8.4三元一次方程组解法举例_导学案修改1

8.4三元一次方程组解法举例_导学案修改1
8.4三元一次方程组解法举例_导学案修改1

1

8.4三元一次方程组解法举例 导学案 编号:第48课时 使用日期:2011年5月编写人:代令集体备课:张龚

学习目标:

了解三元一次方程组的概念,理解解三元一次方程组的基本思路,会解三元一次方程组,掌握三元一次方程组的解法及其步骤。

学习重点、难点:三元一次方程组的解法

学习过程:

一、课前预习 1、请快速写出方程组23y x x y =??+=?的解:x y =??=? ;

2、请快速写出方程组3

1x y x y +=??-=?

的解:x y =??=? ;

3、 以上两个方程组都是 方程组,第一个方程组用 法较便捷,第二个方程组用 法较便捷,不管那一种方法,它们

的目的都是为了 ,从而把二元一次方程组转化为 方程来解。

二、任务分解 各班根据实际情况分解任务 请观察方程组

12

25224x y z x y z x y ++=??

++=??=?

这个方程组有什么特点?

一般地,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做 方程组。 三元一次方程组如何解呢?对比二元一次方程组的解法,你想到了

解决办法了吗? 方法:把三元一次方程组变为 方程组或 方

程来解。

尝试解三元一次方程组:12 (1)

2522 (2)4 (3)x y z x y z x y ++=??

++=??=?

解:把(3)分别代入(1)、(2)得:

(4)

(5) 把方程(4)、(5)组成方程组 ???

解这个方程组,得

2

y z =

??=?

把y = 代入(3),得

x =

因此,三元一次方程组的解为

x y z =??=??=?

小结:解三元一次方程组的基本思想方法是:将三元一次方程组通过

或______化为__________,然后再次消元将二元方程组化为一元一次方程。

仿照练习:

解三元一次方程组:

31233325x y z x y z x y z +-=??

-+=??+-=?

三、当堂测评

1、下列方程组不是三元一次方程组的是( )

A.576x x y x y z =??+=??++=?

B.342x y y z z x +=??+=??+=? C ?????=++=++=-232181531794z y x z y x z x D 5132x y z xyz x y +-=??=??-=?

2、将三元一次方程组540 (1)3411 (2)2 (3)x y z x y z x y z ++=??

+-=??++=-?

,经过步骤(1)- (3)

和(3)×4+(2)消去未知数z 后,得到的二元一次方程组是( )

A .432753x y x y +=??

+=? B.432231711x y x y +=??+=? C.342753x y x y +=??+=?D 342

231711

x y x y +=??+=?

3、已知221(21)(42)0x y z -++++=,则

2x y z -+= 。

4、解方程组:

(1)27

3330

x y y z x z +=??+=??+=?

(2)????

?=+=--=-472392x z z y y x

不定方程常用解题方法

整除法 【例题1】:某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部 分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000 美元的部分按Y%税率征收(X,Y为整数)。假设该国居民月收入为6500美元,支付了120 美元所得税,则Y为多少? A.6 B.3 C.5 D.4 【参考答案】:A. 【解析】:整除法。列方程可得,3000×1%+3000×X%+500×Y%=120,化简可得 6X+Y=18,观察发现,18以及X的系数6都是6的倍数,根据整除可以确定Y一定是6的倍数,所以结合选项答案选择A选项。 【小结】:当列出的方程中未知数的系数以及结果是同一个数的倍数的时候,可以考 虑用整除法结合选项选择答案。 奇偶法 【例题2】:装某种产品的盒子有大、小两种,大盒每盒能装11个,小盒每盒能装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个? A.3,7 B.4,6 C.5,4 D.6,3 【参考答案】:A. 【解析】:奇偶法。设需要大、小盒子分别为x、y个,则有11x+8y=89,由此式89为 奇数,8y一定为偶数,所以11x一定为奇数,所以x一定为奇数,结合选项,排除B和D,剩余两个代入排除,可以选择A选项。 【小结】:列出的方程未知数系数和结果奇偶性可确定时,可以考虑用奇偶性结合选 项破解题目。 尾数法 【例题3】:有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小 客车有20个座位。为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是:

