第三章 刚体力学

第三章 刚体力学
第三章 刚体力学

第三章刚体力学

本章介绍刚体运动状态的描述(§3.1-§3.2)以及刚体受力与运动状态的关系(§3.3-§3.10)。其内容包括:刚体运动学、刚体静力学和刚体动力学,重点掌握刚体运动学和刚体动力学。刚体是指在任何情况下形状、大小都不发生变化的力学体系,它是一种理想物理模型,只要一个物体中任意两点的距离不因受力而改变,它就可以称为刚体。

§3.1 刚体运动的分析

一、描述刚体位置的独立变量

刚体的特性是任意两点距离不因受力而变。这种特性决定了确定刚体的位置并不需要许多变量,而只要少数变量就行。

能完全确定刚体位置的,彼此独立的变量个数叫刚体的自由度。

二、刚体运动的分类及其自由度

1、平动:自由度3,可用其中任一点的坐标x、y、z描述;

2、定轴转动:自由度1,用对轴的转角φ描述;

3、平面平行运动:自由度3,用基点的坐标(x o,y o)及其对垂直平面过基点的轴的转角φ描述。

4、定点转动:自由度3,用描述轴的方向的θ,ψ角和轴线的转角ψ描述。

5、一般运动:自由度6,用描述质心位置的坐标(x c,y c,z c)和通过的定点的轴的三个角(θ,φ,ψ)描述。

§3.2 角速度矢量

、角速度矢量及其与刚体中任

本节重点是:掌握角位移矢量

一点的线位移

、线速度的相互关系。理解有限转动时角位移不

是矢量,只有无限小角位移才是矢量。

一、有限转动与无限小转动

1、有限转动不是矢量,不满足对易律

2、无限小转动是矢量,它满足矢量对易律。

①线位移△r与无限小角位移△n的关系

设转轴OM,有矢量△n,其大小等于很小的转角

Δθ,方向沿转轴方向,转轴的方向与刚体转动方向成右手螺旋,则△n称为角位移矢量。由图3.2.1很容易求得

即线位移△r=角位移△n与位矢r的矢量积。

②角位移和△n满足矢量对易律

利用两次位移的可交换性,可证得

该式表明:微小转动的合成遵循平行四边形加法的对易律,从而无限小角位移△n是一个矢量。

二、角速度矢量

1、角速度矢量的定义

角速度矢量ω的定义为

角速度ω描述了转动快慢和转动方向,转动方向与转轴方向(即ω的方向)成右手螺旋法则。它是描述刚体整体特征的量。

2、刚体内任一点C位置矢量为r)的线速度v与角速度ω关系为

三、线加速度a与角加速度β

角加速度矢量β的定义为

一般地讲,只有定轴转动,β才与ω的方向相同或相反。

任意一点(位矢r)的加速度a为

§3.3 欧勒角

描述刚体定点转动时,轴在空间的取向和绕这轴线的转角的三个独立变化的三个角度叫欧勒角。

本节目的是:掌握欧勒角是如何确定的以及欧勒运动学方程。一、欧勒角的选取

如下图,有定坐标系oξηζ和动坐标系oxyz,其中动系oxyz固

定在刚体上并随刚体一起绕定点o转动,开始时两坐标系重合。

显然,θ、φ、ψ就是我们确定的欧勒角,运动范围为0≤θ≤π,0≤φ≤2π,0≤ψ≤2π,其中,θ叫章动角,描述z轴上下颠动;φ叫进动角,描述z轴绕oζ轴的转动;ψ叫自动角,描述绕自身轴的转动。

二、欧勒运动学方程

用欧勒角及其对时间的导数

来表示角速度矢量ω在动系oxyz

上的分量表示的等式叫欧勒运动学方程。具体是

欧勒角及其运动学方程主要应用于定点转动问题。

§3.4 刚体运动方程与平衡方程

本节应重点掌握:1、力系简化所依据的原理和将力系简化的步骤;2、刚体运动的微分方程;3、刚体平衡方程及其应用。

一、力系的简化

1、力的可传性原理

实践证明:力可沿它的作用线向前或向后移动,而刚体运动状态不因力沿力的作用线前后移动而变,亦即作用在刚体上的力产生的力学效果,仅由力的量值与作用线的地位与方向决定,而与力的作用点无关。这一结论叫力的可传性原理.

