2015秋八年级数学上册 12.3 角的平分线的性质(第1课时)导学案1 (新版)新人教版
人教版八年级数学上册第十二章12.3角的平分线的性质 导学案

人教版八年级数学上册第十二章12.3 角的平分线的性质 导学案第1课时 角的平分线的性质教学目标1.掌握角的平分线的性质,理解三角形的三条角平分线的性质.2.掌握角的平分线的画法.预习反馈阅读教材P48~49,完成下面内容.1.角的平分线的作法已知:∠AOB.求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N.(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C.(3)画射线OC ,射线OC 即为所求.2.角的平分线的性质:角的平分线上的点到角的两边的距离相等.如图,∵OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,∴PC =PD.例题讲解类型1 作已知角的平分线例1 如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图.(2)平行.【跟踪训练1】已知△ABC,在△ABC中作出∠ACB的平分线CD,要求尺规作图.(不写作法,保留作图痕迹,要写结论)解:如图,射线CD即为所求.类型2 角平分线性质的应用例2 如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC于点E,DF⊥BC于点F,且BC =4,DE=2,则△BCD的面积是4.【跟踪训练2】如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是(D)A.9 B.8 C.7 D.6巩固训练1.如图,P是∠BAC的平分线AD上一点,PE⊥AB于点E,PF⊥AC于点F,下列结论中不正确的是(D)A.PE=PF B.AE=AFC.△APE≌△APF D.AP=PE+PF2.如图,AD是△ABC的角平分线,若AB=10,AC=8,则S△ABD∶S△ADC=(C)A.1∶1 B.4∶5 C.5∶4 D.16∶253.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(C)A.8 B.6 C.4 D.24.如图,OP平分∠AOB,PC⊥OA于点C,PD⊥OB于点D,M为OP上任意一点,连接CM,DM,则CM和DM的大小关系是相等.5.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,BD=DF,求证:CF=EB.证明:∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC.在Rt△CDF和Rt△EDB中,∵DF=DB,DC=DE,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB.课堂小结在本节中,在已知角平分线的条件下,常想到过角平分线上的点向角两边作垂线段的方法.在已知角平分线的条件下,也可想到翻折的方法.第2课时角的平分线的判定教学目标1.掌握角平分线的判定.2.熟练运用角的平分线的判定及性质解决问题.预习反馈阅读教材P50,完成下面内容.1.角的内部到角的两边的距离相等的点在角的平分线上.如图,∵PD⊥OB于点D,PC⊥OA于点C,且PC=PD,∴OP平分∠AOB.2.三角形的三条内角平分线相交于一点,并且这一点到三边的距离相等.如图,在△ABC中,BD,CE分别平分∠ABC,∠ACB,并且BD,CE相交于点O,∴点O也在∠BAC的平分线上.又∵OP⊥BC于点P,OM⊥AB于点M,ON⊥AC于点N,∴OP=OM=ON.例题讲解类型1 角的平分线的判定例1如图,在△ABC中,∠ABC的外角平分线BD与∠ACB的外角平分线CE相交于点P.求证:点P在∠BAC的平分线上.证明:过点P作PF⊥AB,PG⊥BC,PH⊥CA,垂足分别为F,G,H.∵点P在∠ABC的外角平分线上,∴PF=PG.∵点P在∠ACB的外角平分线上,∴PG=PH.∴PF=PH.∴点P在∠BAC的平分线上.【跟踪训练1】如图,已知BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC.求证:AD是∠BAC的平分线.证明:∵DE ⊥AB ,DF ⊥AC , ∴∠BED =∠CFD =90°. 在Rt △BDE 和Rt △CDF 中, ∵BE =CF ,BD =CD , ∴Rt △BDE ≌Rt △CDF. ∴DE =DF.∴AD 是∠BAC 的平分线.