A.1辆 B.3辆 C.2辆 D.4辆 【参考答案】:B. 【解析】:尾数法。大客车需要x辆,小客车需要y辆,可列37x+20y=271,20y的尾数一定是0,则37x的尾数等于271的尾数1,结合选项x只能是3,所以选择B选项。 【小结】:列出方程的未知数的系数出现5或10的倍数时,尾数可以确定,可以考虑用尾数法结合选项来选择答案。

三元一次方程组计算测试90道(答案)

精心整理三元一次方程组专项练习90题(有答案) 1..2..3. 4..5. 6..7. 8..9..10..11..12..13..14..15..16..

17.. 18.. 19.. 20.. 21.. 22.. 23.. 24.已知方程组的解能使等式4x﹣6y=10成立,求m的值. 25.当a 为何值时,方程组的解x、y的值互为相反数. 26.27.. 28. 29.已知方程组的解x、y的和为12,求n的值. 30.已知方程组的解满足3x﹣ 4y=14, 求a的值. 31. (1) (2). 32.. 33.. 34.. 35..

36.. 37.. 38.在y=ax2+bx+c中,当x=0时,y=﹣7;x=1 时, y=﹣9;x=﹣1时,y=﹣3,求a、b、c的值.39.. 40. 41. 42.. 43.. 44.. 45.46..47.;48..49..50. 51..52..53..54..55..

56. 若,求x,y,z的值. 57.对于等式y=ax2+bx+c,有三对x,y 的值 ;;能使等式两边值相等,试求a,b,c的值. 58. 59.已知关于x,y的方程组的解也是方程4x﹣y=﹣9的解,求k的值. 60.方程组的解也是方程 4x﹣3y+k=0的解,求k的值. 61.已知等式y=ax2+bx+c,且当x=1时y=2;当x=﹣1时y=﹣2;当x=2时y=3,你能求出a,b,c的值吗? 62.当x=1,x=2,x=4时,代数式ax+bx+c的值分别是﹣4,3,35,求a,b,c的值. 63.已知关于x,y 的方程组的解满 足3x+15y=16+2k,求k. 64.在等式y=ax 2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a、b、c的值.65.(1) (2). 66.(1); (2). 67.(1); (2). 68.k取何值时,方程组的解满足5x﹣3y=0? 69.. 70.

不定方程的解法与应用

摘要 不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明. 关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题

Abstract The integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life. This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed. For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples. Key words: i ndeterminate equation; two element indefinite equation; Mathematics contest; civil service examination.

二元一次方程组导学案

北师大版八(上)第五章二元一次方程组3.应用二元一次方程组——鸡兔同笼导学案 一、学习目标: 1.能分析简单问题中的数量关系,建立方程组解决问题。 2.经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界数量关系的有效数学模型,发展模型思想和应用意识。 二、例题分析: “鸡兔同笼”题为:今有鸡兔同笼,上有三十五头, 下有九十四足, 问鸡兔各几何? (1)“上有三十五头”的意思是什么?“下有九十四足”呢? (2)你能根据(1)得出怎样的数量关系并列出方程组吗?变式练习: 蜻蜓有6条腿和两对翅膀,蝉有六条腿和1对翅膀,现这两种小虫共有108条腿和20对翅膀,则蜻蜓有多少只?蝉有多少只? 三、合作交流: 以绳测井:若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺. 绳长、井深各几何? (1)“将绳三折测之,绳多五尺”,什么意思? (2)“若将绳四折测之,绳多一尺”,又是什么意思?