2、平衡力不改变刚体运动状态的原理

实践证明:刚体上施以一平衡力(等大反向且作用在同一直线上),刚体的运动状态不变。

3、力系的简化

依据上述1、2两条原理可以进行力系的简化。

(1)、共点力系的简化:采用平行四边形法则,简化为一个力。(2)、共面非平行力的简化:利用力的可传性原理,将两力沿力的作用线滑移汇集于一点,再用平行四边形法则简化为一合力(见图3.4.1)

(3)、平行力的简化:若,按如图3.4.2规则简化为一力矩,

由此确定力的作用点。

等大反向的一对平行力(不在同一直线上)组成一力偶矩

(4)、空间力系的简化步骤为:

①确定力的简化中心,将力依次平移至力的作用点,然

后按平行四边形矢量合成,即(称F为主矢)。

②在简化中心处依次画出力相应的力矩,再由矢量合成平行四边形法则,得到合力力矩,即(称M为主矩)。

这样就将力系简化为一主矩和主矢。(通常取质心为简化中心)

[例]如图3.4.3,将力系与简化为主

矢F和主矩M

简化步骤:选取O为简化中心,则

①,平移至O,再将,合成得主

②在O点作的力矩,作的

力矩

再将

,合成,得到主矩

总之,作用于刚体上的任意力系均可简化为一主矢和主矩

二、刚体的运动微分方程

刚体是距离不变的质点组,由刚体的质心运动定理,有

(1)

同样,由相对质心的角动量(动量矩)定理,有

(2)

(1)、(2)两式即为刚体运动的基本方程。

此外,还有刚体运动的动能定理(刚体中各点之间距离不变,内力作功为零):刚体动能的微分等于各外力所作元功之和,即

(3)

三、刚体的平衡方程

刚体的平衡条件是受的主矢和主矩同时为零,若主矢F=0,而主矩M ≠0,则刚体有转动;若主矢 F≠0,而主矩M=0,则刚体有平动.刚体的平衡条件为:

F=0,M=0 (4)

应用刚体的平衡条件解题,一般步骤为:

1 画草图,分析受力,选取坐标系;

2、写出F=0的分量形式;

3、选取力矩的参数点,对该点取矩,写出M=0分量形式;

4、解方程组,求出平衡条件。

§3.5.1 转动惯量(1)

本节要求:

1、掌握刚体转动惯量的概念和对定轴转动的转动惯量的计算;

2、掌握回转半径、惯量椭球、平行轴定理、垂直轴定理、惯量主轴、惯量张量等若干概念;

3、了解刚体动量矩、动能的计算公式的普遍形式,掌握定轴转

动这一特殊情况的具体形式。

一、转动惯量

1、转动惯量的概念:它是描述转动惯性大小的物理量

①对某轴转动惯性的大小用转动惯量I描述,其定义为:I=∑m i p i2即转动惯量=各质点的质量与该点到转轴距离平方乘积之和。显然,I的单位为kg〃m2

②对定点的转动惯性的大小,由于转轴的方向不断变化,要用一个张量才能描述。

其中I xx,I yy,……叫惯量系数

2、转动惯量的计算公式

对定轴的转动惯量I,由刚体的质量分布和转轴的位置决定。

已知转轴的位置和刚体的质量分布,求I的计算公式有:

①I=∑m i p i2(p i为质点i到轴的距离);

②对质量连续分布的刚体,I=∫p2dm(ρ为质量元dm到轴之距离)

3、回转半径

设刚体绕轴S的转动惯量为I,若有一质点的质量等于刚体的质量m,它到轴的距离K满足:I=mk2=∫p2dm,则K就称为该刚体绕轴S的回转半径.由定义,有

4、计算转动惯量及回转半径的步骤,例

一般步骤是:

①选取坐标系和质量元dm

②由公式I=∫p2dm和m=∫dm求出I以及刚体的总质量m

③由I=mk2求出k

计算的关键是确定dm和ρ

计算中常用到下列已知结果:

半径为r的均质球壳绕直径的转动惯量 I=(2/3)mr2

半径为r的均质圆盘绕过圆心且垂直圆面的轴的转动惯I=(1/2)mr2 [例1](书P234 3.8题)求质量密度为的非均质圆球绕直径的回转半径K。

解:取半径为r→r+dr的球壳做作质量元,它的质量dm和对直径的转动惯量dI分别为:

dI=(2/3)r2dm

∴球体对直径的转动惯量I和总质量m分别为

所以回转半径

绕定点转动时转动惯量有一定的空间分布.我们以定点O为原点,在

过O的轴ON上取一点Q,使,

当刚体转动时,轴ON也随刚体绕O点转动而动,按此规则,所得到的Q点的集合将在空间形成一个包围O点的椭球面,曲面包围的是一个椭球,称为惯量椭球,它形象的描述了刚体绕定点O转动的转动惯量的空间分布.

曲面方程为二次曲面:

应注意:

(1)惯量椭球是形象描述刚体绕定点转动时,转动惯量空间分布而按上述规则所得到的球,它与刚体无共同之处,它不是刚体,即使刚体为椭球,它们也无共同之处(见图3.5.1)

(2)惯量椭球是在动坐标系中的立体图形。

2、惯量主轴:

惯量椭球的主轴叫惯量主轴,一般而言:凡质量密度均匀分布之刚体,其对称轴就为惯量主轴。例如:球体的任一直径就是惯量主轴。若定点O为刚体质心,则惯量椭球叫中心惯量椭球。

§3.6.1 刚体的平动和绕固定轴的转动(1)

