浙教版 八年级(上)数学 第二章2.1-2.4
浙教版初中数学教材(总目录)

浙教版初中数学教材总目录七年级上册第1章从自然数到有理数1.1从自然数到分数 1.2有理数 1.3数轴 1.4绝对值 1.5有理数的大小比较第2章有理数的运算2.1有理数的加法 2.2有理数的减法 2.3有理数的乘法 2.4有理数的除法2.5有理数的乘方 2.6有理数的混合运算 2.7准确数和近似数 2.8计算器的使用第3章实数3.1平方根 3.2实数 3.3立方根 3.4用计算器进行数的开方 3.5实数的运算第4章代数式4.1用字母表示数 4.2代数式 4.3代数式的值 4.4整式 4.5合并同类项4.6整式的加减第5章一元一次方程5.1一元一次方程 5.2一元一次方程的解法 5.3一元一次方程的应用5.4问题解决的基本步骤第6章数据与图表6.1数据的收集与整理 6.2统计表 6.3条形统计图和折线统计图 6.4扇形统计图第7章图形的初步知识7.1几何图形 7.2线段、射线和直线 7.3线段的长短比较 7.4角与角的度量7.5角的大小比较 7.6余角和补角 7.7相交线 7.8平行线七年级下册第1章三角形的初步知识1.1 认识三角形 1.2 三角形的角平分线和中线 1.3 三角形的高 1.4 全等三角形 1.5 三角形全等的条件 1.6 作三角形第2章图形和变换2.1 轴对称图形 2.2 轴对称变换 2.3 平移变换 2.4 旋转变换 2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性 3.2 可能性的大小 3.3 可能性和概率第4章二元一次方程组4.1 二元一次方程 4.2 二元一次方程组 4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法 5.2 单项式的乘法 5.3 多项式的乘法5.4 乘法公式 5.5 整式的化简 5.6 同底数幂的除法 5.7 整式的除法第6章因式分解6.1 因式分解 6.2 提取公因式法 6.3 用乘法公式分解因式 6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1同位角、内错角、同旁内角 1.2平行线的判定 1.3平行线的性质1.4平行线之间的距离第2章特殊三角形2.1等腰三角形 2.2等腰三角形的性质 2.3等腰三角形的判定 2.4等边三角形 2.5直角三角形 2.6探索勾股定理 2.7直角三角形全等的判定第3章直棱柱3.1认识直棱柱 3.2直棱柱的表面展开图 3.3三视图 3.4由三视图描述几何体第4章样本与数据分析初步4.1抽样 4.2平均数 4.3中位数和众数 4.4方差和标准差 4.5统计量的选择与应用第5章一元一次不等式5.1认识不等式 5.2不等式的基本性质 5.3一元一次不等式 5.4一元一次不等式组第6章图形与坐标6.1探索确定位置的方法 6.2平面直角坐标系 6.3坐标平面内的图形变换第7章一次函数7.1常量与变量 7.2认识函数 7.3一次函数 7.4一次函数的图象7.5一次函数的简单应用八年级下册第1章二次根式1.1 二次根式 1.2 二次根式的性质 1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程 2.2 一元二次方程的解法 2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率 3.2 频数分布直方图 3.3 频数分布折线图第4章命题与证明4.1 定义与命题 4.2 证明 4.3 反例与证明 4.4 反证法第5章平行四边形5.1 多边形 5.2 平行四边形 5.3 平行四边形的性质 5.4 中心对称5.5 平行四边形的判定 5.6 三角形的中位线 5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形 6.2 菱形 6.3 正方形 6.4 梯形九年级上册第1章反比例函数1.1 反比例函数1.2 反比例函数的图象和性质1.3 反比例函数的应用●小结●目标与评定第2章二次函数2.1 二次函数2.2 二次函数的图象●阅读材料用计算机画二次函数的图象2.3 二次函数的性质2.4 二次函数的应用●小结●目标与评定第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角●阅读材料生活离不开圆3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积●小结●目标与评定第4章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及其应用4.5 相似多边形4.6 图形的位似●课题学习精彩的分形●小结●目标与评定九年级下册第1章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形●课题学习会徽中的数学●小结●目标与评定第2章简单事件的概率2.1 简单事件的概念2.2 估计概率2.3 概率的简单应用●小结●目标与评定第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系●小结●目标与评定第4章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图●小结●目标与评定。
