露天矿生产的车辆安排

合集下载

11553-数学建模-2003年B题《露天矿生产的车辆安排》题目、论文、点评

11553-数学建模-2003年B题《露天矿生产的车辆安排》题目、论文、点评

2003年B题《露天矿生产的车辆安排》题目、论文、点评露天矿生产的车辆安排丁余良胡海林...本文研究了露天矿生产的车辆安排最优化问题。

利用主要目标法将多目标最优化问题转化为单目标最优化问题,根据主要目标(总运量)列出最小费用函数,将次要目标最小卡车数转化为约束条件,然后逐步简化,将非线性规划转化为线性整数规划,并通过SAS软件编程遍历120个线性规划子问题,经过比较得出最优解,最后在最优解基础上运用贪心算法求出所用的最少卡车数并给出了一个班次的运输方案。

对于问题一,得到最小总运量为85628.62吨公里,此时7台电铲分别放在第1.2,3.4,8,9,10铲点,所需卡车最少为13辆。

对于问题二,利用类似于问题一的解法,在充分利用现有卡车和铲车的条件下,求得最大的产量为103334吨,20辆车完全利用,相应的铲点为:1,2,3.4,8,9,10。

最小运输量为147792.26吨公里,相应的岩石产量为49280吨,矿石产量为54054吨。

我们还讨论了一辆卡车在不同的路线运输所产生的转移时间差和两辆卡车发生等待的条件,为解决等待问题提供了一种很好的方法。

露天矿生产的车辆安排.pdf (207.99 KB)露天矿生产的车辆安排于浚泊肖川...如何利用最小的资源消耗取得理想的产量要求,是本文讨论的重点问题。

文章采用两种方法——贪心法和线性规划建立模型,针对两个目标进行安排。

第1阶段:采用贪心法按距离、产量、品位等要求依次取得最优、次优……等若干较优的铲位,获得一些铲位的组合方案。

第2阶段:对这些组合进行线性规划:以车次为变量,根据不同目标建立目标函数,根据产量等条件限制建立约束方程,然后求整数解,在这些解中取最优者。

第3阶段:根据每条路线上的车次数再次利用贪心法进行具体的车辆安排。

露天矿生产的车辆安排(1).pdf (156.6 KB)露天矿生产的车辆安排苏勇潘信峰...本文以总运量最小为目标建立整数规划模型,求解中用连续松弛把该问题转化为线性规划模型,使解题难度降低。

数模竞赛最优化题目

数模竞赛最优化题目
2采用尽可能少、尽可能短的邮路可以减少邮政部门车辆和人员等的投入,从而显着降低全区邮政运输网的总运行成本。考虑投入车况较好的邮车,通常每条邮路只需要一辆邮车即能满足运载能力要求,试问应如何构建该地区的邮政运输网络(县的划分不能变更),请你给出邮路规划和邮车调度方案。请注意邮车的调度必须满足上文中有关该地区的邮政运输流程及时限规定。(每条邮路的运行成本为3元/公里)
3考虑到部分县与县交界地带的支局,其邮件由邻县县局负责运送可能会降低全区的运行成本,带来可观的经济效益。若允许在一定程度上打破行政区域的限制,你能否给出更好的邮路规划和邮车调度方案(在此同样不必考虑邮车的运载能力的限制,每条邮路的运行成本为3元/公里)
4县局选址的合理与否对构建经济、快速的邮政运输网络起到决定性的作用。假设图2中县局X1,……,X5均允许迁址到本县内任一支局处,同时原来的县局弱化为普通支局。设想你是该地区网运部门负责人,请你重新为各个县局选址,陈述你的迁址理由并以书面材料形式提交省局网运处。
3如果调度室在列车到达前两小时能够获取列车的相关信息,请利用这些信息制定可行的列车编组调度方案,使每班的中时尽量少,发出的车辆尽量多。
4如果因自然灾害导致S3以南的铁路中断,需要将有关的车辆转向东方向经E4向南绕行,请你们给出相应的调度方案,并计பைடு நூலகம்相应每班的中时。
5假设编组完成的列车都能及时发出,按照你们的编组调度方案分析研究该编组站一天24小时最多能编组完成多少车辆,相应每班的中时是多少即根据所建立模型进一步分析该编组站能否再提高资源的利用率和运行效率。
2008
C
货运列车的编组调度问题
经济类
(规划设计类)
1试设计快速自动实现车辆编组调度方案的优化模型或算法,并给出附件2中车辆可行的编组方案(包括解体程序、轨道编号、车辆数量、集结程序、新列车的组成等),主要使每班的中时尽量地少。

B题露天矿生产的车辆安排

B题露天矿生产的车辆安排

B题露天矿生产的车辆安排钢铁工业是国家工业的基础之一,铁矿是钢铁工业的主要原料基地。

许多现代化铁矿是露天开采的,它的生产主要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车)运输来完成。

提高这些大型设备的利用率是增加露天矿经济效益的首要任务。

露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。

一般来说,平均铁含量不低于25%的为矿石,否则为岩石。

每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。

每个铲位至多能安置一台电铲,电铲的平均装车时间为5分钟。

卸货地点(以下简称卸点)有卸矿石的矿石漏、2个铁路倒装场(以下简称倒装场)和卸岩石的岩石漏、岩场等,每个卸点都有各自的产量要求。

从保护国家资源的角度及矿山的经济效益考虑,应该尽量把矿石按矿石卸点需要的铁含量(假设要求都为29.5% 1%,称为品位限制)搭配起来送到卸点,搭配的量在一个班次(8小时)内满足品位限制即可。

从长远看,卸点可以移动,但一个班次内不变。

卡车的平均卸车时间为3分钟。

所用卡车载重量为154吨,平均时速28hkm。

卡车的耗油量很大,每个班次每台车消耗近1吨柴油。

发动机点火时需要消耗相当多的电瓶能量,故一个班次中只在开始工作时点火一次。

卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。

电铲和卸点都不能同时为两辆及两辆以上卡车服务。

卡车每次都是满载运输。

每个铲位到每个卸点的道路都是专用的宽60m的双向车道,不会出现堵车现象,每段道路的里程都是已知的。

一个班次的生产计划应该包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次(因为随机因素影响,装卸时间与运输时间都不精确,所以排时计划无效,只求出各条路线上的卡车数及安排即可)。