本节重点是掌握刚体绕固定轴转动的运动规律和动力学特征,特别是运动规律及定轴转动的基本定理。

一、刚体的平动

刚体运动时,若刚体中的任一条直线始终保持平行,这种运动叫刚体的平动。

特点是:各点运动情况相同,自由度为3。

由于各质点运动情况相同,所以可用一点(常用质心)来描述整体的运动,运动方程为

(1)

二、刚体定轴转动

1、刚体定轴转动的特点

如图(见书p186,图3.6.2)取Z轴作转动轴,刚体定轴转动时有如下特点:

(1)刚体中任一点都在垂直于转轴的平面内作圆周运动;

(2)各点的角位移△φ,角速度,角加速度均相同,且方向都在转轴上;

(3)自由度为1,用转角φ能描述刚体的运动状态。

2、刚体定轴转动时,刚体中任

意一点的速度和加速度

如图3.6.1,取轴上任一点作原点,刚体中任一点P i的位置矢量为,则速度

(2)

其中:的方向沿该点圆周切线方向,大小为

加速度

其中:切向加速度

法向加速度

特例:匀角加速转动情况(α为常数),则有类似于质点运动学的公式:

角速度,

转角

3、刚体绕定轴转动的几个物理量

转动惯量:

角动量:

动能T:

动量P:

重力势能E P:E P=mgZ C(Z C为质心相对于零势能位置的高度)

4、刚体绕定轴转动的基本定理

(1)、动量矩定理(刚体绕定轴转动的动力学方程)

或 (α为转动角加速度)

(2)、质心运动定理

(为约束力)

(3)、动能定理

dT=dA(刚体动能的增加等于外力作功之和)

§3.6.2 刚体的平动和绕固定轴的转动(2)

三、刚体定轴转动问题解答 [例]

已知作用于刚体的力(外力、约束力等),求刚体定轴转动的运动规律。

由于约束力未知,因此求解定轴转动问题应将动力学方程与质心运动定理同时求解。

[例]单摆是一种理想模型,实际物体绕某轴(悬挂点0)的摆动并不严格符合单摆的条件,实际是复摆,如图3.6.2,物体绕过O点的轴,因重力作用而摆动,设刚体对O轴的转动惯量为I0,质心为C,对质心转动惯量I C,OC=a。

(1)求复摆的周期

解:刚体只受重力作用,重力对轴O的力矩

设对O的回转半径为K0,则I0=mK2

由定轴转动的动力学方程,有

当摆角θ很小时,sinθ≈θ:可得

,,令

得到振动周期

(2)、求悬点的反作用力R的x,y分量R x,R y

解:由质心运动定理,有

将它投影于ox,oy方向,得到

,(A)

注意到:x c=asinθ,y c=acosθ

求导数:,(B)

,(C)

由机械能守恒,有

求出(D)

另由(1)的解(E)

将(B)、(C)、(D)、(E)一起代入(A),解出

§3.7.1 刚体的平面平行运动(1)

本节要求:

(1)掌握刚体平面平行运动学的处理方法,速度、加速度的计算公式,转动瞬心曲线等概念;

(2)平面平行运动动力学的主要公式;

(3)刚体平面平行运动问题的求解方法。

一、刚体平面平行运动学.

刚体平面平行运动是指刚体运动时,任何一点始终在平行于某一固定平面内作运动,因此,只须研究任一和固定平面平行的平面运动就行,也就是说,可用一薄片来表示刚体的运动。

1、刚体平面平行运动的处理方法和速度、加速度

刚体平面平行运动可视为在刚体上取一点(称为基点,而且常取质心)的平动和绕基点的转动这两种运动的合成。

如图3.7.1,选取固定坐标系Oxyz,和动系,其中动系固定

在刚体平面上并随刚体一起运动,原点A(x0,y0)为基点,刚体绕过A(x0,y0)点,且垂直于平面的轴转动(与定轴转动不同,此处转轴不固定,称为能够为瞬时轴),刚体中任一点P在Oxyz系位置矢量

在动系中位置矢量r',基点对定系的位矢为r A ,满足r=r A+r'(1)r,

设刚体绕瞬时轴的转动角速度为(方向垂直于纸面向外),则

P点的速度(2)

P点的加速度(3)

(2)式表明:P点的速度等于基点的速度v A与绕基点的速度ω×r'的矢量和。

(3)式的等式右边第一项为基点加速度a A,第二项为因转动角速

度变化引起的加速度(称为转动加速度),第三项叫向心加速度,(3)式表明:刚体中任一点的加速度为基点的加速度、转动加速度、向心加速度的矢量和。

二、转动瞬心(简称瞬心)

1、转动瞬心的定义和性质

刚体平面平行运动时,速度为零的点叫瞬心,记为 C.转动瞬心的性质是:

①瞬心是唯一的,不同时刻有不同的瞬心;

②瞬心的速度为零,但它加速度并不为零.否则刚体为定轴转动.