浙教版八年级数学2.1~2.4 单元评估及答案

2.1~2.4 单元评估(满分100分,时间50分钟)一. 选择题(本题有10个小题, 每小题3分, 共30分)1.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A.40°,40°B.80°,20°C.50°,50°D.50°,50°或80°,20°2.在等腰△ABC中,AB的长是BC的2倍,周长为40,则AB的长为()A.20 B.16 C.16或20 D.以上都不对3.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°4.如图,△ABC中,DE垂直平分AC,AD=3,△ABE的周长为13,那么△ABC的周长为()A.10 B.13 C.16 D.195.下列说法中错误的是()A.等腰三角形的底角一定是锐角B.等腰三角形至少有两个角相等C.等腰三角形的顶角一定是锐角D.等腰三角形顶角的外角是底角的2倍6.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°7.两个等腰三角形全等的条件是()A.有两条边对应相等B.两个角对应相等C.有一腰和一底角对应相等D.一腰和一角对应相等8.在△ABC中,AB=AC,∠A=70°,∠OBC=∠OCA,则∠BOC的度数为()A.140°B.110°C.125°D.115 °9.用10根等长的小棒不折断搭成一个三角形(不允许重叠或重叠),则这个三角形一定是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定10.如图,等边△ABC的边长为3,P为BC上一点,且∠APD=800在AC上取一点D,使AD=AP,则∠DPC的度数是()A.10° B .15° C .20° D .25°二. 填空题(本题有6个小题, 每小题4分, 共24分)11.一个等腰三角形的周长为14cm,且一边长是4cm,则它的腰长是. 12.在△ABC中, ∠A=120°,∠B=30°,AB=4cm,则AC=.13.若等腰三角形的底边长为6,那么腰长a的取值范围是.14.在等腰三角形中,如果顶角是一个底角的2倍,那么顶角等于_____度;如果一个底角是顶角的2倍,那么顶角等于_______度.15.如图,已知∠A=15°,AB=BC=CD=DE=EF,那么∠FEN的度数是,△ CDE是三角形,△DEF 是 三角形.16.已知在等边△ABC 中,BC =3,∠ACB 和∠ABC 的两条角平分线相交于点O ,OE ∥AB ,OF ∥AC ,分别交A B 、AC 于点E 、F ,则EF 的长是 .三. 解答题 (本题有6个小题, 共46分)17.(本小题满分7分)如图,在△ABC 中,AB=AC ,BD 是△ABC 的角平分线,且BD=BE , ∠BAC =100°,判断△DEC 的形状,并说明理由.18. (本小题满分7分)等腰三角形的底边长为7cm ,一腰上的中线把周长分为两部分,其差为3cm ,则等腰三角形的腰长为多少?19. (本小题满分7分)如图,AB = AC = AD ,且AD ∥BC ,∠C =2∠D 吗?试说明理由.DE D A 20. (本小题满分7分)△ABC 中,AB=AC ,BC=BD ,AD=DE=EB ,求∠A 的度数.21. (本小题满分8分)如图,在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 上的点,且AD=AE .M 是DE 的中点,连结AM 并延长交BC 于点N , (1) DE 与BC 平行吗? (2) N 是BC 边上的中点吗?请分别说明理由.22. (本小题满分10分)如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.(提示:连结CE )参考答案2.1~2.4 单元评估1.D2.B3.D4.D5.C6.C7.C8.C9.A 10.C11.4cm或5cm 12.4cm 13.a>3 14.36 15.75°,等腰直角,等边 1 6.217.等腰三角形,理由略18.腰长为10cm或4cm 19.利用AB=AD和平行,说明∠A BC =2∠D,再结合AB=AC 得到结论. 20.∠A=45°21.(1)平行,(2)中点(理由略)22.连结CE,说明△ACE≌△BCE得∠BCE=∠ACE =30°,同时说明△BCE≌△BDE得∠BDE=∠BCE =30°。
浙教版 八年级数学初二上册第二章特殊三角形教案

2.1 等腰三角形〖教学目标〗1.使学生了解等腰三角形的有关概念。
