材料力学答案7-11章

合集下载

孙训方材料力学第五版1课后习题答案

孙训方材料力学第五版1课后习题答案

第七章应力状态和强度理论7-17-27-37-47-57-67-77-87-97-107-117-127-137-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。

由于实用的原因,图中的角限于范围内。

作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。

现设胶合缝的许用切应力为许用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。

为了使杆能承受最大的荷载F,试问角的值应取多大?解:按正应力强度条件求得的荷载以表示:按切应力强度条件求得的荷载以表示,则即:当时,,,时,,,时,,时,,由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。

若按胶合缝的达到的同时,亦达到的条件计算则即:,则故此时杆件承受的荷载,并不是杆能承受的最大荷载。

返回7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。

解:=由应力圆得返回7-3(7-8)各单元体面上的应力如图所示。

试利用应力圆的几何关系求:(1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,,(b),,,,(c), , ,(d),,,,,返回7-4(7-9) 各单元体如图所示。

试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,(b),,,(c),,,(d),,,返回7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。

试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。

解:由已知按比例作图中A,B两点,作AB的垂直平分线交轴于点C,以C 为圆心,CA或CB为半径作圆,得(或由得半径)(1)主应力(2)主方向角(3)两截面间夹角:返回7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。

材料力学第七章课后题答案 弯曲变形

材料力学第七章课后题答案 弯曲变形
3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC

第十一章北航 材料力学 全部课件 习题答案

第十一章北航 材料力学 全部课件 习题答案
n 2 π 2 EI 4l 2 由上式并取 n=1,即得压杆的临界载荷为 Fcr (n 0,1,2,)
(c)
Fcr
π 2 EI 4l 2
11-7
试确定图示各细长压杆的相当长度与临界载荷。设弯曲刚度 EI 为常数。
题 11-7 图 (a)解:相当长度为
5
leq a
临界载荷为
π 2 EI a2 (b)解:压杆微弯状态的挠曲轴如图 11-7b 中的虚线所示。 Fcr
由此得
sin
kl kl kl 4k 2 EI kl [sin (1 )cos ] 0 2 2 2 cl 2
图示阶梯形细长压杆,左、右两段各截面的弯曲刚度分别为 EI1 与 EI2 。试 证明压杆的临界载荷满足下述方程:
11-11
tank1l tank2l
式中: k1 F /( EI1 ) ; k2 F /( EI 2 ) 。
Fcr, 1
π 2 EI l2
Fcr, 2
显然,压杆的临界载荷为
1.359EI l2
1.359EI l2
Fcr Fcr, 2
11-10
图示两端铰支细长压杆,弯曲刚度 EI 为常数,压杆中点用弹簧常量为 c 的
弹簧支持。试证明压杆的临界载荷满足下述方程:
sin
式中, k F /( EI ) 。
第十一章
压杆稳定问题
11-1
图示两端铰支刚杆-蝶形弹簧系统,试求其临界载荷。图中,c 代表使蝶形弹
簧产生单位转角所需之力偶矩。
题 11-1 图 解:系统的临界状态(微偏斜状态)如图 11-1 所示。注意到蝶形弹簧产生的转角为 2θ , 由右段刚杆的力矩平衡方程
l c(2θ ) F (θ ) 0 2

材料力学习题册参考答案

材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。

材料力学网上作业题参考答案

材料力学网上作业题参考答案

东北农业大学网络教育学院材料力学网上作业题(2015更新版)绪论一、名词解释1.强度2. 刚度3. 稳定性4. 变形5. 杆件6.板或壳7.块体二、简答题1.构件有哪些分类?2. 材料力学的研究对象是什么?3. 材料力学的任务是什么?4. 可变形固体有哪些基本假设?5. 杆件变形有哪些基本形式?6. 杆件的几何基本特征?7.载荷的分类?8. 设计构件时首先应考虑什么问题?设计过程中存在哪些矛盾?第一章轴向拉伸和压缩一、名词解释1.内力2. 轴力3.应力4.应变5.正应力6.切应力7.伸长率8.断面收缩率9. 许用应力 10.轴向拉伸 11.冷作硬化二、简答题1.杆件轴向拉伸或压缩时,外力特点是什么?2.杆件轴向拉伸或压缩时,变形特点是什么?3. 截面法求解杆件内力时,有哪些步骤?4.内力与应力有什么区别?5.极限应力与许用应力有什么区别?6.变形与应变有什么区别?7.什么是名义屈服应力?8.低碳钢和铸铁在轴向拉伸时,有什么样的力学特性?9.强度计算时,一般有哪学步骤?10.什么是胡克定律?11.表示材料的强度指标有哪些?12.表示材料的刚度指标有哪些?13.什么是泊松比?14. 表示材料的塑性指标有哪些?15.拉压杆横截面正应力公式适用范围是什么?16.直杆轴向拉伸或压缩变形时,在推导横截面正应力公式时,进行什么假设?三、计算题1. 试用截面法求下列各杆指定截面的轴力。