③瞬心可以在刚体上、也可以在刚体外。

④对瞬心而言,刚体上任一点P的速度都垂直于瞬心c与该点p 的连线CP。

2、瞬心的确定

方法一:观察法:凡滚而不滑的刚体与另一物体的接触点就是瞬心。例如:车轮沿地面滚而不滑的沿直线运动,接触点就是瞬心C,轮子运动时,接触点C在地面上留下的轨迹叫定瞬心曲线(或叫空间极迹),而在运动物体(轮子)上留下的轨迹叫动瞬心曲线(或叫本体极迹)(见图3.7.2)。

方法二:作图法:

已知刚体中两点A、B的速度V A,V B,则分别自A、B点作垂直于V A,V B 的直线,其交点C即瞬心(如图3.7.3)。

方法三:数学方法:

已知ω和基点的位置A(x0,y0),则可解方程式[书P197的(3.7.6)]

求出瞬心在定系中的坐标,或解方程[书P197的( 3.7.7)]求出瞬心在动系中坐标:

§3.7.2刚体的平面平行运动(2)

3、瞬心法求解刚体平面平行运动运动学的一般步骤。

一般步骤:

①求出(或确定)瞬心C;

②确定角速度;

③由公式(2)、(3)求出任一点的速度和加速度。

[例1] 半径为R的圆轮沿直线滚而不滑的运动,轮心的速度为(常量)(见图3.7.4)。

求:(1)瞬心曲线;(2)角速度;(3)轮心和接触点的加速度;(4)轮上任一点的速度、加速度。

解:(1)接触点速度为零,故为瞬心,显然,运动时,定瞬心曲线为直线,方程为:y C=0。动瞬心曲线为圆周,方程为r C=R;

(2)由v0=ω×AC,且ω⊥AC,∴v0=ωAC,∴ω= v0/AC= v0/R=常量(方向垂直纸面向内)

(3)取轮心A为基点,由

,轮心加速度,又ω=常量,

所以,

∴接触点C的加速度,大小为,方向为指向圆心。

(4)轮缘上任一点P的速度V P和加速度a P,

(方向如图)

∴(方向如图)

将代入得,大小为

,方向由P点指向A点。

三、刚体平面平行运动动力学

1、刚体平面平行运动的基本定理

①质心运动定理:;

②对质心的动量矩定理:;

③动能定理:

特例:当受的力为保守力时,机械能守恒,有

(常量)

2、刚体平面平行运动动力学问题的解答步骤,例:

已知条件为:作用于刚体的力和初始情况。

求:刚体的运动规律。

方法一:解微分方程的方法。

步骤:①建立坐标系,分析力;②列方程:包括质心运动定理、动量矩定理、约束方程;③解微分方程;④讨论结果。

方法二:利用机械能守恒定律(只适用于保守力)

步骤:①建立坐标系;②计算动能T和势能V;③由能量守恒和约束条件求出运动规律。

[例]见书P202。

大学物理 第三章 刚体力学

班级: 姓名: 一、选择题 1、一质点作匀速率圆周运动时,则质点的( ) (A)动量不变,对圆心的角动量也不变. (B)动量不变,对圆心的角动量不断改变. (C)动量不断改变,对圆心的角动量不变. (D)动量不断改变,对圆心的角动量也不断改变. 2、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 ( ) (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 3、刚体角动量守恒的充分而必要的条件是 ( ) (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 4、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系 统 ( ) (A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒. 二、填空题: 1. 一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为 j t b i t a r ωωs i n c o s +=,其中a 、b 、ω皆为常量,则此质点对原点的角动量为_____ ;此质点所受对原点的力矩_____. 2、一正方形abcd 边长为L ,它的四个顶点各有 一个质量为m 的质点,此系统对下面三种转轴的 转动惯量: (1)Z 1轴: (2)Z 2轴: (3)Z 33、一人造地球卫星绕地球做椭圆轨道运动,则卫星的动量 ,动能 ,机械能 ,对地心的角动量 。(填“守恒”或“不守恒”) 4、刚体的转动惯量与 、 及 有关。 5、一质量为2kg 的质点在某一时刻的位置矢量为23r i j =+ (m ),该时刻的速度为32i j υ=+ (m/s ),则质点此时刻的动量p = ,相对于坐标 原点的角动量L = 。 三、简答题: 1、力学中常见三大守恒定律是什么? 2、试用所学知识说明(1)芭蕾舞演员、花样滑冰运动员在原地快速旋转动作;(2)为什么体操和跳水运动中直体的空翻要比屈体、团体的空翻难度大。

第五章 刚体力学(答案)

一、选择题 [ C ] 1、(基础训练2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1 和m 2的物体(m 1<m 2),如图5-7所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【提示】逆时针转动时角速度方向垂直于纸面向外,由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > (或者:列方程组:1112 2212m g T m a T m g m a T R T R J a R ββ-=??-=???-=? ?=?? ,解得:()()122 12m m gR m m R J β-=++,因为m 1<m 2,所以β<0,那么由方程120T R T R J β-=<,可知,21T T >) [ B ] 2、(基础训练5)如图5-9所示,一静止的均匀细棒,长为L 、质量为m 0,可 绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 01 3 m L .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) 0v m m L . (B) 03v 2m m L . (C) 05v 3m m L . (D) 07v 4m m L 【提示】把细棒与子弹看作一个系统,该系统所受合外力矩为零, 所以系统的角动量守恒: 20123v mvL m L m L ω??=+ ??? ,即可求出答案。 [ C ] 3、(基础训练7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线 上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】把三者看成一个系统,则系统所受合外力矩为零,所以系统的角动量守恒。设L 为一颗子弹相对于转轴O 的角动量的大小,则有 图5-7 m m 图5-11 v ? 2 1 v ? 俯视图 图5-9