2.通过探索等腰三角形的性质,使学生掌握等腰三角形的轴对称性。
进一步经历观察、实验、推理、交流等活动。
〖教学重点与难点〗重点:等腰三角形轴对称性质。
难点:通过操作,如何观察、分析、归纳得出等腰三角形性质。
〖教学过程〗一、复习引入1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形?△ABC中,如果有两边AB=AC,那么它是等腰三角形。
2.日常生活中,哪些物体具有等腰三角形的形象?二、新课1.指出△ABC的腰、顶角、底角。
相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角∠BAC,叫做顶角,腰和底边的夹角∠ABC、∠ACB叫做底角。
2.实验。
现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三角形的大小和形状可以不一样,画出它的顶角平分线AD所在直线把纸片对折,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论。
可让学生有充分的时间观察、思考、交流,可能得到的结论:(1)等腰三角形是轴对称图形(2)∠B=∠C(3)BD=CD,AD为底边上的中线。
(4)∠ADB=∠ADC=90°,AD为底边上的高线。
3.结论:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。
三、例题精讲如图3,在△ABC中,AB=AC,D,E分别是AB,AC上的点,且AD=AE,AP是△ABC的角平分线,点D,E关于AP对称吗?DE与BC平行吗?请说明理由。
ABC D EP本题较难,可先由师生协同分析,1.将等腰三角形ABC沿顶角平分线折叠时,线段AD与AE能重合吗?为什么?边AB 与AC呢?2.AD与AE重合,AB与AC重合,说明点D与点E,点B与点C分别有怎样的位置关系?3.轴对称图形有什么性质?由此可推出AP与DE,BC有怎样的位置关系?那么DE与BC呢?学生口述,教师板书解题过程。
四、练习巩固P23 练习1、2、补充:填空:在△ABC中,AB=AC,D在BC上,1.如果AD⊥BC,那么∠BAD=∠______,BD=_______2.如果∠BAD=∠CAD,那么AD⊥_____,BD=______3.如果BD=CD,那么∠BAD=∠_______,AD⊥______四、小结本节课,我们学习了等腰三角形的轴对称性质。
2024年浙教版数学八年级上册全册教案可打印

2024年浙教版数学八年级上册全册教案可打印教案概述:一、第一章分式1.1分式的概念教学目标:1.理解分式的定义及性质。
2.学会判断分式的真假。
教学重难点:1.分式的定义及性质。
2.判断分式的真假。
教学过程:1.引导学生回顾整式的概念,进而引出分式的概念。
3.通过练习,让学生学会判断分式的真假。
课后作业:1.判断下列各式是否为分式:(1)3/4(2)5x/2(3)2x^2+3x11.2分式的运算教学目标:1.掌握分式的加、减、乘、除运算。
2.学会化简分式。
教学重难点:1.分式的加、减、乘、除运算。
2.分式的化简。
教学过程:1.通过具体例子,让学生学会分式的加、减、乘、除运算。
2.通过练习,让学生掌握分式的化简方法。
课后作业:1.计算下列各式的值:(1)(3/4)+(5/6)(2)(2/3)(4/5)(3)(9/10)/(3/4)二、第二章平行四边形2.1平行四边形的性质教学目标:1.掌握平行四边形的定义及性质。
2.学会证明平行四边形的性质。
教学重难点:1.平行四边形的定义及性质。
2.平行四边形性质的证明。
教学过程:1.通过具体图形,让学生观察平行四边形的性质。
2.通过练习,让学生学会证明平行四边形的性质。
课后作业:1.证明:平行四边形的对边平行且相等。
2.2平行四边形的判定教学目标:1.掌握平行四边形的判定方法。
2.学会运用判定方法解决实际问题。
教学重难点:1.平行四边形的判定方法。
2.判定方法的实际应用。
教学过程:1.通过具体例子,让学生了解平行四边形的判定方法。
2.通过练习,让学生学会运用判定方法解决实际问题。
课后作业:1.判断下列图形中,哪些是平行四边形?(1)图形①(2)图形②(3)图形③三、第三章一次函数3.1一次函数的概念教学目标:1.理解一次函数的定义及性质。
2.学会绘制一次函数的图像。
教学重难点:1.一次函数的定义及性质。
2.一次函数图像的绘制。
教学过程:1.通过具体例子,让学生了解一次函数的定义及性质。
浙教版八年级数学上册第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形の轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁の部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它の对称轴.2.有の轴对称图形の对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合の点是对应点,叫做对称点。