2. 试用截面法求下列各杆指定截面的轴力。

3. 试用截面法求下列各杆指定截面的轴力。

4. 试用截面法求下列各杆指定截面的轴力。

5. 试用截面法求下列各杆指定截面的轴力。

6. 试用截面法求下列各杆指定截面的轴力。

7 高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的小径d = 175 mm。

已知作用于拉杆上的静拉力F=850 kN,试计算大钟拉杆横截面上的最大静应力。

8 一桅杆起重机如图所示,起重杆AB为一钢管,其外径D = 20 mm,内径d≈18 mm;钢绳CB的横截面面积为10 mm2。

(完整版)材料力学课后习题答案

(完整版)材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。

(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。

解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。

解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。

解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。

解:(1) 对节点A (2) 84 mm 。

8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。

8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。

材料力学性能习题及解答库

第一章习题答案一、解释下列名词1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。

2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。

4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现σe升高或降低的现象。

5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。

6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。

韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。

9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。

10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。

穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。

11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。

二、说明下列力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。

2、σr、σ0.2、σs: σr :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。

σ0.2:表示规定残余伸长率为0.2%时的应力。

σs:表征材料的屈服点。

3、σb:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。

4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化行为的性能指标。

5、δ、δgt、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

工程力学(材料力学部分)西南交大版 作业答案

参照P138例题 例题7-10 参照 例题
2hEA P 1 + 1 + ⋅ 解: σ d = K d σ st = Pl A 2 × 1 × 10 × 109 × π × 0.15 2 = 1 + 1 + 5 × 10 3 × 6 = 15.4 MPa
当h=0时 时
5 × 10 3 ⋅ π × 0.15 2
P 5 × 10 3 σ d = (1 + 1) = 2 × = 0.14 MPa 2 A π × 0.15
P156 7-16 试判定图示杆系是静定的,还是超静定的;若是超静 试判定图示杆系是静定的,还是超静定的; 定的,试确定其超静定次数, 定的,试确定其超静定次数,并写出求解杆系内力所需的位移 相容条件(不必具体求出内力)。图中的水平杆是刚性的, )。图中的水平杆是刚性的 相容条件(不必具体求出内力)。图中的水平杆是刚性的,各 3 杆的自重均不计。 杆的自重均不计。 ∆l = δ sin α = δ
3 20kN 2 10kN 1 20kN
a
3
a
2
a
1
10kN
解:
10kN 20kN
− 20 × 10 3 σ1 = = −100 MPa −6 200 × 10
−10 × 103 = −50 MPa σ2 = −6 200 × 10
10 × 103 σ3 = = 50 MPa −6 200 × 10
M4
M5
解:
M = 9.55
P n
M 1 = 0.86kN ⋅ m,M 2 = 2.86kN ⋅ m,M 3 = 0.57kN ⋅ m,M 4 = 1.05kN ⋅ m,M 5 = 0.38kN ⋅ m

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
16 T max

7 . 99 10
2
m 79 . 9 mm
m ax
Tm a x 1 8 0 d GI p
4
3 2Tm a x 1 8 0 G
2
8 .7 4 1 0
2
m 8 7 .4 m m
因此, d 87 . 4 mm
20 MPa
4
,切变模量G 8 10 MPa
M1
M2
M3
M4
M5
解:
M 9.55
P n
M 1 0.86kN m,M 2 2.86kN m,M 3 0.57kN m,M 4 1.05kN m,M 5 0.38kN m
max
T max W
p
d
q
q
D
B
C
qa
a
qa
2qa
a
qa
a
+ qa
+
qa2/2
-
+
qa2/2
q P229:9-5 (b) A C 5qa/3 2a 3a
基础力学2 作业
(7-11章)
P153 7-1(b) 试作杆的轴力图,并指出最大拉力和最大压力 的值及其所在的横截面(或这类横截面所在的区段)。
10kN 20kN 30kN 20kN
A
1m
B
1m
C
1m 20kN
D
解:
10kN
10kN
最大拉力为20kN,在CD段;最大压力为10kN,在BC段。
P153 7-2 试求图示直杆横截面1-1、2-2和3-3上的轴力,并作轴 力图。如横截面面积A=200mm2,试求各横截面上的应力。

l2 l2

6 2 5

2a 2 .5 a

24 25
P156 7-18 试校核图示拉杆头部的剪切强度和挤压强度。 已知:D=32mm,d=20mm,h=12mm,材料的许用切应力 []=100Mpa,许用挤压应力[bs]=240Mpa。
解:(1)剪切面:A=πdh;剪力:Fs=F
D