大学物理第3章 刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23 212643ct bt ct bt a d d -==-+== ω θβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 2222112..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 , 求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

第05章__刚体力学基础补充汇总

3 一、选择题 1甲乙两人造卫星质量相同, 分别沿着各自的圆形轨道绕地球运行, 与乙相比,甲的: (A) 动能较大,势能较小, (B) 动能较小,势能较大, (C) 动能较大,势能较小, (D) 动能较小,势能较小, 4长为L 、质量为M 的匀质细杆 轴,平 衡时杆竖直下垂,一质量为 端并嵌入其内。那么碰撞后 A 端的速度大小: 5 一根质量为m 、长为I 的均匀直棒可绕过其一端且与棒垂直 的水平光 滑固定轴转动.抬起另一端使棒竖直地立起,如让它 掉下来,则棒将以角速度 ⑷撞击地板。如图将同样的棒截成长 为少2的一段,初始条件不变,则它撞击地板时的角速度最接近 于: 6如图:A 与B 是两个质量相同的小球, A 球用一根不 能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位 置,放手后两小球到达竖直位置时绳长相等,则此时两球 第五章刚体力学基础 甲的轨道半径较小, 总能量较大; 总能量较大; 总能量较小; 总能量较小; C ]难度: 2 一滑冰者,以某一角速度开始转动, (A) 角速度增大,动能减小; (B) 角速度增大,动能增大; (C) 角速度增大,但动能不变; (D) 角速度减小,动能减小。 当他向内收缩双臂时,则: 3两人各持一均匀直棒的一端,棒重 受 的力变为: (A)% ; W , —人突然放手,在此瞬间, 另一个人感到手上承 (B) W 2 OA 如图悬挂.0为水平光滑固定转 m 的 子弹以水平速度v 0击中杆的 12mv 0 (A) 12m+M 3mv 0 (B) 3m + M V o mv o (C) mmM (D)倍。 (A) 2 ; (B) 42^ :A ]难度:难 (C) (D)

第三章 刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m , 杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方 向成θ角时的角加速度. 解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为 2sin sin sin M mgl mgl mgl θθθ=-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之和 2 2 2 23J ml ml ml =+= 应用转动定律 M J β= 有:2sin 3m gl m l θβ= 解得 sin 3g l θβ= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面 与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m. 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 图 3-1 图3-2

β)2 1( 2 12Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2 212s m 6 .721520058.92002-?=+ +?= + += M m m g m a 3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动 力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示. 解:以飞轮为研究对象,飞轮的转动惯量2 12 J m R =,制动前角速度 为1000260 ωπ=? rad/s ,制动时角加速度为t ωβ-= - 制动时闸瓦对飞轮的压力为N F ,闸 瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 2 12 f F R J m R ββ-== 则 2N m R F t ωμ= 以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有 10N Fl F l -= 110.50600.2521000 15720.500.75 20.4560 N l l mR F F l l t ωπμ???= = = ? =+???N 图3-3

第05章__刚体力学基础补充

第五章刚体力学基础 一、选择题 1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的: (A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小; (D)动能较小,势能较小,总能量较小; [ C ]难度:易 2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变; (D)角速度减小,动能减小。 [ B ]难度:易 3 两人各持一均匀直棒的一端,棒重W,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:

(A)3w ; (B) 2w (C) 43w ; (D) 4 w 。 [ D ]难度:难 4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。那么碰撞后A 端的速度大小: (A) M m mv +12120; (B) M m mv +330 ; (C) M m mv +0 ; (D) M m mv +330。 [ B ]难度:中 5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另 一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。如图将同样的棒截成长为 2 l 的一段,初始条件不变,则它撞击地板时的角速度最接近于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。 [ A ]难度:难 6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度: L

第5章 刚体力学

第5章 刚体力学 一、选择题(共61题) 1.如图所示,一悬绳长为l ,质量为m 的单摆和一长度为l 、质量为m 能绕水平轴自由转动的匀质细棒(细棒绕此轴转动惯量是2 31ml ),现将摆球和细棒同时从与竖直方向成θ角 的位置由静止释放,当它们运动到竖直位置时,摆球和细棒的角速度之间的关系为 ( ) A 、 21ωω> B 、21ωω= C 、 21ωω< [属性]难易度:2分;所属知识点:刚体的定轴转动 [答案] C 2.轻质绳子的一端系一质量为 m 的物体,另一端穿过水平桌面上的小孔A ,用手拉着, 物体以角速度ω绕A 转动,如图所示。若绳子与桌面之间,物体与桌面之间的摩擦均可忽 略,则当手用力F 向下拉绳子时,下列说法中正确的是( ) A 、物体的动量守恒 B 、 物体的角动量守恒 C 、 力F 对物体作功为零 D 、 物体与地球组成的系统机械能守恒 [属性]难易度:2分;所属知识点:动量守恒、机械能守恒、角动量守恒