变式练习: 用一根绳子环绕一棵大树。若环绕大树三周,则绳子还多4尺;若环绕大树四周,则绳子又少3尺。设这根绳子X尺,环绕大树一周需要y尺.则方程组为。 四、展示点拨: 1.今有牛五、羊二,直金十两。牛二、羊五,直金八两。牛、羊各直金几何? 题目大意是:5头牛、2只羊共价值10两“金”;2头牛、5只羊共价值8两“金”.问每头牛、每只羊各价值多少“金”? 2.某车间有工人54人,每人平均每天加工轴杆15个或轴承24个,一个轴杆与两个轴承配成一套.若分配x个工人加工轴杆,y个工人加工轴承,正好使每天加工的产品成套,则可列方程组为(). 3.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,则方程组。 五、小结与收获:经过本节课的学习,你有哪些收获? 六、拓展训练: 张师傅在铺地板时:小明和小红在工地玩,小明用8块大小一样的长方形瓷砖恰好拼成一个大的长方形(如图),小红也用8块这种瓷砖却拼成出了一个正方形,但中间还留下一个2cm×2cm的小正方形(阴影部分).这时张师傅走过来看了看,对小明和小红说,根据你们拼出的图形,你们能求出这些长方形瓷砖的长和宽吗?

2019版七年级数学下册 7.3 三元一次方程组的解法导学案(新版)华东师大版

2019版七年级数学下册 7.3 三元一次方程组的解法导学 案(新版)华东师大版 学习内容 三元一次方程组的解法 学习目标 1、了解三元一次方程组的定义; 2、掌握三元一次方程组的解法; 3、进一步体会消元转化思想. 学习重点 掌握三元一次方程组的解法; 进一步体会消元转化思想. 学习难点 进一步体会消元转化思想 导学方案 复备栏 一、【温故互查】 (1)解二元一次方程组的基本方法有哪几种? (2)解二元一次方程组的基本思想是什么? 二、【设问导读】 1、阅读课本提出的“问题”. 思考:题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程? 这个方程组有 个未知数,每个方程的未知数的次数都是 ,并且一共有 个方程,像这样的方程组,就是我们要学的 元 次方程组. 2、思考:怎样解三元一次方程组呢?你能不能设法消云一个或两个未 知数,把它化成二元一次方程组或一元一次方程? x y z x y z x y 12,2522, 4.++=??++=??=? ① ② ③

有几种解法? 3、归纳: 解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.即 三、【自学检测】: 解三元一次方程组 x z x y z x y z 347239 5978+=??++=??-+=? 三元一次方程 二元一次方程一元一次方程 ① ② ③

四、【巩固训练】 教材p39 练习1、2五、【拓展延伸】 在等式y ax bx c 2 =++中,当x=-1时y=0;当x=2时,y=3;当x =5时,y=60.求a、b、c的值.板书设计 安全提示 欢迎您的下载,资料仅供参考!

不定方程的求解方法汇总

不定方程的求解方法汇总 行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。但是想要快速正确的求解出结果,还是需要一些技巧和方法的。专家认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。 一、不定方程的概念 在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。 在这里解释一下独立方程。看个例子大家便可以明白了: 4x+3y=26①,8x+6y=52② 因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。 二、求解不定方程的方法 1、奇偶性 奇数+奇数=偶数奇数×奇数=奇数 偶数+偶数=偶数偶数×偶数=偶数 奇数+偶数=奇数奇数×偶数=偶数 性质:奇偶奇 7x为奇数,x也为奇数。x可能的取值有1、3、5。当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法 当看到未知数前面的系数为0或者5结尾时,考虑尾数法。任何正整数与5的乘积尾数只有两种可能0或5。 性质:奇偶奇 5x 为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。 3、整除法 当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。 4、特值法 当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。

三元一次方程组的解法举例2 优秀导学案

三元一次方程组的解法举例(2) 学习目标 1、通过对问题的一题多解,培养学生观察、分析问题及灵活的解题能力。 2、进一步理解消元思想在解方程组中的应用。 3、利用三元一次方程组解答简单的实际问题。 学习重难点 1、熟练利用“消元”的思想解三元一次方程组,利用三元一次方程组解答简单的实际问题。 2、针对方程组的特点,灵活使用代入法、加减法等重要方法。 导学过程 一、初见——温故知新 问题1:解三元一次方程组的基本思路是什么?可采用哪些方法进行消元? 二、又见——典例欣赏 例1、解下列方程组 例2、解方程组 x+y=3 y+z=4 x +z=5 x y z x y z x y z 34,(2)2312,6.-+=??+-=??++=? x y y z z x 29,(1)3, 247.-=-??-=??+=?