3 l/3
B
l/3
2
C
D
l/3 1 20kN
解:
20kN
-20kN
D
F N 1 l1 EA BC

F N 2l2 EA

F N 3l3 EA

3
20 10 0 . 3
3
2 . 1 10
11


4
0 . 04 mm
2
0 . 03
F N 2l2 EA

2 0 1 0 0 .3 2 .1 1 0
D
解:(1)
A
Me
(2)
m ax
T W
p

10
4 6 2 .5 3 0 .0 8 1 16 80
0 .1 6 M Pa
A

T GI p
d D

m a x 0 .1 2 5 M Pa
10 4 .9 0 1 0


0
sin 60 2
0
50
3 4
21 . 7 MP a
P155 7-10 等直杆如图示,其直径为d=30mm。已知F=20kN,
l=0.9m,E=2.1×105MPa,试作轴力图,并求杆端D的水平位移 ΔD以及B、C两横截面的相对纵向位移Δ BC。
A
3 2F 2 2F 1 F
A F C 解:
2
a
D F
a
F 2 2 2 F F
B
2
2 2
C点
F
2 2
F
2
D点
F
A点
F
F
2 2
F
AC、BC、AD、BD均为拉杆,故
AB为压杆,故
2 2
F 125 kN F 125
2 176 . 75 kN
F 150 kN
所以
Fm ax 1 5 0 k N
P155 7-8 横截面面积A=200mm2的杆受轴向拉力F=10kN作用, 试求斜截面m-n上的正应力及切应力。

5 KN.m + 5 KN.m
80KN
q=100kN/m
80KN
80KN
2
(b) A
1
+
C
1.6m
E
D
0.2m
1m 2m
剪力图
80KN
弯矩图 +
单位:KN.m
2kN/m (c) A 1.5kN C 1m 2m B
0.5kN
1.5kN
+
0.75m 0.5kN
-
0.56kN.m 0.5kN.m
+
qa P229:9-5 (a) A
解:
d K d
1 1 1 2 hEA P 1 Pl A
9 2
st
2 1 10 10 0 . 15 5 10 6
3
5 10 3 0 . 15 2
15 . 4 MP a
2
ql
2
Fs 2 0
M
2
ql
2
Fs 3 0
M
3
qa2
q
A2
2
C 1
1 C
3
3
4
4
B
解:求得支座约束力
a FA
a
2a
FB
FA
7 qa 6
FB
11 qa 6
(f)
F s1 0 Fs 2 0
M 1 qa qa
2
M
2
2
Fs 3 Fs 3
7 6 1 6
qa
M
3
qa
2
qa
M
3

5 3
qa
2
• P228 9-3 试写出图示各梁的剪力方程和弯矩方程,并作出剪力图和 弯矩图。指出最大剪力和最大弯矩的值以及它们各自所在的横截面。
80kN 4kN/m
解:求得支座约束力
(d) A
C
1m
B
F A FB
80 4 8 2
56 kN
FA
56kN
2m
40kN
FB
4

2

m
6 . 6 10 mm
7
4
• P228 9-1 试求图示各梁指定横截面上的剪力和弯矩。
F=ql/2 q 1 2 3 3D l/2 l
解:求得支座约束力 B
A
l/4
1C 2
F A FB
ql 2
FA
FB
(c)
F s1 ql 2
M1 1 8 1 8 1 8 ql
11


4
0 .0 4 m m
2
0 .0 3
P156 7-14 直径为d=0.3m,长为l=6m的木桩,其下端固定。如在 离桩顶面高1m处有一重量为P=5kN的重锤自由落下,试求桩 内最大压应力。已知木材E=10×103MPa,如果重锤骤然放在桩 顶上,则桩内最大压应力又为多少?
参照P138例题7-10
P230
2
9-9 试求图示组合截面对于水平形心轴z的惯性矩Iz。
120×10
1
工22a
3
120×10
I z I z1 I z 2 I z 3 3400 10 6 . 6 10
5 8
120 10 3 10 12 2 0 . 12 0 . 01 0 . 11 0 . 005 12
F s x1 56 4 x1
M x1 56 x1 2 x1
2
F s x 2 24 4 x 2
40kN 56kN
M
x2
56 x2 80 x2 4 2 x2
2
max 56 kN
M
192kN.m
max
A支座右侧截面 C截面
5
8 10
10
6 2 .5 0 .0 8 1 32 80

4
ra d m
4
d
P184 单位长度杆的许用扭转角 条件选择此实心圆轴的直径。
8-10 轴的许用切应力
, 0 0 . 25 m。试按强度条件及刚度
解: 3 F 50 10 1 MP a
bl 0 . 25 l
F
a
F
l
50 10
3 6
0 . 25 1 10
0 . 2 m 200 mm
l
l
F P
b
F P
bs
F ab

50 10
3
3
a 0 . 25
bs 10 MP a 0 . 02 m 20 mm
1 1
5
1
解:
1 Δ l1 1.5a Δ l2 a
l 2 2 sin
2 2
2
α
a
1 2 2
3
a 2 a
α
β
β
l1 l2
5
2 2 2 2

6 2 5
相关文档
最新文档