[答案] B 3.如图,细绳的一端系一小球B ,绳的另一端通过桌面中心的小孔O 用手拉住,小球在水 平桌面上作匀速率圆周运动。若不计一切摩擦,则在用力F 将绳子向下拉动的过程中 ( ) A 、 小球的角动量守恒,动能变大 B 、 小球的角动量守恒,动能不变 C 、 小球的角动量守恒,动能变小 D 、 小球的角动量不守恒,动能变大 [属性]难易度:2分;所属知识点: 角动量守恒、动能 [答案] A 4.光滑的水平桌面上,有一长为L 2、质量为m 的匀质细杆,可绕通过其中点o ,且与杆 垂直的竖直轴自由转动,其转动惯量为 23 1mL 。开始时,细杆静止,有一个质量为m 的小球沿桌面正对着杆的一端A ,在垂直于杆长的方向上以速度v 运动,并与杆的A 端碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为( ) A 、 L v 2 B 、 L v 43 C 、 L v 32 D 、 L v 54 [属性]难易度:2分;所属知识点: 角动量守恒 [答案] C 5.如图所示,一静止的均匀细棒,长为l ,质量为M ,可绕通过棒的中点O ﹑且垂直于棒 长的水平轴在竖直面内自由转动,转动惯量为 212 1Ml 。一质量为m 、速度为v 的子弹在竖直方向射入棒的右端,击穿棒后子弹的速度为v 21,则此棒的角速度为( ) A 、 l M mv B 、l M mv 3 C 、 l M mv 2 D 、 l M mv 23v

上海理工大学 大学物理 第五章_刚体力学答案

一、选择题 [ C ] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 参考答案: 逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > [ B ] 2、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 3 1 ML .一质量为m 、 速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1 ,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v . (C) ML m 35v . (D) ML m 47v . 图5-9 [ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 图5-7 m 图5-11 v 2 1 v 俯视图

[ C ] 4、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 . [ A ] 5、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2ω,顺时针. (B) ??? ??=R J mR v 2ω,逆时针. (C) ? ?? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 二、填空题 6、基础训练(8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad . 7、基础训练(9)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .

第三章刚体力学习题解答分解

第三章 习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23 212643ct bt ct bt a d d -==-+== ω θβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,密度为ρ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量OO dI '为 232..OO dI r dm h r dr ρπ'== 2 1 222 2112..()2 r OO r I h r r dr m r r ρπ'== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 , 求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '= 3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半

第五章_刚体力学_习题解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。今A 点以恒定速度0v 沿水平线运动。试求:(i)B 点的速度B v ;(ii)画出棒的瞬时转动中心的位置。 解:如图,建立动直角系A xyz -,取A 点为原点。B A AB v v r ω=+?,关键是求ω 法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+?=+=+ 即sin AC A r v ωθ?=,AC r ω⊥,化成标量为 ω在直角三角形OCA ?中,AC r rctg θ= 所以200sin sin sin cos A AC v v v r rctg r θθ θωθθ === 即2 0sin cos v k r θ ωθ = 取A 点为基点,那么B 点的速度为: 20023 00sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θ ωθθθθθ θ=+?=+?-+=-- 法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC , 使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。 在直角三角形OCA ?中,sin OA r r θ = 在直角三角形OPA ?中,2 cos sin AP OA r r r ctg θ θθ == 02 cos ()sin A PA PA PA r v r k r j r i i v i θ ωωωωθ=?=?-===,即20sin cos v r θωθ = 取A 点为基点,那么B 点的速度为: 20023 00sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θ ωθθθ θθ θ=+?=+?-+=-- 5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v 前进。求轮缘上任一点(该点处的轮辐与水平线成θ角)的速度和加速度。 解:任取轮缘上一点M ,设其速度为M v ,加速度为M a θ C A v CO v

第五章 刚体力学基础 动量矩1

第五章 刚体力学基础 动量矩 班级______________学号____________姓名________________ 一、选择题 1、力kN j i F )53( +=,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩大小为 ( ) (A)m kN ?-3; (B )m kN ?29; (C)m kN ?19; (D)m kN ?3。 2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ?。由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。圆柱体损失的动能和所受力矩的大小为( ) (A)80J ,80m N ?;(B)800J ,40m N ?;(C)4000J ,32m N ?;(D)9600J ,16m N ?。 3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( ) (A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。 4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀 质圆盘状定滑轮。绳的两端分别系着质量分别为m 和2m 的重 物,不计滑轮转轴的摩擦。将系统由静止释放,且绳与两滑轮 间均无相对滑动,则两滑轮之间绳的张力。( ) (A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。 5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面 上。若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为 0ω,则棒停止转动所需时间为 ( ) (A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。 6、关于力矩有以下几种说法,其中正确的是 ( ) (A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零; (C )角速度的方向一定与外力矩的方向相同; (D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。 7、一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m/s 时,圆盘角速度大小为 ( ) (A) 1rad/s ; (B) 2rad/s ; (C) 2/3rad/s ; (D) 4/3rad/s 。 8、如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面 内自由转动,杆长5/3m 。今使杆从与竖直方向成?60角由静止释放(g 取10m/s 2),则杆的最大角速度为( ) (A )3rad/s ; (B)πrad/s ; (C)3.0rad/s ; (D)3/2rad/s 。 9、对一个绕固定水平轴O 量相同、速率相等的子弹,并停留在盘中,则子弹射入后转 盘的角速度应 ( ) (A) 增大; (B) 减小; (C) 不变;(D) 无法确定。