类型2 三角形三条角平分线的交点到三边的距离例2 如图所示,已知P 是△ABC 三条角平分线的交点,PD ⊥AB 于点D.若PD =5,△ACB 的周长为20,求△ABC 的面积.解:作PE ⊥BC 于点E ,PF ⊥AC 于点F , 由角平分线的性质可知:PD =PE =PF =5,所以S △ABC =S △ABP +S △APC +S △PBC =12PD ·AB +12PF ·AC +12PE ·BC =12PD ·(AB +AC +BC)=12×5×20=50.【跟踪训练2】 如图,直线l ,l ′,l ″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(D)A .1处B .2处C .3处D .4处巩固训练1.到三角形的三边距离相等的点是(B)A.三角形三条高的交点B.三角形三条内角平分线的交点C.三角形三条中线的交点D.以上均不对2.如图,AD⊥DC,AB⊥BC.若AB=AD,∠DAB=120°,则∠ACB的度数为(C)A.60° B.45° C.30° D.75°3.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(A)A.M点 B.N点 C.P点 D.Q点4.如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?解:(1)证明:作ME⊥AD于点E.∵MC⊥DC,ME⊥DA,DM平分∠ADC,∴ME=MC.∵M为BC的中点,∴MB=MC,∴ME=MB.又∵ME⊥AD,MB⊥AB,∴AM平分∠BAD.(2)DM⊥AM.理由如下:∵DM平分∠CDA,AM平分∠BAD,∴∠1=∠2,∠3=∠4.∵∠B+∠C=180°,∴DC∥AB.∴∠CDA+∠BAD=180°.∴∠1+∠3=90°.∴∠DMA=180°-(∠1+∠3)=90°,即DM⊥AM.课堂小结角的平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,作角的平分线或过角的平分线上一点作角两边的垂线段是常用辅助线之一.。
人教版数学八年级上册《角平分线的性质(1)》教学设计

人教版数学八年级上册《角平分线的性质(1)》教学设计一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节的内容主要包括角平分线的定义、性质及其在几何中的应用。
学生通过学习这一节内容,可以进一步了解角的平分线与角的大小、角的边长之间的关系,为后续学习三角形、多边形等几何知识打下基础。
二. 学情分析学生在学习这一节内容之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但部分学生对角平分线的理解可能仍存在困难,因此在教学过程中需要加强对角平分线概念的讲解,并通过大量的实例让学生加深对角平分线的认识。
三. 教学目标1.了解角平分线的定义及其性质;2.学会运用角平分线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.角平分线的定义及其性质;2.角平分线在几何中的应用。
五. 教学方法1.采用讲解法,让学生理解角平分线的定义和性质;2.运用示例法,让学生通过观察、分析、归纳角平分线的性质;3.采用练习法,让学生在实践中运用角平分线解决几何问题;4.运用小组合作法,让学生在讨论中加深对角平分线性质的理解。
六. 教学准备1.准备相关的教学课件、图片、几何模型等;2.准备一些有关角平分线的练习题。
七. 教学过程1.导入(5分钟)通过复习角的概念、垂线的性质等知识,引导学生进入新课的学习。
2.呈现(10分钟)利用课件、图片等展示角平分线的定义和性质,让学生直观地了解角平分线。
3.操练(10分钟)让学生通过观察、分析、归纳角平分线的性质,并尝试解答一些有关角平分线的问题。
4.巩固(10分钟)让学生分组讨论,运用角平分线的性质解决一些几何问题,加深对角平分线性质的理解。
5.拓展(5分钟)引导学生思考:角平分线在实际生活中有哪些应用?让学生联系生活实际,拓宽思路。
6.小结(5分钟)对本节课的内容进行总结,强化学生对角平分线性质的记忆。
7.家庭作业(5分钟)布置一些有关角平分线的练习题,让学生课后巩固所学知识。
人教版数学八年级上册12.3角的平分线的性质(第一课时)优秀教学案例

1.将学生分成小组,鼓励他们相互合作、共同探究角的平分线的性质。
2.设计小组活动,让学生通过实际操作、讨论交流等方式,共同完成任务,培养学生的团队合作能力和沟通能力。
3.引导学生互相评价、互相学习,培养学生的自我反思能力和批判性思维能力。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结学习经验和方法,提高学生的自我学习能力。