一个合格的计划要在卡车不等待条件下满足产量和质量(品位)要求,而一个好的计划还应该考虑下面两条原则之一:1.总运量(吨公里)最小,同时出动最少的卡车,从而运输成本最小;2.利用现有车辆运输,获得最大的产量(岩石产量优先;在产量相同的情况下,取总运量最小的解)。

露天矿生产的车辆安排

露天矿生产的车辆安排

露天矿生产的车辆安排摘要针对本问题的分析,我们按照“规划铲位到卸点的最优路线和次数→规划卸点回到铲位所需最优车辆资源数→根据以上两个规划寻求最优卡车调度方案”—三步走的方式,针对原则一和原则二分别建立数学模型如下:原则一:第一步:我们用整数规划的方法求取满足最优目标的由铲位到卸点的运输次数和路线,解决岩石和矿石的最优运输问题。

目标为总运量最小;第二步:根据第一步规划求得的运输路线及次数规划出卸点到铲位所需最优车辆资源数。

目标为空载时间最短,最小为吨公里;第三步:根据以上两个规划指导和求取相应调度问题。

目标为总发车次数最少。

对题目中的实际问题求得结果为:最少发车次数为13辆,铲车数为7。

原则二:目标1:最大的产量,并且满足产量、质量要求,同时优先考虑岩石产量并且总运量最小;由于问题已确定了车辆数,所以无需对车辆数范围的规划目标2:具体安排在解第二问时我们采用了一个快速算法,虽然不能保证每辆车都不等待,但避免了,大规模整数规划,所以我们认为这种简化是合理的。

最后,结合模型分析对模型进行了评价。

所用铲车数为7,卡车数为20,总运量:103488吨.一、问题的分析在满足对矿山采运资源的限制条件下,我们将该问题的两个目标转化为最优规化问题。

经分析后我们采用三步规划的方法,在可解的条件下,将问题划归为三个整数规划问题。

为达到问题的两个最优目标,我们采用目标到调度的逆向分析方法,以“规划铲位到卸点的最优路线和次数→规划卸点回到铲位所需最优车辆资源数→根据以上两个规划指导和求取相应调度问题”三步走的方式求解问题的最终目标。

首先我们用整数规划的方法求取满足最优目标的由铲位到卸点的运输次数和路线,解决岩石和矿石的最优运输问题。

其次,再根据第一步规划求得的运输路线及次数规划出卸点到铲位所需最优车辆资源数。

最后,根据前两步结果,指导和安排相应车辆的调度,达到第一步对最优目标的规划。

二、模型的假设及说明在已满足题目中所有假设条件的前提下,我们补充两点如下:1). 模型只考虑满足题目要求的调度计划本身,而不考虑如何保证一个计划的内容在现实过程中实现;2). 卡车在一个班次中始终保持正常运行,不出故障;3). 电铲和卸点都不能同时为两辆及两辆以上卡车服务。

数学建模案例精选知到章节答案智慧树2023年济南大学

数学建模案例精选知到章节答案智慧树2023年济南大学

数学建模案例精选知到章节测试答案智慧树2023年最新济南大学第一章测试1.在商人过河问题中,如果设彼岸的人数情况为案例中的变量,则状态转移函数变为()参考答案:s k+1=s k +(-1)k+1 d k2.下面哪一个不是商人过河允许的状态()参考答案:(2,1)3.关于商人过河问题,下面说法错误的是()参考答案:商人过河要保证每一岸的商人数和随从数一样多4.关于路障间距设计问题,说法不正确的()参考答案:不可以假设汽车做匀速运动5.关于机理分析说法不正确的是()参考答案:将研究对象看做一个黑箱第二章测试1.Lingo软件不可以直接求解哪一类优化模型().参考答案:多目标规划2.在露天矿生产的车辆安排问题中,已知铲位1到岩石漏距离为5.26km,车辆平均速度为28km/h,请问这条线路上运行一个周期平均所需时间Tij为()(请保留两位小数).参考答案:8.38;30.54;19.273.在露天矿生产的车辆安排问题中,基本假设不变,若某天线路上的T ij=19分钟,车辆开始工作的时间可以不同,工作后车辆不会发生等待,则该线路上最多可以安排()辆卡车?参考答案:44.在露天矿生产的车辆安排问题中,基本假设不变,若某天线路上的Tij=17分钟,安排3辆车在该线路上工作,开始工作的时间可以不同,开始工作后车辆不会发生等待,则三辆车在一个班次内的最大运算趟数是()?参考答案:28,27,275.在露天矿生产的车辆安排问题中,基本假设不变,车辆开始工作的时间可以不同,开始工作后车辆不会发生等待,若可以安排3辆车在同一条线路上工作,则三辆车在一个班次(8小时)内的工作时间(分钟)不可能是().参考答案:479,471,474第三章测试1.假设快速喝下1瓶啤酒,酒精从肠胃向体液的转移速度与胃肠中的酒精含量x成正比,比例系数为k,则得到的微分方程为?()。

参考答案:2.模型中有未知参数,给定了测试数据,确定参数的最佳方法为()。

运筹学课程设计题目

运筹学课程设计题目

一、生产计划问题的Matlab 求解某工厂拥有A 、B 、C 三种类型的设备,生产甲、乙、丙、丁四种产品。

每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如下表所示:如何安排生产使利润最大。

二、工厂-销售点配置问题生产厂 顾客需求销售点问题: 为使经营成本最低,应开设那些工厂及销售点?三、选址问题某公司有6个建筑工地,位置坐标为(ai, bi) (单位:公里),水泥日用量di (单位:吨)记(x j,y j),j=1,2, 日储量e j各有20吨。