三、互见——知识应用 1.解方程组 要使运算简便,应选择消去________. 四、亮见——巩固训练 2.甲、乙、丙三人一起去集邮市场,甲买入A种邮票3 张,B种邮票2张,C种邮票1张,按票值付款13元.乙买入A种邮票1张,B种邮票1张,C种邮票2张,按票值付款7元.丙买入A种邮票2张,B 种邮票3张,并卖出C种邮票1张,按票值结算还需付12元.问A、B、C三种邮票面值各是多少元? 3.解方程组: 2311 410 322 x y z x y z x y z ++= -+= ++= , , ; ① ② 1 23 2325 a b c a b c a b c +-= +-= -+= , , .

5、甲、乙、丙三个数的和是35, 甲数的2倍比乙数大5,乙数的三分之一等于丙数的二分之一.求这三个数。 五、真见——课堂检测 1.解下列三元一次方程组 . 3,2, 7.a b b c c a +=??+=-??+=? 4.下列解三元一次方程组的消元过程正确吗?若有错误,请改过来,说明这样消元对方程合理吗?并求出方程组的解. 解方程组 5122154x y z x y z x y z ++=-+=+-=-,,. ①+②,得732x z +=. ④ ①+③,得(消z )663x y +=-. ⑤ ④、⑤组成方程组 732663x z x y +=+=-,. ① ② ③ x y z x y z x y z 34,(2)2312,6.-+=??+-=??++=?

三元一次方程组及其解法

7.3 三元一次方程组及其解法 【教学目标】 知识与能力 (1)了解三元一次方程组的概念. (2)会解某个方程只有两元的简单的三元一次方程组. (3)掌握解三元一次方程组过程中化三元为二元的思路. 过程与方法 通过消元可把“三元”转化为“二元”,充分体会“转化”是解二元一次方程组的基本思路. 情感、态度、价值观 通过本节的教学,应该使学生体会通过本节学习,进一步体会“消元”的基本思想,认识到数学的价值。 【教学重点】 (1)使学生会解简单的三元一次方程组. (2)通过本节学习,进一步体会“消元”的基本思想. 【教学难点】 针对方程组的特点,灵活使用代入法、加减法等重要方法. 【教学过程】 一、回顾旧知,引入新课 在7.2节中,我们应用二元一次方程组,求出了勇士队在我们的小世界杯足球赛第一轮比赛中胜与平的场数。 问题回顾 暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛。比赛规定:胜一场得3分,平一场得1分,负一场得0分。勇士队在第一轮比赛中赛了9场,只负了2场,共得17分。 那么这个队胜了几场?又平了几场呢? 解:设勇士队胜了x场,平了y场,则 胜 每场得分

?? ?=+=++17 39 2y x y x 解得???==25y x 提出问题: 在第二轮比赛中,勇士队参加了10场比赛,按同样的计分规则,共得18分。已知勇士队在比赛中胜的场数正好等于平与负的场数之和,那么勇士队在第二轮比赛中,胜、负、平的场数各是多少? 解:设勇士队胜了x 场,平了y 场,负了z 场,则 0 ?? ? ??+==+=++z y x y x z y x 18310 引出定义:像这种含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程组。一般情况下,三元一次方程组有三个方程,但不一定每个方程都出现三个未知数。 二、自主探究--------三元一次方程组的解法 探究一: 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言) 解方程?? ? ??+==+=++③②① z y x y x z y x 18 310 解:把③分别带入①②得???=++=+++18)(310 y z y z y z y 整理得???=+=+⑤④18341022z y z y 由?????12⑤④得? ??=+=+⑦⑥ 18342044z y z y 由⑦⑥-得2=z 把2=z 代入④得1042=+y , 即 3=y