[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合の点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称の性质]①关于某直线对称の两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段の垂直平分线。
③轴对称图形の对称轴,是任何一对对应点所连线段の垂直平分线。
④如果两个图形の对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
[轴对称与轴对称图形の区别][线段の垂直平分线](1)经过线段の中点并且垂直于这条线段の直线,叫做这条线段の垂直平分线.(2)线段の垂直平分线上の点与这条线段两个端点の距离相等;反过来,与一条线段两个端点距离相等の点在这条线段の垂直平分线上.因此线段の垂直平分线可以看成与线段两个端点距离相等の所有点の集合.2.2 等腰三角形+2.3等腰三角形性质定理+2.4等腰三角形判定定理[等腰三角形]★1. 有两条边相等の三角形是等腰三角形。
★2. 在等腰三角形中,相等の两条边叫做腰,另一条边叫做底边.两腰所夹の角叫做顶角,腰与底边の夹角叫做底角.[等腰三角形の性质]★性质1:等腰三角形の两个底角相等(简写成“等边对等角”)★性质2:等腰三角形の顶角平分线、底边上の中线、底边上の高互相重合(三线合一).特别の:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上の中线、角平分线、高线对应相等.[等腰三角形の判定定理]★如果一个三角形有两个角相等,那么这两个角所对の边也相等(简写成“等角对等边”).特别の:(1)有一边上の角平分线、中线、高线互相重合の三角形是等腰三角形.(2)有两边上の角平分线对应相等の三角形是等腰三角形.(3)有两边上の中线对应相等の三角形是等腰三角形.(4)有两边上の高线对应相等の三角形是等腰三角形.[等边三角形]三条边都相等の三角形叫做等边三角形,也叫做正三角形.[等边三角形の性质]★等边三角形の三个内角都相等,•并且每一个内角都等于60°[等边三角形の判定方法]★(1)三条边都相等の三角形是等边三角形;★(2)三个角都相等の三角形是等边三角形;★(3)有一个角是60°の等腰三角形是等边三角形.2.5 逆命题和逆定理[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确の判断の句子叫做命题。
浙教版八年级数学上册全册教案

浙教版八年级数学上册全册教案一、教学内容第二章:整式的乘除2.1 单项式乘以单项式2.2 单项式乘以多项式2.3 多项式乘以多项式2.4 乘法公式2.5 整式的除法第三章:分式3.1 分式的概念3.2 分式的性质3.3 分式的乘除3.4 分式的加减二、教学目标1. 理解并掌握整式的乘除运算规则。
2. 学会运用乘法公式解决实际问题。
3. 掌握分式的概念、性质及四则运算。
三、教学难点与重点重点:整式的乘除、乘法公式、分式的四则运算。
难点:多项式乘以多项式、分式的性质及乘除运算。
四、教具与学具准备1. 教具:PPT、黑板、粉笔、乘法公式表。
2. 学具:练习本、乘法公式表、计算器。
五、教学过程1. 引入实践情景:通过实际生活中购买商品的问题,引出整式的乘除运算。
2. 讲解例题:单项式乘以单项式单项式乘以多项式多项式乘以多项式乘法公式整式的除法3. 随堂练习:针对每个知识点,设计相应练习题,巩固所学内容。
4. 分组讨论:针对分式的概念、性质及四则运算,进行分组讨论,培养学生的合作能力。
六、板书设计1. 黑板左侧:列出乘法公式,方便学生随时查看。
2. 黑板右侧:书写例题及解题步骤,展示解题思路。
3. 课堂中间:针对重点、难点进行标注,提醒学生注意。
七、作业设计1. 作业题目:单项式乘以单项式的计算题多项式乘以多项式的计算题分式的乘除计算题应用题:利用整式的乘除解决实际问题八、课后反思及拓展延伸1. 反思:针对课堂教学,教师应认真反思教学效果,找出不足之处,为下一节课做好准备。
2. 拓展延伸:引导学生探索整式的乘除与乘法公式之间的关系。
通过实际生活中的问题,拓展分式的应用范围。
鼓励学生参加数学竞赛,提高解决问题的能力。
重点和难点解析:1. 教学过程中的例题讲解和随堂练习设计。
2. 分组讨论的环节,特别是对分式的概念和性质的理解。
3. 板书设计中的重点难点标注和乘法公式的展示。
4. 作业设计中应用题的设置和答案的发放。
最新浙教版八年级数学上册第二章复习
三条边都相等的三角形叫做等边三角形。
有两条边相等的三角形叫做等腰三角形 定义:
( isosceles triangle ) . 如 图 所 示 , AB = AC , △ABC就是等腰三角形.