目标:制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

四、最短路问题求各点到T的最短路五、钢管下料问题问题1. 如何下料最节省 ?问题2. 客户增加需求:由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。

如何下料最节省?六、露天矿生产的车辆安排问题露天矿里铲位已分成矿石和岩石: 平均铁含量不低于25%的为矿石,否则为岩石。

每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。

每个铲位至多安置一台电铲,电铲平均装车时间5分钟。

矿石卸点需要的铁含量要求都为29.5% 1%(品位限制),搭配量在一个班次(8小时)内满足品位限制即可。

卸点在一个班次内不变。

卡车载重量为154吨,平均时速28km,平均卸车时间为3分钟。

卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。

问题:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次 ?原料钢管:每根19米 4米50根6米20根8米15根5米10根七、食谱问题的Lingo求解小李的食谱由四种食品组成:果仁巧克力,冰淇淋,可乐,奶酪,水果.一块果仁巧克力价格为30 美分,一杯冰淇淋价格为10美分, 一瓶可乐价格为20美分, 一块奶酪价格为50美分,一个水果12美分.我每天的营养最低需求: 600 卡路里,8八、用Matlab和Lingo求解生产问题。

数学建模lingo作业-习题讲解

数学建模lingo作业-习题讲解

基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。

根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。

生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。

每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。

厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。

其次要求满意销售额达到或者尽量接近275000元。

最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。

同时注意到增加生产时间要比包装时间困难得多。

试为该节能灯具厂制定生产计划。

解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。

第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。

在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。

(1) 关于生产数量的目标约束。

用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。

用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。

因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。

2003(B) 论文

2003(B) 论文

转载时请注明出处,并请保持文档完整性
-5-
2003 年“高教社杯”全国二等奖
li , j ---------第 i 个铲位到第 j 个卸点间的路程(单位:公里) ; f = (li , j ) = (l1,1 , l2,1 ,……,lm ,1 , l1, 2 , l2, 2 , ……,lm ,2 , ……,l1, n , l2, n , ……lm , n ) ------ 铲位 到 卸点 间的路程向量 xi , j --------第 i 个铲位到第 j 个卸点间线路的流量(单位:车) x = ( xi , j ) = ( x1,1 , x2,1 , ……xm,1 , x1, 2 , x2, 2 , ……,xm ,2 , ……,x1,n , x2, n , …… xm , n ) ------ 铲位 到 卸 点间的流量向量 ai ---------第 i 个铲位矿石的铁含量 Q j --------第 j 个卸点要求的产量(单位:车) amax j ------第 j 个卸点要求的矿石品位限制上界; amin j ------第 j 个卸点要求的矿石品位限制的下界; R1,i -------第 i 个铲位的矿石量; R2,i -------第 i 个铲位的岩石量; b1 ---------铲位工作的上限即电铲不停息地工作可装载的车数; b2 ---------卸点处工作的上限即自卸卡车不停息地工作可卸载的车数; v ---------卡车行驶的速度(单位: km / h ) ; T ---------一个班次的总时间(单位:小时) ; t1 ---------电铲装车的时间(单位:小时) ; t2 ---------自卸卡车的卸车时间(单位:小时) ; U --------卡车的载重量(单位:吨)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

露天矿生产的车辆安排 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】露天矿生产的车辆安排(CMCM2003B)摘要本文要解决的问题主要围绕减少实际中的经济成本而展开的。

在经济运作中,减少成本是作为露天矿生产带来利润最大化的有效手段之一。

而合理安排有效路线和车次,成为了解决减少成本问题的关键。

鉴于铲点到卸点线路的复杂性,我们把问题分成两个层次加以解决。

首先我们采用了整体规划的算法,建立了数学模型以求得最小运输量。

其基本思想是提取重要的约束性条件,对于总产量达最小的目标函数进行约束,运用lingo程序求出其最优解,最后得出最小运输量为85628.62吨,且第5、6、7个铲点没有使用。

对于层次二,通过解决层次一所得出具体流量计算卡车在各个路线上一个班次最多可以运行的次数及各路线上需要的卡车数,从而得出所有路线要出动13辆卡车.问题重述此题类似与产地与销地的运输的整数规划问题。

10个矿位,5个卸点,运输矿石和岩石两种产品。

此题的重点在于限制条件的提取,由于题中所给条件较多如:每个铲位至多能安置一台电铲,电铲的平均装车时间为5分钟。

卸货地有卸矿石的矿石漏、2个铁路倒装场和卸岩石的岩石漏、岩场等。

每个卸点都有各自的产量要求,岩石卸点的品味限制都为29.5% 1%。

电铲和卸点都不能同时为两辆及两辆以上卡车服务。

卡车每次都是满载运输,且在一个班次中不存在卡车等待情况,卡车只在开始时点火一次。

卡车的平均卸车时间为3分钟。

一个班次为8小时等等。

总之,限制条件比较隐晦,需要从题中认真挖掘。

本文需要解决的问题是如何设计一个班次使得总运量(吨公里)最小,同时出动最少的卡车,从而运输成本最小。

一个班次的生产计划应该包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次。

因此问题可转化为:1、如何在满足所有限制条件的条件下,使得一个班次内所有卡车的总运量最小。

2在总运量最小的情况下,如何设计卡车路线,使得出动的卡车数最少,从而使总成本最低。

模型假设1.卡车每次都是满载,且不出现堵车情况。

2.发动机点火时需要消耗相当多的电瓶能量,故每个班次每台车只在开时点火一次。

3.不存在卡车等待时间4. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即可,不进行排时讨论符号约定Xij:从i 号铲位到j 号卸点的石料运量,单位:车·次; Cij :从i 号铲位到j 号卸点的距离,单位:公里;Tij :在i 号铲位到j 号卸点路线上运行一个周期平均所需时间,单位:分; A ij :从i 号铲位到j 号卸点最多能同时运行的卡车数,单位:辆;B ij :从i 号铲位到j 号卸点,一辆车一个班次中最多可以运行次数,单位:次; pi : i 号铲位的矿石铁含量j q : j 号卸点任务需求i ck : i 号铲位的铁矿石储量,单位:万吨; i cy : i 号铲位的岩石储量,单位:万吨; i f :描述第i 号铲位是否使用的0 −1变量,不使用的铲位为0,使用的为1;ij che :从i 号铲位到j 号卸点所需要的车的最小辆数(实数)数值上等于ij x /ij B模型建立与求解 问题一:总运量最小运输路线的设计目标函数:由题意易得目标函数为∑∑==10151154min i j ijij c x(1)道路能力约束:一个电铲(卸点)不能同时为两辆卡车服务,一条路线上最多能同时运行的卡车数是有限制的。