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

二元一次方程组专题复习学案

适用学科适用区域知识点 教学目标 学习必备欢迎下载 二元一次方程组专题复习 数学适用年级初一 苏科版课时时长(分钟)80 1.二元一次方程与二元一次方程组的概念 2.二元一次方程(组)的解与解二元一次方程组 3.二元一次方程组与实际问题 4.二元一次方程组新题型 1.这一章的学习,使学生掌握二元一次方程组的解法. 2.学会解决实际问题,体会方程组是刻画现实世界的有效数学模型. 3.培养分析、解决问题的能力,体会方程组的应用价值,感受数学文化。 教学重点知识结构,数学思想方法.教学难点实际应用问题中的等量关系.学习过程 一、复习预习 本章知识结构

实际问题一 元 一 次 方 程 二 元 一 次 方 程 组 二 元 一 次 方 程 组 解 法 代入法 加减法 二、知识讲解 考点/易错点1 二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程,叫做二元一次方程。 二元一次方程的解:使一个二元一次方程左右两边的值相等的一对未知数的值,叫二元一次方程的解。 考点/易错点2 二元一次方程组的概念:含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。列二元一次方程组关键找出两个相等关系。 解二元一次方程组的方法:①代入消元法:将一个方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程; ②加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数; ③含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法中的一种去解。 三、例题精析 (一)考查规律探索

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

2021版七年级数学下册 7.3 三元一次方程组的解法导学案(全国通用版)人教版

案(全国通用版)人教版 学习内容 三元一次方程组的解法 学习目标 1、了解三元一次方程组的定义; 2、掌握三元一次方程组的解法; 3、进一步体会消元转化思想. 学习重点 掌握三元一次方程组的解法; 进一步体会消元转化思想. 学习难点 进一步体会消元转化思想 导学方案 复备栏 一、【温故互查】 (1)解二元一次方程组的基本方法有哪几种? (2)解二元一次方程组的基本思想是什么? 二、【设问导读】 1、阅读课本提出的“问题”. 思考:题目中有几个未知数?含有几个相等关系?你能根据题意列出几个 方程? 这个方程组有 个未知数,每个方程的未知数的次数都是 ,并且一 共有 个方程,像这样的方程组,就是我们要学的 元 次方程组. 2、思考:怎样解三元一次方程组呢?你能不能设法消云一个或两个未 知数,把它化成二元一次方程组或一元一次方程? x y z x y z x y 12,2522, 4.++=??++=??=? 有几种解法? ① ② ③

3、归纳: 解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元, 把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.即 三、【自学检测】: 解三元一次方程组 x z x y z x y z 347239 5978+=??++=??-+=? 三元一次方程 二元一次方程一元一次方程 ① ② ③

四、【巩固训练】 教材p39 练习1、2 五、【拓展延伸】 在等式 y ax bx c 2=++中,当x =-1时y =0;当x =2时,y =3;当x =5时,y =60.求a 、b 、c 的值. 板书设计 安全提示

二元一次方程组导学案(2)

8.1《二元一次方程组》导学案 学习目标 1. 理解二元一次方程(组)及相关概念,会 检验一组值是否是二元一次方程 (组)的解。 能根据题意 列出适当的方程(组)解决实际问题。 2. 经历概念的形成过程,初步 培养观察、分析、抽象、概括等思维能力和应用意识。 一、复习回顾:1、七年三班举行一次知识竞赛,共出了 20道题,现抽出了 4份试卷进 行分析如下表: 求:(1)答对一题得 ______________ 分;(2)小明同学说他正好得了 60分,请问可能吗? 请说明理由? 二、探究新知: 1、二元一次方程(组)的概念: ① 2x 2 2x 3 48 ② y 2x 3 ③ 2x 2y 48 (1)观察以上所列的方程,它们有何区别: 方程①:含有—个未知数,未知数的次数都是 ,这样的方程叫做 _______________________ ; 方程②③:含有—个未知数,未知数的次数都是 ,这样的方程叫做 _____________________ 注意:方程两边都是整式 2 练习:1、已知方程⑴ 5x+3y=7 ⑵ 5x-7=2 ⑶ 2xy=1 (4) X -y=1 1 ⑸5(x-y )+2(2x-3y )=4 (6) =2其中二元一次方程的 个数是 ( ) x y A 、1 B 、 2 C 、 3 D 、 4 2、判断下列各式哪些是方程? ① 3y-2x = z + 5 ② ④X 2 1 ⑤ y 哪些是一元一次方程? y l x ③ 3 - 2xy =1 丫 2 4x+ =0 ⑥ 2x=1-3y