3.小组合作的教学方式:将学生分成小组,鼓励他们相互合作、共同探究角的平分线的性质。设计小组活动,让学生通过实际操作、讨论交流等方式,共同完成任务,培养学生的团队合作能力和沟通能力。这种小组合作的教学方式使学生在互动中学习,提高了学生的合作能力和团队精神。
4.反思与评价的环节:教师引导学生对自己的学习过程进行反思,总结学习经验和方法,提高学生的自我学习能力。同时,教师通过观察、提问、点评等方式,对学生的学习情况进行评价,给予肯定和指导,促进学生的成长和发展。这种反思与评价的环节使学生能够及时发现自己的不足,调整学习策略,提高学习效果。
4.学生能够在团队协作中,学会尊重他人,培养合作精神和团队意识。
5.学生能够认识到学习是一种责任,培养良好的学习习惯和态度。
三、教学策略
(一)情景创设
1.生活情境:通过展示实际生活中的图片或场景,让学生观察并发现其中的角的平分线现象,引发学生对角的平分线的兴趣和好奇心。
2.问题情境:提出与角的平分线相关的问题,激发学生的思考和探究欲望,引导学生主动参与学习活动。
本节课的教学目标如下:
1.让学生通过观察、操作和推理,掌握角的平分线的性质,并能运用其解决实际问题。
2.培养学生的观察能力、操作能力和推理能力,提高他们运用数学知识解决实际问题的能力。
12.3 角的平分线的性质(第1课时)-八人数上册教学课件

2.联系角平分线性质:
面积 周长
利用角平分线的性质所得到的等 量关系进行转化求解
链接中考
如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且
∠ADC=110°,则∠MAB=( B )
A.30° B.35° C.45° D.60°
解析:作MN⊥AD于N,∵∠B=∠C=90°,
∴AB∥CD, ∴∠DAB=180°–∠ADC=70°.
证明:∵OD平分∠AOB,∠1=∠2, 又∵OA=OB,OD=OD, ∴△AOD≌△BOD,∴∠3=∠4, 又∵PM⊥DB,PN⊥DA, ∴PM=PN.(角平分线上的点到角两边 的距离相等)
探究新知
素养考点 2 利用角平分线的性质求线段的长度
例2 如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB, PE⊥AC,垂足分别是D,E,PD=4cm,则PE=___4___cm.
A.6 B.5 C.4 D.3
B AE
课堂检测
能力提升题
1. 在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则:
(1)哪条线段与DE相等?为什么?
(2)若AB=10,BC=8,AC=6,求BE,AE的长和△AED
的周长.
解:(1)DC=DE. 理由如下:角平分线上的点到角两边的距离相等. (2)在Rt△CDB和Rt△EDB中,DC=DE,DB=DB,
1. 学会角平分线的画法.
探究新知
知识点 1 角平分线的画法
问题1:在纸上画一个角,你能得到这个角的平分线吗?
用量角器度量,也可用折纸的方法.
问题2:如果把前面的纸片换成木板、钢板等,还能 用对折的方法得到木板、钢板的角平分线吗?
探究新知
提炼图形
12.3 角平分线的性质(1) 导学案

12.3 角平分线的性质(1) 导学案一、学习目标1、能用三角形全等的知识,解释角平分线的原理;2、会用尺规作已知角的平分线.二、温故知新如图1,在∠AOB 的两边OA 和OB 上分别取OM=ON ,MC ⊥OA ,NC ⊥OB .MC与NC 交于C 点.求证:(1) Rt △MOC ≌Rt △NOC(2) ∠MOC=∠NOC .三、自主探究 合作展示探究(一)1、依据上题我们应怎样平分一个角呢?2、思考:把上面的方法改为“在已知∠AOB 的两边上分别截取OM=ON ,使MC=NC ,连接OC ,则OC 即为∠AOB 的平分线。
”结论是否仍然成立呢?3、受上题的启示,我们可以制作一个如图2所示的平分角的仪器:其中AB=AD ,BC=DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明它的道理吗?探究(二)思考:如何作出一个角的平分线呢?已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N . (2)分别以M 、N 为圆心,大于12MN 的长为半径作弧.两弧在∠AOB 内部交于点C .(3)作射线OC ,射线OC 即为所求.请同学们依据以上作法画出图形。