卡车从i 号铲位到j 号卸点运行一个周期平均所需时间为(分钟)。

由于装车时间5分钟大于卸车时间3分钟,所以这条路线上在卡车不等待条件下最多能同时运行的卡车数为:;其中最后开始发车的一辆卡车一个班次中在这条路线上最多可以运行的次数为(其他卡车可能比此数多1次),这里是开始装车时最后一辆车的延时时间。

一个班次中这条固定路线上最多可能运行的总车次大约为:,总吨数 。

(2)电铲能力约束:一台电铲不能同时为两辆卡车服务,所以一台电铲在一个班次中的最大可能产量为8×60/5×154(吨)。

(3)卸点能力约束:卸点的最大吞吐量为每小时60/3=20车次,于是一个卸点在一个班次中的最大可能产量为8×20×154(吨)。

(4)铲位储量约束:铲位的矿石和岩石产量都不能超过相应的储藏量。

(5)产量任务约束:各卸点的产量不小于该卸点的任务要求。

(6)铁含量约束:各矿石卸点的平均品位要求都在指定的范围内。

(7)电铲数量约束:电铲数量约束无法用普通不等式表达,可以引入10个0—1变量来标志各个铲位是否有产量。

(8)整数约束:当把问题作为整数规划模型时,流量x ij 除以154为非负整数。

(9)卡车数量约束:不超过20辆。

得到的一种模型为∑∑==10151154min i j ij ij c x (0)..t s 5,...,1,10,...,1,==⨯≤j i B A xij ij ij(1)10,,1,5/60851=⨯⨯≤∑=i f x i j ij (2)∑==⨯≤1015,,1,208i ij j x (3)()()10,,1,100001541000015443521 =⨯≤+⨯⨯≤++⨯i cy x x ck x x x i i i i i i i (4) 5,,1,154/101=≥∑=j q x i j ij (5)()()5,2,1,05.2815405.3015451101=⎪⎪⎭⎪⎪⎬⎫≥-⨯≤-⨯∑∑==j p x p x j i ij i i ij (6) ij x 为整数 (7)(8)20,≤∑j i ijij B x求解模型 由于限制条件较多,需要用快速解法 利用LINGO 程序对以上模型求解sets:cai / 1..10 /:p,cy,ck,f; xie / 1 .. 5 /:q;link(cai,xie):a,b,c,t,x,che; endsets data: v=28;p=30 28 29 32 31 33 32 31 33 31; q= 1.2 1.3 1.3 1.9 1.3 ;c=5.2600 1.9000 5.8900 0.6400 4.4200 5.1900 0.9900 5.6100 1.7600 3.8600 4.2100 1.9000 5.6100 1.2700 3.7200 4.0000 1.1300 4.5600 1.8300 3.1600 2.9500 1.2700 3.5100 2.7400 2.2500 2.7400 2.2500 3.6500 2.6000 2.8100 2.4600 1.4800 2.4600 4.2100 0.7800 1.9000 2.0400 2.4600 3.7200 1.6200 0.6400 3.0900 1.0600 5.0500 1.2700 1.2700 3.5100 0.5700 6.1000 0.5000;cy = 1.25 1.10 1.35 1.05 1.15 1.35 1.05 1.15 1.35 1.25; ck = 0.95 1.05 1.00 1.05 1.10 1.25 1.05 1.30 1.35 1.25; enddata@for(link:t=120*c/v+8;a=@floor(t/5);b=@floor((485-5*a)/t)); min=@sum( link:x*154*c); @for (link: x<=a*b);@for (cai(i): @sum(xie(j):x(i,j))<=f(i)*96); @for (xie(j):@sum(cai(i):x(i,j))<=160);@for (cai(i): x(i,1)+x(i,2)+x(i,5)<=ck(i)*10000/154); @for (cai(i): x(i,3)+x(i,4)<=cy(i)*10000/154);@for (xie(j) : @sum(cai(i):x(i,j)) >= q(j)*10000/154); @sum(cai(i): x(i,1)*(p(i)-30.5) )<=0; @sum(cai(i): x(i,2)*(p(i)-30.5) )<=0; @sum(cai(i): x(i,5)*(p(i)-30.5) )<=0; @sum(cai(i): x(i,1)*(p(i)-28.5) )>=0; @sum(cai(i): x(i,2)*(p(i)-28.5) )>=0; @sum(link:x/b)<=20; @sum(cai: f)<=7;@for(link : @gin(x)); @for(cai: @bin(f)); @for (link: che=x/b); end运行结果最小运输量为85628.62吨 且第5、6、7个铲点没有使用问题二:在总运量最小的情况下,如何设计路线,使得卡车的使用辆最小由问题一模型求解结果的以下数据各个路线上的最佳运输车次:ij x各路线上需要的卡车数(实数):ij che所有路线所需卡车数(实数)的和为12.843。