例1、方程x m 1 + y 2 n =5是关于x 、y 二元 3是关于x , y 的二元一次方程,则 a=_, b= (2)议一议:二元一次方程的解和一元一次方程的解有什么区别? 例2、已知 y 1 是关于x 、y 方程2x-3y+2a=3的一个解,求a 的值 3、含有 的两个二元一次方程所组成的一组方程叫做二元一次方程组。 注意:①方程组各方程中同一字母必须代表同一个量 x 2 ___ ② 3 也可以看做二元一次方程组 y 3 练习:下列方程组中,是二元一次方程组的有( ) x y 9 3 x 9 f — y 3 2x y 1 ①(3x 2 y 4 ② |x y 4x 2 ③]x x y 4 ④7z 3 4、二元一次方程组的两个方程的 __________________ ,叫做二元一次方程组的解。 练习:试写出一个二元一次方程组,使它的解是 x 1 ,这个方程组可以是 _________________ y 1 次方程,求 m 、n . 练习:若方程9x a 6yb 1 2、使二元一次方程两边的值 ____ 的两个未知数的值,叫做二元一次方程的解。 注意:二元一次方程的解一般要写成 x 的形式

三元一次方程组计算专项练习题(有答案)

三元一次方程组专项练习90题(有答案) 1..2..3.4.. 5. 6..7.8..9..10 12..13..14..15..16..17...18 19..20..21..22..23..、 24.已知方程组的解能使等式4x﹣6y=10成立,求m的值.、 25.当a 为何值时,方程组的解x、y的值互为相反数. 26. 27..28..

31 1)(2).32..33..34..35. 36..37. . 38在y=ax2+bx+c中,当x=0时,y=﹣7;x=1时y=﹣9;x=﹣1时,y=﹣3,求a、b、c值.39.. 40. 41. 42.. 43.. 44.. 45..46. 47.;48. 49..50. 51..52. 53..54. 55.. 56.若,求x,y,z的值.

57.对于等式y=ax2+bx+c,有三对x,y 的值;;能使等式两边值相等,试求a,b,c的值. 58.. 59.已知关于x,y 的方程组的解也是方程4x﹣y=﹣9的解,求k的值. 60.方程组的解也是方程 4x﹣3y+k=0的解,求k的值. 61.已知等式y=ax2+bx+c,且当x=1时y=2;当x=﹣1时y=﹣2;当x=2时y=3,你能求出a,b,c的值吗?63.已知关于x,y 的方程组的解满足3x+15y=16+2k,求k. 64.在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a、b、c的值. 65.(1)(2).66.(1); (2).(1);(2). k 取何值时,方程组的解满足 5x﹣3y=0? 69.. 70.

二元一次不定方程的解法总结与例题

探究二元一次不定方程 (Inquires into the dual indefinite equation) 冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。我们讨论二元一次方程的整数解。 The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution. 【关键字】:二元一次不定方程初等数论整数解 (Dual indefinite equation Primary theory of numbers Integer solution) 二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式; ②具有两个未知数;③未知项的次数是1。 如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。 定理1.形如(不同时为零)的方程称为二元一次不定方程。 [1] 二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。 通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。 定理2.方程有解的充要是;[2] 若,且为的一个解,则方程的一切解都可以表示成: (t为任意整数)