第五章刚体力学答案

一、选择题 [ C ]1、如图所示,A 、 B 为两个相同的绕着轻绳的 定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计 滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB . (C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . 图5-18 提示: 设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB . 对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB [ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为2 1 mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定. [ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 图5-8 m m 图5-11

提示: 把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。 设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0 [ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ?? ? ??= R J mR v 2 ω,顺时针. (B) ??? ??=R J mR v 2ω,逆时针. (C) ? ? ? ??+= R mR J mR v 2 2 ω,顺时针. (D) ?? ? ??+=R mR J mR v 22 ω,逆时针. 提示: 视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。 [ C ]5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 图5-10 提示: 视小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,不满足动量和机械能守恒的条件,故只能选(C ) [ C ]6、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为 3 1mL 2 ,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-17所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 图5-19 O v 俯视图

第3章刚体力学基础

第3章 刚体力学基础 一、基本要求 1.理解质点及刚体转动惯量、角动量的概念,并会计算质点及刚体(规则形状刚体)的转动惯量、角动量; 2.理解刚体绕定轴转动的转动定律,并应用它来求解定轴转动刚体力矩和角加速度等问题; 3.会计算力矩的功、刚体的转动动能、刚体的重力势能,会应用机械能守恒定律解答刚体定轴转动问题; 4.掌握刚体的角动量定理和角动量守恒定律,并会分析解决含有定轴转动刚体系统的力学问题(质点与刚体碰撞类问题等)。 二、基本内容 (一)本章重点和难点: 重点:刚体绕定轴转动定律及角动量守恒定律。 难点:刚体绕定轴转动系统的角动量守恒定律及其应用。 (二) 知识网络结构图: ?????? ???????????????????角动量守恒定律定轴转动定律基本定律转动动能角动量冲量矩转动惯量力矩基本物理量 (三)容易混淆的概念: 1.转动惯量和质量 转动惯量反映刚体转动状态改变的难易程度,即刚体的转动惯性大小的量度;质量反映质点运动状态改变的难易程度,即质点的惯性大小的量度。

2.平动动能和转动动能 平动动能是与质量和平动速度的平方成正比;转动动能是与转动惯量和角速度的平方成正比。 (四)主要内容: 1.描述刚体定轴转动的角位置θ,角位移θ?、角速度ω和角加速度α(β)等物理量 t t d d ,d d ωαθω== 角量与线量的关系: 2n t ωαω θr a r a r v r s ==== 2.转动惯量--转动质点对转轴的转动惯量,等于转动质点的质量m 成以质点到转轴的距离r 的平方。2J m r =? (1)质量连续分布的刚体: ?=m r J d 2 线分布:dl dm ?=λ λ-质量线分布刚体,单位长度的质量。 面分布:dS dm ?=σ σ- 质量面分布刚体,单位面积的质量。 体分布:dV dm ?=ρ ρ 质量体分布刚体,单位体积的质量。 (2)质量离散分布刚体的转动惯量:2 i J m r =?∑ (3)平行轴定理 2 C J J md =+ 3.刚体绕定轴转动的转动定律—刚体的合外力矩等于转动惯量乘以角加速度。 t J J M d d ω α== i i i M M r F ==?∑∑ 力矩:F r M ?= 力对轴的力矩大小:θsin rF M =

第05章__刚体力学基础补充[精品文档]

第五章 刚体力学基础 一、选择题 1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的: (A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小; (D)动能较小,势能较小,总能量较小; [ C ]难度:易 2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变; (D)角速度减小,动能减小。 [ B ]难度:易 3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为: (A)3w ; (B) 2w (C) 4 3w ; (D) 4 w 。 [ D ]难度:难 4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。那么碰撞后A 端的速度大小: (A) M m mv +12120; (B) M m mv +330 ; (C) M m mv +0 ; (D) M m mv +330。 [ B ]难度:中 5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。如图将同样的棒截成长为2 l 的一段,初始条件不变,则它撞击地板时的角速度最接近 于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。 [ A ]难度:难 6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球 L

第三章 刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,杆可 绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度. [ 解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为 2sin sin sin M mgl mgl mgl θθθ=-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之和 22223J ml ml ml =+= 应用转动定律 M J β= 有:2 sin 3mgl ml θβ= 解得 sin 3g l θ β= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与 物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m. 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β)2 1 (212Mr r T r T =- ③ 图3-1 — 图3-2