即要最少出动13辆卡车。

易得:有7辆卡车在一个班次内在固定路线上运输,它们的分布如下另外,有6量车需要联合运输来满足总运输量最小。

联合运输因尽量以V 型路线为主,避免Z型路线,过程比较复杂,需要用到组合数等理论,在此就暂不求解。

模型评价本文根据题中所给条件,建立了整数规划模型,由于题中的限制条件较多,运用LINGO软件快速求解,减少了运算量,方便快捷。

优点:1.此模型应运面较广,使用类似的产销,集中产品的生产等线性规划问题都可适用。

2、用LINGO软件求解,方便快捷缺点:1.模型建立不太完善。

2、没有求出联合派车的具体路线。

模型改进和应用此模型在现实生活中比较常见,类似的生产规划问题都能改进此模型,快速求出较优生产计划。

附录LINGO程序运行结果:Global optimal solution found at iteration: 604 Objective value:85628.62Variable Value Reduced CostV 28.00000 0.000000P( 1) 30.00000 0.000000P( 2) 28.00000 0.000000P( 3) 29.000000.000000P( 4) 32.00000 0.000000P( 5) 31.00000 0.000000P( 6) 33.00000 0.000000P( 7) 32.00000 0.000000P( 8) 31.00000 0.000000P( 9) 33.00000 0.000000P( 10) 31.00000 0.000000CY( 1) 1.250000 0.000000CY( 2) 1.100000 0.000000CY( 3) 1.350000 0.000000CY( 4) 1.050000 0.000000CY( 5) 1.150000 0.000000CY( 6) 1.350000 0.000000CY( 7) 1.050000 0.000000CY( 8) 1.150000 0.000000CY( 9) 1.350000 0.000000CY( 10) 1.250000 0.000000CK( 1) 0.9500000 0.000000CK( 2) 1.050000 0.000000CK( 3) 1.000000 0.000000CK( 4) 1.050000 0.000000CK( 5) 1.100000CK( 6) 1.250000 0.000000CK( 7) 1.050000 0.000000CK( 8) 1.300000 0.000000CK( 9) 1.350000 0.000000CK( 10) 1.250000 0.000000F( 1) 1.000000 0.000000F( 2) 1.000000 0.000000F( 3) 1.000000 0.000000F( 4) 1.000000 0.000000F( 5) 0.000000 0.000000F( 6) 0.000000 0.000000F( 7) 0.000000 0.000000F( 8) 1.000000 0.000000F( 9) 1.000000 0.000000F( 10) 1.000000 0.000000Q( 1) 1.200000 0.000000Q( 2) 1.300000 0.000000Q( 3) 1.300000 0.000000Q( 4) 1.900000 0.000000Q( 5) 1.300000 0.000000A( 1, 1) 6.000000 0.000000A( 1, 2) 3.000000A( 1, 3) 6.000000 0.000000A( 1, 4) 2.000000 0.000000A( 1, 5) 5.000000 0.000000A( 2, 1) 6.000000 0.000000A( 2, 2) 2.000000 0.000000A( 2, 3) 6.000000 0.000000A( 2, 4) 3.000000 0.000000A( 2, 5) 4.000000 0.000000A( 3, 1) 5.000000 0.000000A( 3, 2) 3.000000 0.000000A( 3, 3) 6.000000 0.000000A( 3, 4) 2.000000 0.000000A( 3, 5) 4.000000 0.000000A( 4, 1) 5.000000 0.000000A( 4, 2) 2.000000 0.000000A( 4, 3) 5.000000 0.000000A( 4, 4) 3.000000 0.000000A( 4, 5) 4.000000 0.000000A( 5, 1) 4.000000 0.000000A( 5, 2) 2.000000 0.000000A( 5, 3) 4.000000 0.000000A( 5, 4) 3.000000A( 5, 5) 3.000000 0.000000A( 6, 1) 3.000000 0.000000A( 6, 2) 3.000000 0.000000A( 6, 3) 4.000000 0.000000A( 6, 4) 3.000000 0.000000A( 6, 5) 4.000000 0.000000A( 7, 1) 3.000000 0.000000A( 7, 2) 2.000000 0.000000A( 7, 3) 3.000000 0.000000A( 7, 4) 5.000000 0.000000A( 7, 5) 2.000000 0.000000A( 8, 1) 3.000000 0.000000A( 8, 2) 3.000000 0.000000A( 8, 3) 3.000000 0.000000A( 8, 4) 4.000000 0.000000A( 8, 5) 2.000000 0.000000A( 9, 1) 2.000000 0.000000A( 9, 2) 4.000000 0.000000A( 9, 3) 2.000000 0.000000A( 9, 4) 5.000000 0.000000A( 9, 5) 2.000000 0.000000A( 10, 1) 2.000000A( 10, 2) 4.000000 0.000000A( 10, 3) 2.000000 0.000000A( 10, 4) 6.000000 0.000000A( 10, 5) 2.000000 0.000000B( 1, 1) 14.00000 0.000000B( 1, 2) 29.00000 0.000000B( 1, 3) 13.00000 0.000000B( 1, 4) 44.00000 0.000000B( 1, 5) 17.00000 0.000000B( 2, 1) 15.00000 0.000000B( 2, 2) 38.00000 0.000000B( 2, 3) 14.00000 0.000000B( 2, 4) 30.00000 0.000000B( 2, 5) 18.00000 0.000000B( 3, 1) 17.00000 0.000000B( 3, 2) 29.00000 0.000000B( 3, 3) 14.00000 0.000000B( 3, 4) 35.00000 0.000000B( 3, 5) 19.00000 0.000000B( 4, 1) 18.00000 0.000000B( 4, 2) 36.00000 0.000000B( 4, 3) 16.00000B( 4, 4) 29.00000 0.000000B( 4, 5) 21.00000 0.000000B( 5, 1) 22.00000 0.000000B( 5, 2) 35.00000 0.000000B( 5, 3) 20.00000 0.000000B( 5, 4) 23.00000 0.000000B( 5, 5) 26.00000 0.000000B( 6, 1) 23.00000 0.000000B( 6, 2) 26.00000 0.000000B( 6, 3) 19.00000 0.000000B( 6, 4) 24.00000 0.000000B( 6, 5) 23.00000 0.000000B( 7, 1) 25.00000 0.000000B( 7, 2) 33.00000 0.000000B( 7, 3) 25.00000 0.000000B( 7, 4) 17.00000 0.000000B( 7, 5) 41.00000 0.000000B( 8, 1) 29.00000 0.000000B( 8, 2) 28.00000 0.000000B( 8, 3) 25.00000 0.000000B( 8, 4) 19.00000 0.000000B( 8, 5) 31.00000B( 9, 1) 44.00000 