结构与基本未知量
基本未知量:独立的 结点位移.包括角位移和线位移 基本结构:增加附加约束后,使得原结构的结点不能
发生位移的结构.
1.无侧移结构(刚架与梁不计轴向变形) 基本未知量为所有刚结点的转角 基本结构为在所有刚结点上加刚臂后的结构
MP
EA Z1=1
r11
M1
Z1
3i/l
5P/16
3i / l 2
R1P
r11
3i / l 2
Z1---位移法
基本未知量
r11 6i / l 2 R1P 5P / 16
Z1 5Pl 2 / 96i
M M1Z1 MP
Z1
q
EI
EI
Z1 q
Z1
=
Z1
=
Z1=1
Z1
q
+
Z1
q
EI
EI
Z1
位移法的基本结构 ----单跨梁系.
=
=
Z1
q
EI
EI
Z1
R1
q
EI
EI
ql 2 / 8
R1P
q
位移法的基本方程 ----平衡方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wBB FF 3E Bl3I
ql4 FBl3 0 8EI 3EI
解得
FB
3 ql 8
2021/2/4
1
28
可从右向左作出剪力图和弯矩图
8 ql
ql
1 8
FS 图
18l
8 ql2
1218ql2
M图
也可以取支座 A 处阻止梁端面转动的约束作为 “多余”约束,解除后可得相当系统
q
MA A
方程)为 wA l
(2) 变形分析—协调条件(补充方程)
(3) 因铸件可视作刚体,其变形相容条件是三 杆变形后的端点须在同一直线上。由于结构在 几何和物性均对称于杆3,可得补充方程
l1 l3e
(3) 胡克定理
l1F EN1lA
l3E F3N A 3l3
2021/2/4
1
16
补充方程变为
(4)
FN1l FN3l EA E3A3
A
注意原超静定结构的 B 端
约束情况,相当系统要保持和
C
原结构相等,则相当系统在 B
F
点的位移为零。
B FB
2021/2/4
即得补充方程 B 0
1
6
在相当系统中求 B 点的位移,按叠加原理,可得
A
C F B x
BF BB
BBFBB
A
(3) 胡克定理(物理关系)
BF
Fa EA
BB
FBl EA
(4)补充方程变为
• 超静定的次数就等于多余约束或多余未知力的数目。
•注意:从提高结构的强度和刚度的角度来说,多余 约束往往是必需的,并不是多余的。
•超静定的求解:根据静力学平衡条件确定结构的超 静定次数,列出独立的平衡方程;然后根据几何、 物理关系列出需要的补充方程;则可求解超静定问 题。
2021/2/4
1
3
•补充方程:为求出超静定结构的全部未知力,除了 利用平衡方程以外,还必须寻找补充方程,且使补充 方程的数目等于多余未知力的数目。
超静定问题:由于有了多余约束,杆由温度变化所 引起的变形受到限制,从而将在杆中产生内力。这 种内力称为温度内力。
与之相应的应力则称为温度应力。
杆的变形包括两部分:即由温度变化所引起的变形, 以及与温度内力相应的弹性变形。
2021/2/4
1
19
例5 图示的等直杆 AB 的两端分别与刚性支承连接。 设两支承间的距离(即杆长)为l,杆的横截面面积为A, 材料的弹性模量为E,线膨胀系数为al。试求温度升 高t时杆内的温度应力。
在超静定问题里,杆件尺寸的微小误差,会产 生相当可观的装配应力。这种装配应力既可能引起 不利的后果,也可能带来有利的影响。
土建工程中的预应力钢筋混凝土构件,就是利 用装配应力来提高构件承载能力的例子。
2021/2/4
1
18
(2)温度应力
静定问题:由于杆能自由变形,由温度所引起的变 形不会在杆中产生内力。
B 1
C1 A1 C
1
解: 画出结构装配简图,
1
B
并可确定装配后3 杆受 压,1、2杆受拉
aa
C 2
A
l
e
C'
3
l1=l2
B1
1
B
B'
C1
C
C'
A1
2
A
A' l3
2021/2/4
1
15
FN1
B
FN3
C
FN2
A
aa
(1) 列出平衡方程,一次超静定问题
x Fx 0, FN3 FN1 FN2 0 M C ' 0, FN1 FN2
1
T
应力如图(内、外两杆
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
2021/2/4
1
26
Bq w
4、简单超静定梁
q
A
l
B
FA
q
B
A
MA
FB
列补充方程:
q B
A
B A
FB
wBqwBF B 0
Bq w
2021/2/4
1
27