议一议: 1、在上面作法的第二步中,去掉“大于12MN 的长”这个条件行吗? 2、第二步中所作的两弧交点一定在∠AOB 的内部吗?探究(三)如图3,OA 是∠BAC 的平分线,点O 是射线AM 上的任意一点.操作测量:取点O 的三个不同的位置,分别过点O 作OE ⊥AB ,OD ⊥AC,点D 、E 为垂足,测量OD 、OE 的长.将三次数据填入下表:图 2 图1观察测量结果,猜想线段OD与OE的大小关系,写出结论:下面用我们学过的知识证明发现:图4 已知:如图4,AO平分∠BAC,OE⊥AB,OD⊥AC。
求证:OE=OD。
八年级数学上册 12.3 角的平分线的性质 第1课时 角的平分线的性质教学设计 (新版)新人教版

八年级数学上册 12.3 角的平分线的性质第1课时角的平分线的性质教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.3节讲述了角的平分线的性质。
这部分内容是在学生已经掌握了角的概念、角的计算、线段的性质等基础知识的基础上进行讲解的。
角的平分线的性质是数学中的重要概念,对于学生理解和应用角的概念有重要意义。
本节课的内容包括角的平分线的定义、角的平分线的性质及其应用。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于角的概念和线段的性质有一定的了解。
但是,对于角的平分线的性质及其应用可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、思考、探究来理解角的平分线的性质,并能够运用角的平分线解决实际问题。
三. 教学目标1.知识与技能:使学生理解角的平分线的性质,能够运用角的平分线解决实际问题。
2.过程与方法:通过观察、思考、探究,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:角的平分线的性质的应用。
五. 教学方法采用问题驱动法、合作探究法、讲解法等教学方法。
通过问题引导学生思考,合作探究来理解角的平分线的性质,讲解法来讲解角的平分线的性质及其应用。
六. 教学准备1.准备相关的教学材料,如PPT、黑板、粉笔等。
2.准备一些实际问题,用于引导学生运用角的平分线解决实际问题。
七. 教学过程1.导入(5分钟)通过复习角的概念、角的计算、线段的性质等基础知识,引导学生进入新的学习内容。
2.呈现(10分钟)讲解角的平分线的定义,角的平分线的性质。
通过PPT展示角的平分线的性质的图示和解释,让学生直观地理解角的平分线的性质。
3.操练(10分钟)讲解角的平分线的性质的应用。
通过一些实际问题,引导学生运用角的平分线解决实际问题。
让学生在解决问题的过程中,加深对角的平分线的性质的理解。
人教版八年级数学上册12.3.1角的平分线的性质(第1课时)
E
B
C
D
A
E
B
C
D
4.如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △POM的面积为6,OM=6, 则PN=_______ 。 2
N 0 M P
A
C B
*5.如图,△ABC中,AB=8厘米,∠C=90°, AC=BC,AD为∠BAC的平分线,DE⊥AB于 点E。求:△DBE的周长= 8厘米。
证明:连结MC,NC由作法知:
在△OMC和△ONC中 OM=ON MC=NC OC=OC ∵△OMC≌△ONC (SSS) ∴∠AOC=∠BOC 即:OC 是∠AOB的角平分线. M
A C
O
N
B
经历实验过程,发现并证明角的平分线的性质
P48 思考 利用尺规我们可以作一个角的平分线,那 么角的平分线有什么性质呢? 如图,任意作一个角∠AOB,作出∠A的平分线 OC,在OC 上任取一点P,过点 A P 画出OA,OB 的垂线,分别记 D 垂足为D,E,测量 PD,PE 并 C 作比较,你得到什么结论? P O
B
即点P到三边AB,BC,CA的距离相等
E
C
A
2. 如 图 , 在 △ ABC 中 , AC⊥BC , AD 为 ∠ BAC 的平分线,DE⊥AB,AB = 7 ㎝ , AC = 3 ㎝ , 求 BE= 4 CM. 3.如图,在△ABC中, ∠C=900,AD平分 ∠BAC交BC于点D,若 BC=8,BD=5,则点D 3 到AB的距离为_____
证明:∵ AD平分∠CAB, D是AD上一点(已知)
∵DE⊥AB,DC⊥AC(已知) ∴DC=DE(角平分线的性质) 在Rt△CDF和Rt△EDB 中 BD=FD (已知) DC=DE(已证) ∴Rt △CDF≌Rt△EDB (HL) ∴CF=EB(全等三角形对应边相等)
八年级数学上册 12.3 角的平分线的性质 第1课时 角的平分线的性质导学案 (新版)新人教版