0.000000B( 9, 2) 21.00000 0.000000B( 9, 3) 37.00000 0.000000B( 9, 4) 15.00000 0.000000B( 9, 5) 35.00000 0.000000B( 10, 1) 35.00000 0.000000B( 10, 2) 20.00000 0.000000B( 10, 3) 45.00000 0.000000B( 10, 4) 13.00000 0.000000B( 10, 5) 46.00000 0.000000C( 1, 1) 5.260000 0.000000C( 1, 2) 1.900000 0.000000C( 1, 3) 5.890000 0.000000C( 1, 4) 0.6400000 0.000000C( 1, 5) 4.420000 0.000000C( 2, 1) 5.190000 0.000000C( 2, 2) 0.9900000 0.000000C( 2, 3) 5.610000 0.000000C( 2, 4) 1.760000 0.000000C( 2, 5) 3.860000 0.000000C( 3, 1) 4.210000 0.000000C( 3, 2) 1.900000C( 3, 3) 5.610000 0.000000C( 3, 4) 1.270000 0.000000C( 3, 5) 3.720000 0.000000C( 4, 1) 4.000000 0.000000C( 4, 2) 1.130000 0.000000C( 4, 3) 4.560000 0.000000C( 4, 4) 1.830000 0.000000C( 4, 5) 3.160000 0.000000C( 5, 1) 2.950000 0.000000C( 5, 2) 1.270000 0.000000C( 5, 3) 3.510000 0.000000C( 5, 4) 2.740000 0.000000C( 5, 5) 2.250000 0.000000C( 6, 1) 2.740000 0.000000C( 6, 2) 2.250000 0.000000C( 6, 3) 3.650000 0.000000C( 6, 4) 2.600000 0.000000C( 6, 5) 2.810000 0.000000C( 7, 1) 2.460000 0.000000C( 7, 2) 1.480000 0.000000C( 7, 3) 2.460000 0.000000C( 7, 4) 4.210000C( 7, 5) 0.7800000 0.000000C( 8, 1) 1.900000 0.000000C( 8, 2) 2.040000 0.000000C( 8, 3) 2.460000 0.000000C( 8, 4) 3.720000 0.000000C( 8, 5) 1.620000 0.000000C( 9, 1) 0.6400000 0.000000C( 9, 2) 3.090000 0.000000C( 9, 3) 1.060000 0.000000C( 9, 4) 5.050000 0.000000C( 9, 5) 1.270000 0.000000C( 10, 1) 1.270000 0.000000C( 10, 2) 3.510000 0.000000C( 10, 3) 0.5700000 0.000000C( 10, 4) 6.100000 0.000000C( 10, 5) 0.5000000 0.000000T( 1, 1) 30.54286 0.000000T( 1, 2) 16.14286 0.000000T( 1, 3) 33.24286 0.000000T( 1, 4) 10.74286 0.000000T( 1, 5) 26.94286 0.000000T( 2, 1) 30.24286T( 2, 2) 12.24286 0.000000T( 2, 3) 32.04286 0.000000T( 2, 4) 15.54286 0.000000T( 2, 5) 24.54286 0.000000T( 3, 1) 26.04286 0.000000T( 3, 2) 16.14286 0.000000T( 3, 3) 32.04286 0.000000T( 3, 4) 13.44286 0.000000T( 3, 5) 23.94286 0.000000T( 4, 1) 25.14286 0.000000T( 4, 2) 12.84286 0.000000T( 4, 3) 27.54286 0.000000T( 4, 4) 15.84286 0.000000T( 4, 5) 21.54286 0.000000T( 5, 1) 20.64286 0.000000T( 5, 2) 13.44286 0.000000T( 5, 3) 23.04286 0.000000T( 5, 4) 19.74286 0.000000T( 5, 5) 17.64286 0.000000T( 6, 1) 19.74286 0.000000T( 6, 2) 17.64286 0.000000T( 6, 3) 23.64286T( 6, 4) 19.14286 0.000000T( 6, 5) 20.04286 0.000000T( 7, 1) 18.54286 0.000000T( 7, 2) 14.34286 0.000000T( 7, 3) 18.54286 0.000000T( 7, 4) 26.04286 0.000000T( 7, 5) 11.34286 0.000000T( 8, 1) 16.14286 0.000000T( 8, 2) 16.74286 0.000000T( 8, 3) 18.54286 0.000000T( 8, 4) 23.94286 0.000000T( 8, 5) 14.94286 0.000000T( 9, 1) 10.74286 0.000000T( 9, 2) 21.24286 0.000000T( 9, 3) 12.54286 0.000000T( 9, 4) 29.64286 0.000000T( 9, 5) 13.44286 0.000000T( 10, 1) 13.44286 0.000000T( 10, 2) 23.04286 0.000000T( 10, 3) 10.44286 0.000000T( 10, 4) 34.14286 0.000000T( 10, 5) 10.142860.000000X( 1, 1) 0.000000 810.0400X( 1, 2) 0.000000 292.6000X( 1, 3) 0.000000 907.0600X( 1, 4) 81.00000 98.56000X( 1, 5) 0.000000 680.6800X( 2, 1) 13.00000 799.2600X( 2, 2) 42.00000 152.4600X( 2, 3) 0.000000 863.9400X( 2, 4) 0.000000 271.0400X( 2, 5) 13.00000 594.4400X( 3, 1) 0.000000 648.3400X( 3, 2) 0.000000 292.6000X( 3, 3) 0.000000 863.9400X( 3, 4) 43.00000 195.5800X( 3, 5) 2.000000 572.8800X( 4, 1) 0.000000 616.0000X( 4, 2) 43.00000 174.0200X( 4, 3) 0.000000 702.2400X( 4, 4) 0.000000 281.8200X( 4, 5) 0.000000 486.6400X( 5, 1) 0.000000 454.3000X( 5, 2) 0.000000195.5800X( 5, 3) 0.000000 540.5400X( 5, 4) 0.000000 421.9600X( 5, 5) 0.000000 346.5000X( 6, 1) 0.000000 421.9600X( 6, 2) 0.000000 346.5000X( 6, 3) 0.000000 562.1000X( 6, 4) 0.000000 400.4000X( 6, 5) 0.000000 432.7400X( 7, 1) 0.000000 378.8400X( 7, 2) 0.000000 227.9200X( 7, 3) 0.000000 378.8400X( 7, 4) 0.000000 648.3400X( 7, 5) 0.000000 120.1200X( 8, 1) 54.00000 292.6000X( 8, 2) 0.000000 314.1600X( 8, 3) 0.000000 378.8400X( 8, 4) 0.000000 