解线性方程组直接解法

第2章 解线性方程组的直接解法 §0 引言 11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=??? ?+++=?L L L L 1112121 22212112,(,,,),()n n T T n n n n nn a a a a a a A x x x x b b b a a a ??????===??? ??? ? ?L L L L L L L Ax b = 若A 非奇异,即det()0A ≠,方程组Ax b =有唯一解。由 Cramer 法则,其解 det(),1,2,,det() i i A x i n A = =L 其中i A 为用b 代替A 中第i 列所得的矩阵。当n 大时, 1n +个行列式计算量相当大,实际计算不现实。 121212(,)12det()(1)n n n i i i i i i n i i i A a a a τ=-∑L L L §1 Gauss 消去法 (I )Gauss 消去法的例子 (1)1231123 212336 ()123315()18315() x x x E x x x E x x x E ++=??-+=??-+-=-? 2131()12(),()(18)()E E E E -?--? (2) 12312342356 ()15957()211793()x x x E x x E x x E ++=?? --=-??+=?

方程组13()()E E -与方程组145(),(),()E E E 同解 541 ()21( )()15 E E --得 (3)1231234366()15957()3() x x x E x x E x E ++=?? --=-??=? 由(3)得3 213,2,1x x x === 123(,,)(1,2,3)T T x x x = (3)的系数矩阵为11 10159001????--?????? ,上三角 矩阵。 (II )Gauss 消去法,矩阵三角分解 Ax b = 1112 11,12122 22,112 ,1 n n n n n n nn n n a a a a a a a a A b a a a a +++????????=?????????? L M L M L L M M L M 令(1) ,1,2,,;1,2,,,1ij ij a a i n j n n ===+L L (1)(1)A b A b ??=?? ???? 第1次消去 (1) 110a ≠, 令 (1)1 1(1)11 , 2,3,,i i a l i n a ==L 作运算:11()()i i i l E E E -+→ i E 表示第i 个方程(第i 行) 2,3,,i n =L (2)(1)(1) 111110 2,3,,i i i a a l a i n =-==L

(八年级数学教案)三元一次方程组解法的导学案

三元一次方程组解法的导学案 八年级数学教案 一、创设问题情境,复习旧知识,激发学生兴趣,引出本节要研究的内容. 活动1纸币问题 小明手头有12张面额分别是1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张? 学生活动设计: 设1元2元分别为x张、y张,如何列方程组?用什么消元法比较好呢? 只设一个未知数,用一元一次方程能否求解?(能,但不方便。对未知量较多的问题,所设的未知数越少,方程往往越难列。其实题中有三个未知量我们就设三个未知数来解决。) 自然想法是,设1元、2元、5元的纸币分别是x张、y张、z张根据题意可以得到下列三个方程: x+y+z=12, x+2y+5z=22. x=4y.

这个问题的解必须同时满足上面三个条件,因此可以把三个方程合在一起写成教师活动设计: 在学生活动的基础上,适时给出三元一次方程组的概念,并激发学生探究其解法的热情. 板书:三元一次方程组:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组. 活动2讨论如何解三元一次方程组 我们知道二元一次方程组可以利用代入法或加减法消去一个未知数,化成一 元一次方程求解?那么能否用同样的思路,用代入法或加减法消去三元一次方程组的一个或两个未知数,把它转化成二元一次方程组或一元一次方程呢?观察方程组: ① ② ③ 仿照前面学过的代入法,可以把③分别代入①②,得到两个只含y,z的方程: 4y+y+z=12

4y+2y+5z=22 即 得到二元一次方程组后就不难求出y和z的值,进而可以求出x 了.(问题:同学们还有不同的消元法吗?比较一下哪种方法较好。) 总结: 解三元一次方程组的基本思路是:通过代入”或加减”进行消元,把三元”转化为二元”使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.即 板书: 三元一次方程组 二元一次方程组 一元一次方程 消元(代入、加减)消元 三元变二元最佳方法: ①

小学数学不定方程与不定方程组的解法

不定方程与不定方程组 知识框架 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 (1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 (2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解 三、不定方程的试值技巧 (1)奇偶性 (2)整除的特点(能被2、3、5等数字整除的特性) (3)余数性质的应用(和、差、积的性质及同余的性质) 重难点 (1)b利用整除及奇偶性解不定方程 (2)不定方程的试值技巧 (3)学会解不定方程的经典例题