A
腰
顶 角
等腰三角形中,
腰 相等的两边都叫做腰,
另一边叫做底边,
B
底角 底角
两腰的夹角叫做顶角,
C
底边
腰和底边的夹角叫做底角.
5cm 的中线的长为______
2、如图,在Rt△ABC中,CD是斜边AB上的中线, 50° ∠CDA=80°,则∠A=_____ ∠B=_____ 40°
D B C
练一练:
3、在Rt△ABC中,BD是斜边AC上的中线,∠A=30. (1)∠C=______∠ABD=_____ 60° 30° ∠BDC=______ ∠CBD=_____ 60° 60° (2) △BDC是什么三角形? 等边三角形 (3) 此时BC与AC有什么关系?
如果三角形中两边的平方和等于第三边
的平方,那么这个三角形是直角三角形.
即如果三角形的三边长a,b,c有关系
a b c
2 2
2
那么这个三角形是直角三角形.
这个定理可判断三角形是否是直角三角形.
1.请完成以下未完成的勾股数:
17 24 (1)8、15、_______;(2)10、26、_____.
已知等腰三角形一边的长为3,另一边的长为5
,求它的周长。
解:分两种情况: (1)当腰长为3时,有3+3>5符合要求, ∴此时三角形的周长为3×2+5=11;
(2)当腰长为5时,有3+5>5符合要求,
∴此时三角形的周长为5×2+3=13.
2.1 图形的轴对称八年级上册数学浙教版
A. B. C. D.
2.常见的轴对称图形
名称
图形及其对称轴
对称轴
对称轴的条数
角
角平分线所在直线
1
等腰梯形
上、下底的中点所在直线
1
长方形
对边中点所在直线
2
正方形
对边中点所在直线和 两条对角线所在直线
4
圆
过圆心的每一条直线
无数条
D
A. B. C. D.
链接教材 本题取材于教材第48页合作学习第1题,考查了轴对称图形的识别.此类题目常结合实际背景命题.
2.图形的轴对称的性质:
性质
几何语言
图示
对应点所连的线段被对称轴垂直平分.
, ; , ; , .
成轴对称的两个图形中,对应线段所在的直线平行或相交(交点在对称轴上)或重合
成轴对称的两个图形是全等图形.
对应边相等
, , .
(2) 在不另加字母和线段的情况下,图中还有成轴对称的三角形吗?
(2)在不另加字母和线段的情况下, 与 , 与 也都关于直线 成轴对称.
解:(1)点 的对称点是点 ,点 的对称点是点 ,点 的对称点是点 .
例题点拨成轴对称的两个图形中,对称轴上的点与两个图形上的对称点的连线对应相等,连线与对称轴的夹角对应相等.
第2章 特殊三角形
2.1 图形的轴对称
学习目标
1.了解轴对称图形以及图形的轴对称的概念.
2.理解轴对称图形的性质.
3.会判断一个图形是不是轴对称图形,并能够找出它的对称轴.
4.能画出简单平面图形关于给定对称轴的对称图形.