572.8800X( 8, 5) 0.000000 249.4800X( 9, 1) 0.000000 98.56000X( 9, 2) 0.000000 475.8600X( 9, 3) 70.00000 163.2400X( 9, 4) 0.000000X( 9, 5) 0.000000 195.5800X( 10, 1) 11.00000 195.5800X( 10, 2) 0.000000 540.5400X( 10, 3) 15.00000 87.78000X( 10, 4) 0.000000 939.4000X( 10, 5) 70.00000 77.00000CHE( 1, 1) 0.000000 0.000000CHE( 1, 2) 0.000000 0.000000CHE( 1, 3) 0.000000 0.000000CHE( 1, 4) 1.840909 0.000000CHE( 1, 5) 0.000000 0.000000CHE( 2, 1) 0.8666667 0.000000CHE( 2, 2) 1.105263 0.000000CHE( 2, 3) 0.000000 0.000000CHE( 2, 4) 0.000000 0.000000CHE( 2, 5) 0.7222222 0.000000CHE( 3, 1) 0.000000 0.000000CHE( 3, 2) 0.000000 0.000000CHE( 3, 3) 0.000000 0.000000CHE( 3, 4) 1.228571 0.000000CHE( 3, 5) 0.1052632 0.000000CHE( 4, 1) 0.000000CHE( 4, 2) 1.194444 0.000000CHE( 4, 3) 0.000000 0.000000CHE( 4, 4) 0.000000 0.000000CHE( 4, 5) 0.000000 0.000000CHE( 5, 1) 0.000000 0.000000CHE( 5, 2) 0.000000 0.000000CHE( 5, 3) 0.000000 0.000000CHE( 5, 4) 0.000000 0.000000CHE( 5, 5) 0.000000 0.000000CHE( 6, 1) 0.000000 0.000000CHE( 6, 2) 0.000000 0.000000CHE( 6, 3) 0.000000 0.000000CHE( 6, 4) 0.000000 0.000000CHE( 6, 5) 0.000000 0.000000CHE( 7, 1) 0.000000 0.000000CHE( 7, 2) 0.000000 0.000000CHE( 7, 3) 0.000000 0.000000CHE( 7, 4) 0.000000 0.000000CHE( 7, 5) 0.000000 0.000000CHE( 8, 1) 1.862069 0.000000CHE( 8, 2) 0.000000 0.000000CHE( 8, 3) 0.000000CHE( 8, 4) 0.000000 0.000000CHE( 8, 5) 0.000000 0.000000CHE( 9, 1) 0.000000 0.000000CHE( 9, 2) 0.000000 0.000000CHE( 9, 3) 1.891892 0.000000CHE( 9, 4) 0.000000 0.000000CHE( 9, 5) 0.000000 0.000000CHE( 10, 1) 0.3142857 0.000000CHE( 10, 2) 0.000000 0.000000CHE( 10, 3) 0.3333333 0.000000CHE( 10, 4) 0.000000 0.000000CHE( 10, 5) 1.521739 0.000000Row Slack or Surplus Dual Price1 0.000000 0.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000000.00000010 0.000000 0.00000011 0.000000 0.00000012 0.000000 0.00000013 0.000000 0.00000014 0.000000 0.00000015 0.000000 0.00000016 0.000000 0.00000017 0.000000 0.00000018 0.000000 0.00000019 0.000000 0.00000020 0.000000 0.00000021 0.000000 0.00000022 0.000000 0.00000023 0.000000 0.00000024 0.000000 0.00000025 0.000000 0.00000026 0.000000 0.00000027 0.000000 0.00000028 0.000000 0.00000029 0.000000 0.00000030 0.000000 0.0000000.00000032 0.000000 0.00000033 0.000000 0.00000034 0.000000 0.00000035 0.000000 0.00000036 0.000000 0.00000037 0.000000 0.00000038 0.000000 0.00000039 0.000000 0.00000040 0.000000 0.00000041 0.000000 0.00000042 0.000000 0.00000043 0.000000 0.00000044 0.000000 0.00000045 0.000000 0.00000046 0.000000 0.00000047 0.000000 0.00000048 0.000000 0.00000049 0.000000 0.00000050 0.000000 0.00000051 0.000000 0.00000052 0.000000 0.0000000.00000054 0.000000 0.00000055 0.000000 0.00000056 0.000000 0.00000057 0.000000 0.00000058 0.000000 0.00000059 0.000000 0.00000060 0.000000 0.00000061 0.000000 0.00000062 0.000000 0.00000063 0.000000 0.00000064 0.000000 0.00000065 0.000000 0.00000066 0.000000 0.00000067 0.000000 0.00000068 0.000000 0.00000069 0.000000 0.00000070 0.000000 0.00000071 0.000000 0.00000072 0.000000 0.00000073 0.000000 0.00000074 0.000000 0.0000000.00000076 0.000000 0.00000077 0.000000 0.00000078 0.000000 0.00000079 0.000000 0.00000080 0.000000 0.00000081 0.000000 0.00000082 0.000000 0.00000083 0.000000 0.00000084 0.000000 0.00000085 0.000000 0.00000086 0.000000 0.00000087 0.000000 0.00000088 0.000000 0.00000089 0.000000 0.00000090 0.000000 0.00000091 0.000000 0.00000092 0.000000 0.00000093 0.000000 0.00000094 0.000000 0.00000095 0.000000 0.00000096 0.000000 0.0000000.00000098 0.000000 0.00000099 0.000000 0.000000100 0.000000 0.000000101 0.000000 0.000000102 0.000000 0.000000103 0.000000 0.000000104 0.000000 0.000000105 0.000000 0.000000106 0.000000 0.000000107 0.000000 0.000000108 0.000000 0.000000109 0.000000 0.000000110 0.000000 0.000000111 0.000000 0.000000112 0.000000 0.000000113 0.000000 