可分别求出(也可查表)梁在均布载荷和集 中力作用下的挠度为
wBq8qE4l,I
联立求解得
e FN1
FN2
EAe l
1
1
2
EA E3A3
FN3
E3
A3e
1
l
1
E3 2E
A3 A
所得结果均为正,说明原先假定杆1,2为拉力和
杆3为压力是正确的。
2021/2/4
1
17
将已知数据代人,可得装配应力为
1
FN1 A
74.53MPa
3
FN3 A3
19.51MPa
计算中注意单位
2021/2/4
1
13
2、装配应力·温度应力
(1)装配应力
B
D
在静定问题中,只会使结构的几 何形状略有改变,不会在杆中产生 附加的内力。如1杆较设计尺寸过长, C 仅是A点的移动。
3
1 aa
2
A''
A'
e
A
在超静定问题中,由于有了多余 约束,就将产生附加的内力。
附加的内力称为装配内力,与之相 应的应力则称为装配应力,装配应力 是杆在荷载作用以前已经具有的应 力,也称为初应力。
•根据变形几何相容条件,建立变形几何相容方程, 结合物理关系(胡克定律),则可列出需要的补充方 程。
•补充方程的获得,体现了超静定问题的求解技巧。 此处我们将以轴向拉压、扭转、弯曲的超静定问题进 行说明。
2021/2/4
1
4
2、拉压超静定问题
例1 两端固定的等直杆 AB,在 C 处承受轴向力F 如图,杆的拉压刚度为 EA,求杆的支反力。
在 线 弹 性 范 围 内 工 作 , 其 扭 转 刚 度 分 别 为 GaIpa 和 GbIpb 。 当 组 合 杆 的 两 端 面 各 自 固 结 于 刚 性 板 上 , 并 在刚性板处受一对扭转力偶矩Me作用时,试求分别 作用在内、外杆上的扭转力偶矩。
Me rb A
Me
A 2021/2/4
Me
E3A3
在超静定杆系中,各杆轴力的大小和该杆的刚度
与其它杆的刚度的比值有关。
增大或减少1、2两杆的刚度,则它们的轴力也将
随之增大或减少;杆系中任一杆的刚度的改变都将
引起杆系各轴力的重新分配。这些特点在静定杆系
中是不存在的。
2021/2/4
1
10
归纳起来,求解超静定问题的步骤是: (1)根据分离体的平衡条件,建立独立的平衡方程; (2)根据变形协调条件,建立补充方程; (3)利用胡克定律,改写补充方程; (4)联立求解。
2021/2/4
1
11
例3 一平行杆系,三杆的横截面面积、长度和弹性模
量均分别相同,用A、l、E 表示。设AC为一刚性横梁, 试求在荷载F 作用下各杆的轴力。
l
1
2
3
a
a
a 2
DC
A BF
解: (1)受力分析--平衡方程
FN1 A
FN2
FN3
B
C
D F
Y 0 , F N 1 F N 2 F N 3 F 0 M D 0 , 1 . 5 F N 1 0 . 5 F N 2 0 . 5 F N 3 0
9-简单超静定结构的解法 解析
B
D
C
1
3
2
aa y
F N3
A
a a FN1
FN2
FA A
F
A
xFLeabharlann FFCC超静定结构(静不定结构): 静力学 B 平衡方程不能求解。
超静定结构的未知力的数目多于 独立的平衡方程的数目;两者的 差值称为超静定的次数。
2021/2/4
1
FB B
DC
A
2
•习惯上把维持物体平衡并非必需的约束称为多余约 束,相应的约束反力称为多余未知力。
为I,拉杆横截面的面积为A,其余尺寸见图。试求钢
杆AD内的拉力FN。
D
2q q
A a
B 2a
解: 一次超静定问题 (1) 将杆与梁的连接铰
A 看作多余约束(切开), C 相应的多余未知力为
D
FN
FB
2q
q
FC FN(一对),得相当系统如 图。
l l
wA
A B
A1
FN
2021/2/4
C
变形协调条件(补充
l
加上相应的多余未
MA A
I
Me
C
II
MB
B
x
知力偶矩MB,得基 本静定系。
2021/2/4
1
23
平衡方程:设固定端A的支反力偶为MA ,方向同MB
M x 0 , M A M B M e 0
变形协调条件:根据原超静定杆的约束情况,基 本静定系在B端的扭转角应等于零, 即补充方程为
B 0
按叠加原理:
B
Fa FBl 0 EA EA
得
FB
Fa l
FB
x FB为正,表明其方向与图中所设一致.
2021/2/4
1
7
例2 设l,2,3杆用铰连接如图,1、2两杆的长度、横截面面 积和材料均相同,即l1=l2=l,A1=A2, E1= E2=E;3杆长度为l3 , 横截面面积为A3,弹性模量为E3 。试求各杆的轴力。
2021/2/4