浙教版八年级上册数学第二章知识点
浙教版八年级上册数学第二章知识点第二章数的开方1. 正数的开方:如果一个正数 a 的平方等于 b(a^2=b),那么 b 就是 a 的平方根,记作√b=a。
2. 平方根的性质:- 非负数的平方根也是非负数。
√b≥0。
- 如果 a>0,那么 a 的平方根是唯一的。
即若 a>0,b≥0,并且 a 的平方根是 b,那么 b 的平方也必然等于 a。
- √a的值域是 [0,+∞),当 a>0 时,a=0的平方根是0。
- 0的唯一平方根是0。
3. 开方与乘方的关系:- 开平方和乘方互为逆运算,即 a 的平方根的平方等于 a,a≥0,√a^2=a。
- 乘方和开平方的运算顺序要分清楚,a 的 m 次方开 n 次方等于 a 的 m/n 次方,即(√a)^m=√(a^m)。
4. 完全平方的性质:- 如果一个正整数 a 可以表示成 b 的平方,那么 a 可以表示成两个相等的数的和。
即 a=b^2=a/2+a/2。
5. 开立方与立方根:- 正数 a 的三次方等于 b(a^3=b),那么 b 就是 a 的立方根,记作∛b=a。
6. 立方根的性质:- 非负数的立方根也是非负数。
∛b≥0。
- 任何一个实数的立方根都是唯一的。
- ∛a的值域是 (-∞,+∞),当 a>0 时,a=0的立方根是0。
7. 二次根式:- 形如√a 的式子称为二次根式,其中 a 是非负实数。
8. 二次根式的性质:- 如果 a 和 b 都是非负实数,则有以下性质:a) 二次根式的加法减法:√a±√b,只有当 a=b 时,二次根式才能相加减。
b) 二次根式的乘法:(√a)(√b)=√(ab)。
c) 带有二次根式的乘法:a(√b)=√(ab^2)。
d) 二次根式的除法:(√a)/(√b)=(√a)/(√b)×(√b)/(√b)=√(a/b)。
其中, b 不等于0。
以上是浙教版八年级上册数学第二章的知识点总结。
新浙教版八年级上册初中数学全册教学课件 (2)可修改全文
八年级上册
第1章 三角形的初步认识
1.1 认识三角形
第1课时 三角形及其三角、三边的关系
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.三角形的定义. 2.三角形的表示方法及有关概念.(重点) 3.三角形的分类. (重点、难点)
新课讲解
练一练
所有的命题都是基本事实。 X 所有的真命题都是定理 。 X 所有的定理是真命题 。 √ 所有的基本事实是真命题 。 √
课堂小结
1.知识方面: 真命题与假命题的概念
当堂小练
1. “两点之间,线段最短”这个语句是( B ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
2. “同一平面内,不相交的两条直线叫做平行线”这 个语句是( C ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
3.下列各阴影部分的面积有何关系?
S乙>S甲=S丙
拓展与延伸
在△ABC中,AE,AD分别是BC边上的中线和高。说明△ABE的面积
与△AEC的面积相等。
解: ∵ AE是BC边上的中线
A
∴ BE = EC
1 ∵S △ABE= 2 BE · AD
1 S △AEC= 2 EC · AD
B
C ED
新课导入
一对父子的谈话
爸爸,什 么叫法律?
法律就是法 国的律师
那么什么 是法盲?
法盲就是法 国的盲人
新课讲解 知识点1 定义的定义 可见,在交流时对名称和术语要有共同的认识才行。
一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或 术语的定义.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 等腰三角形
(特殊情况是正三角形) 相等的两边AB 、AC 都叫做腰,另外一边BC 叫做底边,两腰的夹角∠BAC ,叫做顶角,腰和底边的夹角∠ABC 、∠ACB 叫做底角。
(1)等腰三角形是轴对称图形 (2)∠B =∠C
(3)BD =CD ,AD 为底边上的中线。
(4)∠ADB =∠ADC =90°,AD 为底边上的高线。
等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。
习题
1、在△ABC 中,AB =AC ,D 在BC 上, ① 如果AD ⊥BC ,那么∠BAD =∠ ,BD = ② 如果∠BAD =∠CAD ,那么AD ⊥ ,BD = ③ 如果BD =CD ,那么∠BAD =∠ ,AD ⊥
2、一等腰三角形的两边长分别是7cm 和8cm ,求它的周长。
3、如图,在等腰三角形ABC 中,AD 是顶角的平分线,DE ⊥AB,DF ⊥AC,垂足分别为E 、F ,点E 、F 关于AD 对称吗?