0.000000114 0.000000 0.000000115 0.000000 0.000000116 0.000000 0.000000117 0.000000 0.000000118 0.000000 0.0000000.000000120 0.000000 0.000000121 0.000000 0.000000122 0.000000 0.000000123 0.000000 0.000000124 0.000000 0.000000125 0.000000 0.000000126 0.000000 0.000000127 0.000000 0.000000128 0.000000 0.000000129 0.000000 0.000000130 0.000000 0.000000131 0.000000 0.000000132 0.000000 0.000000133 0.000000 0.000000134 0.000000 0.000000135 0.000000 0.000000136 0.000000 0.000000137 0.000000 0.000000138 0.000000 0.000000139 0.000000 0.000000140 0.000000 0.0000000.000000142 0.000000 0.000000143 0.000000 0.000000144 0.000000 0.000000145 0.000000 0.000000146 0.000000 0.000000147 0.000000 0.000000148 0.000000 0.000000149 0.000000 0.000000150 0.000000 0.000000151 85628.62 -1.000000152 84.00000 0.000000153 87.00000 0.000000154 78.00000 0.000000155 7.000000 0.000000156 85.00000 0.000000157 77.00000 0.000000158 34.00000 0.000000159 84.00000 0.000000160 90.00000 0.000000161 59.00000 0.000000162 85.00000 0.0000000.000000164 84.00000 0.000000165 27.00000 0.000000166 74.00000 0.000000167 90.00000 0.000000168 29.00000 0.000000169 80.00000 0.000000170 87.00000 0.000000171 84.00000 0.000000172 88.00000 0.000000173 70.00000 0.000000174 80.00000 0.000000175 69.00000 0.000000176 78.00000 0.000000177 69.00000 0.000000178 78.00000 0.000000179 76.00000 0.000000180 72.00000 0.000000181 92.00000 0.000000182 75.00000 0.000000183 66.00000 0.000000184 75.00000 0.0000000.000000186 82.00000 0.000000187 33.00000 0.000000188 84.00000 0.000000189 75.00000 0.000000190 76.00000 0.000000191 62.00000 0.000000192 88.00000 0.000000193 84.00000 0.000000194 4.000000 0.000000195 75.00000 0.000000196 70.00000 0.000000197 59.00000 0.000000198 80.00000 0.000000199 75.00000 0.000000200 78.00000 0.000000201 22.00000 0.000000202 15.00000 0.000000203 28.00000 0.000000204 51.00000 0.000000205 53.00000 0.000000206 0.000000 0.0000000.000000208 0.000000 0.000000209 42.00000 0.000000210 26.00000 0.000000211 0.000000 0.000000212 82.00000 0.000000213 75.00000 0.000000214 75.00000 0.000000215 36.00000 0.000000216 75.00000 0.000000217 61.68831 0.000000218 0.1818182 0.000000219 62.93506 0.000000220 25.18182 0.000000221 71.42857 0.000000222 81.16883 0.000000223 68.18182 0.000000224 30.41558 0.000000225 87.66234 0.000000226 0.1688312 0.000000227 0.1688312 0.000000228 71.42857 0.0000000.000000230 68.18182 0.000000231 74.67532 0.000000232 87.66234 0.000000233 68.18182 0.000000234 74.67532 0.000000235 17.66234 0.000000236 66.16883 0.000000237 0.7792208E-01 0.000000238 0.5844156 0.000000239 0.5844156 0.000000240 0.6233766 0.000000241 0.5844156 0.000000242 0.000000 0.000000243 40.50000 0.000000244 0.5000000 0.000000245 156.0000 0.000000246 129.5000 0.000000247 7.013341 0.000000248 0.000000 0.000000249 0.000000 0.000000250 0.000000 0.0000000.000000252 0.000000 0.000000253 0.000000 0.000000254 0.000000 0.000000255 0.000000 0.000000256 0.000000 0.000000257 0.000000 0.000000258 0.000000 0.000000259 0.000000 0.000000260 0.000000 0.000000261 0.000000 0.000000262 0.000000 0.000000263 0.000000 0.000000264 0.000000 0.000000265 0.000000 0.000000266 0.000000 0.000000267 0.000000 0.000000268 0.000000 0.000000269 0.000000 0.000000270 0.000000 0.000000271 0.000000 0.000000272 0.000000 0.0000000.000000274 0.000000 0.000000275 0.000000 0.000000276 0.000000 0.000000277 0.000000 0.000000278 0.000000 0.000000279 0.000000 0.000000280 0.000000 0.000000281 0.000000 0.000000282 0.000000 0.000000283 0.000000 0.000000284 0.000000 0.000000285 0.000000 0.000000286 0.000000 0.000000287 0.000000 0.000000288 0.000000 0.000000289 0.000000 0.000000290 0.000000 0.000000291 0.000000 0.000000292 0.000000 0.000000293 0.000000 0.000000294 0.000000 0.0000000.000000296 0.000000 0.000000297 0.000000 0.000000298 0.000000 0.000000参考文献:《运筹学》清华大学出版社《数学模型》高等教育出版社。

相关文档
最新文档