例题精讲 一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解 【考点】不定方程 【解析】方法一:由原方程,易得2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对 应,并且,此时x与y的值必定满足原方程,故这样的x与y是原方程的一组解,即原方程的解 可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无穷多 组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8成立,y必为偶数,当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程 【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x+5y=17,5y的个位是0或5两种情况,2x是偶数,要想和为17,5y的个位只能是5,y为奇数即可;2x的个位为2,所以x的取值为1、6、11、16…… x=1时,17-2x=15,y=3, x=6时,17-2x=5,y=1, x=11时,17-2x=17 -22,无解

代入法——解二元一次方程组导学案

课题:8.2二元一次方程组的解法(1) 学习目标: 会用代入法解二元一次方程组,并掌握用代入法解二元一次方程组的步骤。 学习重点: 熟练地运用代入法解二元一次方程组。 学习难点: 探索如何用代入法将“二元”转化为“一元”的消元过程。 自学指导: 消元思想:未知数由多化少,逐一解决的思想。 代入消元法(代入法):用一个未知数的式子代替另一个未知数然后代入另一个方程,求解的方法。 代入消元法的一般步骤: 1.求表达式 2.代入消元 3.解一元一次方程 4.代入求解 5.写出答案 注意: 1.如果未知数的系数的绝对值不是1,一般选择未知数的系数的绝对值最小的 方程。 2.方程组中各项的系数不是整数时,应先进行化简即应用等式的性质,化分数 系数为整数系数。 3.将变形后的方程代入到没有变形的方程中去,不能代入原方程。 自主学习: 1.消元的概念,自学91页例1。 2.怎样用代入消元法解二元一次方程组。 学前准备: 1.已知2,2 ax y -=的解,则a= x y ==是方程24 2.已知方程28 -=,用含x的式子表示y,则y=,用含y x y 的式子表示x,则x= 导入 合作探究: 1、解方程组 y = 2x ① x + y =3 ②

2、用代入法解方程组 x -y =3 ① 3x -8y =14 ② 3、用代入法解下列方程: (1) 25,34 2.x y x y -=?? +=? (2)23328y x x y =-??-=? 小结: 本节课你有哪些收获? 必做题: 1. 方程415x y -+=-用含y 的代数式表示x 是( ) A.415x y -=- B. 154x y =-+ C. 415x y =+ D. 415x y =-+ 2..把下列方程改写成用含x 的式子表示y 的形式: 24 741)1(=+y x 46)33(2)2(+=-x y 3、用代入法解下列方程组: (1)23328y x x y =-??-=? (2)355215s t s t -=??+=? (3)231625x y x y +=??=?

线性方程组的直接解法

第4章 线性方程组的直接解法 本章主要内容 线性方程组的直接解法——消元法(高斯消元法、主元消元法). 矩阵的三角分解法( Doolittle 分解、Crout 分解、 LDU 分解) 紧凑格式 改进平方根法. 本章重点、难点 一、消元法(高斯消元法、列主元消元法) 本章求解的是n 阶线性方程组Ax=b 的(即方程的个数和未知量的个数相等的线性方程组) ?????????=+???++????????????? ??=+???++=+???++n n nn n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 3222212111212111 1. 高斯消元法 ①高斯消元法的基本思想:通过对线性方程组Ax=b 的进行同解消元变换(也可以用矩阵的初等行变换法进行线性方程组的消元变换),将线性方程组化为上三角形方程组,然后用回代法求出此线性方程组的解。 ②高斯消元法计算公式: ????? ? ? ????????--=-=--==? ????? ????? ???? +=-=-=====-+=------------∑)1,..., 2,1()1,..., 2,1(,...,1,,,,...,2,1) ,...,2,1,(,) 1(1)1()1()1() 1() 1()1() 1()1()() 1()1()1()1()(,)0()0(n n i a x a b x n n i a b x n k j i b a a b b a a a a a n k n j i b b a a i ii n i j j i ij i i i n nn n n n k k k kk k ik k i k i k kj k kk k ik k ij k ij i i ij ij 对回代公式: 消元公式:

相关文档
最新文档