C
等腰三角形的两个底角相等。
也就是说,在同一个三角形中,等边对等角。
等腰三角形的顶角平分线、底边上的中线和高线互相重合。
简称等腰三角形三线合一。
用几何语言表述为: 在△ABC 中,如图 ∵AB =AC ∴∠B =∠C (在同一个三角形中,等边对等角)
在△ABC 中,如图
(1)∵AB =AC ,∠1=∠2
∴AD ⊥BC ,BD =DC (等腰三角形三线合一) (2)∵AB =AC ,BD =DC
∴AD ⊥BC ,∠1=∠2 (3)∵AB =AC ,AD ⊥BC
∴BD =DC ,∠1=∠2
习题
1、(1)在△ABC 中,AB =AC ,若∠A =40°则∠C = ;若∠B =72°,则∠A = .
(2)在△ABC 中,AB =AC ,∠BAC =40°,M 是BC 的中点,那么∠AMC = ,∠BAM = .
(3)如图,在△ABC 中,AB =AC ,∠DAC 是△ABC 的外角。
∠BAC =180°- ∠B ,∠B =1
2 ,∠DAC = ∠C
(4)如图,在△ABC 中,AB =AC ,外角∠DCA =100°,则∠B = 度.
2、已知在△ABC 中,AB =AC ,直线AE 交BC 于点D ,O 是AE 上一动点但不与A 重合,且OB =OC ,试猜想AE 与BC 的关系,并说明你的猜想的理由。
3、如图,在△ABC 中,AB =AC ,BD 、CE 分别是两底角的平分线。
猜想:BD =CE 。
A B C
D 12A B
C
D A B
C
D
A
B
C
D O E
A B
C
D E
如果一个三角形有两个角相等,那么这个三角形是等腰三角形。
简单的说,在同一个三角形中,等角对等边。
习题
1、(1)已知:OD 平分∠AOB ,ED ∥OB ,求证:EO =ED 。
(2)已知:OD 平分∠AOB ,EO =ED 。
求证ED ∥OB 。
(3)已知:ED ∥OB ,EO =ED 。
求证:OD 平分∠AOB 。
2、(1)已知:如图a ,AB =AC ,BD 平分∠ABC ,CD 平分∠ACB ,过D 作EF ∥BC 交AB 于E,交AC 于F,则图中有几个等腰三角形?
(2)如图b,AB =AC,BF 平分∠ABC 交AC 于F ,CE 平分∠ACB 交AB 于E ,BF 和BE 交于点D ,且EF ∥BC ,则图中有几个等腰三角形?
(3)等腰三角形ABC 中,AB =AC ,BD 平分∠ABC ,CD 平分∠ACB ,过A 作EF ∥BC 交CD 延长线于E,交BD 延长线于F,则图中有几个等腰三角形?(自己画图)
3、在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由。
B
2.4 等边三角形
三边都相等的三角形叫做等边三角形。
等边三角形是特殊的等腰三角形,也叫正三角形 (等腰三角形不一定是等边三角形)
等边三角形的内角都相等,且等于60°;反过来,三个内角都等于60°的三角形一定是等边三角形。
等边三角形是轴对称图形,等边三角形每条边上的中线、高线和所对角的平分线互都三线合一,它们所在的直线都是等边三角形的对称轴。
(等边三角形的对称轴有3条)
等边三角形:
(1) 三边相等的三角形是等边三角形 (2) 三角相等的三角形是等边三角形 (3) 有一个角是60度的等腰三角形是等边三角形
习题
1、在等边△ABC 中,AC ⊥CD,垂足为C ,BC =CD,求∠ABD
2、△
ABC 为等边三角形,D 为AB 上任意一点,连接CD 。
(1)在BD 左侧,以BD 为一边作等边三角形BDE ;(尺规作图,保留作图痕迹,不写作法) (2)连接AE ,求证CD =AE 。