第1课时角的平分线的性质1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的画法.阅读教材P48-49“两个探究”,掌握并理解三角形的三条角平分线的性质,掌握角平分线的画法,学生独立完成下列问题:(1)把一个角分成两个相等的角的射线叫做角的平分线.(2)角的平分线的性质是角的平分线上的点到角的两边的距离相等.它的题设是角的平分线上的点,结论是到角的两边的距离相等.自学反馈(1)如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长多少?解:15cm.(2)已知:如图,∠AOB.求作:∠AOB的平分线OC.作法:略.角平分线的性质是证明线段相等的另一途径,通常能使证明过程简略.其前提条件有两条,角平分线和垂直.活动1 小组讨论例1 已知:如图,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.作法:略.例2 已知:如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.证明:在△ABD与△ACD中,∵AB=AC,AD=AD,BD=CD,∴△ABD≌△ACD.∴∠BAD=∠CAD.∵DE⊥AB,DF⊥AC,∴DE=DF.先利用等腰三角形顶角平分线、底边上的中线互相重合证得AD为顶角平分线,然后运用角平分线的性质证DE=DF.活动2 跟踪训练1.已知:如图,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)解:作∠B的平分线交AC于点P.2.如图,已知△ABC内,∠ABC,∠ACB的角平分线交于点P,且PD、PE、PF分别垂直于BC、AC、AB于D、E、F三点.求证:PD=PE=PF.证明:∵BP是∠ABC的平分线,PF⊥AB,PD⊥BC,∴PF=PD.同理证得PE=PD.∴PD=PE=PF.角平线的性质是证线段相等的另一途径.3.已知,如图,在△ABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.解:结论:DE=DF.(提示:过点D作DM⊥AB于点M,作DN⊥AC于点N,则DM⊥DN,再证△DME≌△DNF,∴DE=DF.)在已知角的平分线的前提下,做两边的垂线段是常用辅助线之一.活动3 课堂小结在本节中,在已知角平分线的条件下,常想到过角平分线上的点向角两边做垂线段的方法.在已知角平分线的条件下,也可想到翻折造全等的方法.教学至此,敬请使用学案当堂训练部分.。
新人教版八年级数学上册导学案《12.3角的平分线的性质》
《12.3角的平分线的性质》(1)导学案【学习目标】1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.2、能运用角的平分线性质定理解决简单的几何问题.3、极度热情、高度责任、自动自发、享受成功。
教学重点:掌握角的平分线的性质定理教学难点: 角平分线定理的应用。
一、预习案1、复习思考什么是角的平分线?怎样画一个角的平分线?2.如右图,AB=AD,BC=DC,沿着A、C画一条射线AE,AE就是∠BAD的角平分线,你知道为什么吗探究案3.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论4、命题:角平分线上的点到这个角的两边距离相等.题设:一个点在一个角的平分线上结论:这个点到这个角的两边的距离相等结合第4题图形请你写出已知和求证,并证明命题的正确性O A BE D CP D C A 思考:证明一个几何命题的步骤有那些?6、用数学语言来表述角的平分线的性质定理:如右上图,∵OC 是∠AOB 的平分线,点P 是∴三、训练案1、如图所示OC 是∠AOB 的平分线,P 是OC 上任意一点,问PE=PD?为什么?2、如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC上,BD=DF ;求证:CF=EB如图,在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长我的收获:1、知识方面:2、我的困惑:3、思想感悟:P N MC BA《12.3角的平分线的性质》(2)导学案【学习目标】1、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2、能应用这两个性质解决一些简单的实际问题.3、极度热情、高度责任、自动自发、享受成功。
人教版数学八年级上册《角平分线的性质(1)》教案
人教版数学八年级上册《角平分线的性质(1)》教案一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节,主要让学生掌握角平分线的性质,能够运用角平分线解决一些几何问题。