又, βr a = ④ 联立以上4个方程,得 \ 221 2s m 6.72 15 20058 .92002 -?=+ +?= + += M m m g m a 3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动力 F ,设闸瓦与飞轮间摩擦系数μ=,飞轮的转动惯量可按匀质 圆盘计算,闸杆尺寸如图所示. 解:以飞轮为研究对象,飞轮的转动惯量21 2 J mR = ,制动前角速度为1000260ωπ=?rad/s ,制动时角加速度为t ω β-=- 制动时闸瓦对飞轮的压力为N F ,闸 瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 — 21 2 f F R J mR ββ-== 则 2N mR F t ω μ= 以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有 10N Fl F l -= 110.50600.252100015720.500.7520.4560 N l l mR F F l l t ωπμ???= ==?=+???N 图3-3

第05章__刚体力学基础补充教学提纲

第05章__刚体力学 基础补充

第五章 刚体力学基础 一、选择题 1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的: (A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小; (D)动能较小,势能较小,总能量较小; [ C ]难度:易 2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变; (D)角速度减小,动能减小。 [ B ]难度:易 3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为: (A)3w ; (B) 2w (C) 43w ; (D) 4 w 。 [ D ]难度:难 4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。那么碰撞后A 端的速度大 小: (A)M m mv +12120; (B) M m mv +330 ; (C) M m mv +0 ; (D) M m mv +330。 [ B ]难度:中 5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。如 图将同样的棒截成长为2 l 的一段,初始条件不变,则它撞击地板时的角速度最接近于: L

(A)ω2; (B) ω2; (C) ω; (D) 2ω。 [ A ]难度:难 6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度: (A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。 [ C ]难度:中 7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。已知物体与转台间的静摩擦因数为μ,若物体与转台间无相对滑动,则物体的转动动能为: (A)mgR E k μ41≤ (B) mgR E k μ2 1 ≤ (C) mgR E k μ≤ (D) mgR E k μ2≤ [ B ]难度:中 8 一匀质细杆长为l ,质量为m 。杆两端用线吊起,保持水平,现有一条线突然断开,如图所示,则断开瞬间另一条绳的张力为: (A)mg 43 (B) mg 41 (C) mg 2 1 (D) mg [ B ]难度:难 9 一根均匀棒AB ,长为l ,质量为m ,可绕通过A 端且与其垂直的固定轴在竖直面内自由摆动,已知转动惯量为 23 1 mgl .开始时棒静止在水平位置,当它自由下摆到θ角时,B 端速度的大小为: (A)θsin gl (B) θsin 6gl (C) θsin 3gl (D) θsin 2gl

第五章刚体力学(答案)

一、选择题 [ C ] 1、(基础训练 2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和 m 2的物体 (m 1<m 2),如图5-7所示.绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【提示】逆时针转动时角速度方向垂直于纸面向外,由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > (或者:列方程组:1112 2212m g T m a T m g m a T R T R J a R ββ-=??-=???-=? ?=?? ,解得:()()12212m m gR m m R J β-= ++,因为m 1<m 2,所以β<0,那么由方程120T R T R J β-=<,可知,21T T >) [ B ] 2、(基础训练5)如图5-9所示,一静止的均匀细棒, 长为L 、质量为m 0,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2013 m L .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射 图5-7 v 2 1 v 俯视图 图5-9

出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) 0v m m L . (B) 03v 2m m L . (C) 05v 3m m L . (D) 07v 4m m L 【提示】把细棒与子弹看作一个系统,该系统所受合外力矩为零,所 以系统的角动量守恒: 201 23v mvL m L m L ω??=+ ??? ,即可求出答案。 [ C ] 3、(基础训练7)一圆盘正绕垂 直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆 盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】把三者看成一个系统,则系统所受合外力矩为零,所以系统的角动量守恒。设L 为一颗子弹相对于转轴O 的角动量的大小,则有 0()J L L J J ωω+-=+子弹,0 0J J J ωωω∴= <+子弹 [ C ] 4、(自测提高2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2β. (C) 大于2β. (D) 等于2β. m m 图5-11

第三章 刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质 量为2m ,B 球质量为m ,杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度. 解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为 2sin sin sin M mgl mgl mgl θθθ=-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之和 22223J ml ml ml =+= 应用转动定律 M J β= 有:2 sin 3mgl ml θβ= 解得 sin 3g l θ β= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均 匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m. 图3-1 图3-2

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β) 2 1 (212Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2212s m 6.72 15 20058 .92002 -?=+ +?= + += M m m g m a 3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动 力F ,设闸瓦与飞轮间摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示. 解:以飞轮为研究对象,飞轮的转动惯量21 2 J mR = ,制动前角速度为1000260ωπ=? rad/s ,制动时角加速度为t ω β-=- 制动时闸瓦对飞轮的压力为N F ,闸瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 图3-3

相关文档
最新文档