教材通过角的平分线上的点到角的两边的距离相等这一性质,引导学生探究并证明这一结论,从而培养学生的逻辑思维能力和探究精神。
二. 学情分析学生在学习本节课之前,已经学习了角的概念,线段的概念,对几何图形的认知有一定的基础。
但是,对于角平分线的性质,可能还没有直观的认识,需要通过实例和证明来理解和掌握。
同时,学生可能对证明过程感到困难,需要教师耐心引导和解答。
三. 教学目标1.让学生了解角平分线的性质,能够运用角平分线解决一些几何问题。
2.培养学生的逻辑思维能力和探究精神。
3.提高学生的几何证明能力。
四. 教学重难点1.角平分线性质的掌握。
2.角平分线性质的证明。
五. 教学方法采用问题驱动法,让学生在解决问题的过程中,发现和总结角平分线的性质。
同时,运用分组合作法,让学生在小组讨论中,共同探究和证明角平分线的性质。
最后,运用实例讲解法,让学生通过具体的例子,理解和掌握角平分线的性质。
六. 教学准备1.准备角平分线的性质的实例和证明。
2.准备相关的几何题目,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾角的概念,线段的概念,为新课的学习做好铺垫。
2.呈现(10分钟)展示角平分线的性质的实例,让学生观察并描述实例中的特点。
引导学生发现角平分线上的点到角的两边的距离相等这一性质。
3.操练(10分钟)让学生在小组内,运用角平分线的性质,解决一些几何问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)讲解一些运用角平分线解决几何问题的题目,让学生在解题过程中,巩固对角平分线性质的理解。
5.拓展(10分钟)引导学生思考:角平分线性质的证明。
让学生尝试用已学的知识,证明角平分线上的点到角的两边的距离相等。
6.小结(5分钟)教师引导学生总结本节课所学的内容,让学生明确角平分线的性质,并能够运用到实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.3 角的平分线的性质
第1课时角的平分线的性质
1.掌握角平分线的性质,理解三角形的三条角平分线的性质.
2.掌握角平分线的画法.
阅读教材P48-49“两个探究”,掌握并理解三角形的三条角平分线的性质,掌握角平分线的画法,学生独立完成下列问题:
(1)把一个角分成两个相等的角的射线叫做角的平分线.
(2)角的平分线的性质是角的平分线上的点到角的两边的距离相等.它的题设是角的平分线上的点,结论是到角的两边的距离相等.
自学反馈
(1)如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长多少?
解:15cm.
(2)已知:如图,∠AOB.
求作:∠AOB的平分线OC.
作法:略.
角平分线的性质是证明线段相等的另一途径,通常能使证明过程简略.其前提条件有两条,角平分线和垂直.
活动1 小组讨论
例1 已知:如图,直线AB及其上一点P.
求作:直线MN,使得MN⊥AB于P.
作法:略.
例2 已知:如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.
证明:在△ABD与△ACD中,
∵AB=A C,AD=AD,B D=CD,
∴△ABD≌△ACD.
∴∠BAD=∠CAD.
∵DE⊥AB,DF⊥AC,
∴DE=DF.
先利用等腰三角形顶角平分线、底边上的中线互相重合证得AD为顶角平分线,然后运用角平分线的性质证DE=D F.
活动2 跟踪训练
1.已知:如图,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法) 解:作∠B的平分线交AC于点P.
2.如图,已知△ABC内,∠ABC,∠ACB的角平分线交于点P,且PD、PE、PF分别垂直于BC、AC、AB于D、E、F三点.求证:PD=PE=PF.
证明:∵BP是∠ABC的平分线,PF⊥AB,PD⊥BC,∴PF=PD.同理证得PE=PD.∴PD=PE=PF.
角平线的性质是证线段相等的另一途径.
3.已知,如图,在△ABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.
解:结论:DE=DF.
(提示:过点D作DM⊥AB于点M,作DN⊥AC于点N,则DM⊥DN,再证△DME≌△DNF,∴D E=DF.)
在已知角的平分线的前提下,做两边的垂线段是常用辅助线之一.
活动3 课堂小结
在本节中,在已知角平分线的条件下,常想到过角平分线上的点向角两边做垂线段的方法.在已知角平分线的条件下,也可想到翻折造全等的方法.
教学至此,敬请使用学案当堂训练部分.。