高等数学(上)练习一

合集下载

同济大学《高等数学》第五版上册答案(详解)

同济大学《高等数学》第五版上册答案(详解)

解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y

y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3

同济大学《高等数学》[上册]的答案解析

同济大学《高等数学》[上册]的答案解析

完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 2-5
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
>>>
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题四
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 3-3
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 3-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
练习 4-3
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 4-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享

(完整word版)《高等数学(1)》练习题库

(完整word版)《高等数学(1)》练习题库

华中师范大学网络教育 《高等数学(1)》练习测试题库一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 2 3.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x xk)1(lim e 6 则k=( )A.1B.2C.6D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()aA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x xx 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 xx x x sin 1sin lim20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( ) A 、0 B 、1/2 C 、1 D 、2 43、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、B、2 C、31/2D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56、设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111A.1-──B.1+ ──C. ────D.xxx1-x157、x→0 时,xsin──+1是()xA.无穷大量B.无穷小量C.有界变量D.无界变量58、方程2x+3y=1在空间表示的图形是()A.平行于xoy面的平面B.平行于oz轴的平面C.过oz轴的平面D.直线59、下列函数中为偶函数的是()A.y=e^xB.y=x^3+1C.y=x^3cosxD.y=ln│x│60、设f(x)在(a,b)可导,a〈x_1〈x_2〈b,则至少有一点ζ∈(a,b)使()A.f(b)-f(a)=f'(ζ)(b-a)B.f(b)-f(a)=f'(ζ)(x2-x1)C.f(x2)-f(x1)=f'(ζ)(b-a)D.f(x2)-f(x1)=f'(ζ)(x2-x1)61、设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( ) A.充分必要的条件 B.必要非充分的条件 C.必要且充分的条件 D 既非必要又非充分的条件二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( ) 26、∫49 x 1/2(1+x 1/2)dx=( ) 27、∫49 x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( ) 29、∫49 x 1/2(1+x 1/2)dx=( ) 30、∫49 x 1/2(1+x 1/2)dx=( ) 31、∫49 x 1/2(1+x 1/2)dx=( ) 32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( ) 34、设f(x) = [x] +1,则f (л+10)=( ) 35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( ) 37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46、函数y=arcsin√1-x^2 +──────的定义域为_________√1-x^2_______________。

同济大学《高等数学》上册

同济大学《高等数学》上册

总习题四
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档
练习 5-1
文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档
练习 2-1
文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档
文案大全
练习 2-2
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档
文案大全
练习 2-5
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档
总习题二
文案大全
实用文档 文案大全
文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档 文案大全
实用文档
总习题六
文案大全
实用文档 文案大全
实用文档 文案大全
实用文档
文案大全

《高等数学练习题》全部答案

《高等数学练习题》全部答案

《高等数学》第一章综合练习题(一)参考答案一、填空题1.函数()ln =--142y x x 的定义域为{1,2,3,4}x x R x ι且。

提示:即解不等式组40ln 2020x x xì-¹ï-¹íï-¹î,可得1,2,3,4x ¹2.设函数)(x f 的定义域为]11[,-,则)13(2++x x f 的定义域为[3,2][1,0]--- 。

提示:即解不等式:21311x x -£++£。

3.若函数()f x 的定义域为[0,1],则函数(sin )f x 的定义域为[2,2]k k p p p +。

提示:即解不等式0sin 1x ££。

4.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为3[2,2]22k k p p p p ++。

提示:即解不等式1cos 0x -££5.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为1[0,tan 1]2。

提示:即解不等式0arctan 21x ££,可得02tan 1x ££6.函数arcsin ln2x y x =+的定义域为(1,1]-。

提示:即解不等式组11ln 2020x x x -££ìï+¹íï+>î,可得11x -<£7.若极限223lim 2x x x a b x®-+=-,则=a 2 ,b =1-。

提示:要使此极限存在,则22lim (3)0x x x a ®-+=,即20a -=,所以2a =;又222232(2)(1)lim lim lim (1)122x x x x x x x x xx®®®-+--==-=---,所以1b =-。

高等数学(一)练习题及答案

高等数学(一)练习题及答案

《高等数学(一)》练习题一一.是非题1.函数1()cos f x x x=的定义域是[1,0)(0,1]-。

( ) 2.函数2sin y x x =+是偶函数。

( )3. 函数()y f x =在点0x x =不连续,则函数()y f x =在该点处不可导。

( ) 4.若)(x f 当0x x →时的左、右极限都存在,则)(x f 的极限存在。

( ) 5. )(2)()(lim/0a f hh a f h a f h =--+→。

( ) 6.函数()sin f x x =是有界函数.( ) 7.函数1()f x x=在(,0)-∞上是减函数.( ) 8. 极限10lim 2xx →存在.( )9.两个无穷小的乘积一定是无穷小. ( ) 10.初等函数在其定义域内都是连续的.( )11.函数()f x 在点x a =处有定义,是当x a →时()f x 有极限的充分必要条件。

( )12.函数31y x =+的反函数是y =( )二、单项选择题 1.函数y =的定义域是:( ) A. (1,)-+∞ B. [1,)-+∞ C. (1,)+∞ D. [1,)+∞2.设2,1,()1,1x e x f x x x ⎧<-=⎨-≥-⎩,则(1)f =( )。

A. 1-B. 0C. 1D. 2 3. 函数()y f x =在点x a =连续是()y f x =在该点处有极限的( )。

A.充要条件B.充分非必要条件C.必要非充分条件偶函数D.无关条件4.要使函数()f x x=在点0x =处连续,则(0)f =( )。

A. 2B. 1C. 1.5D. 05.设函数2,01,()3,12x x f x x x ≤<⎧=⎨-≤≤⎩,则()f x 的连续区间为( )A. [0,1)(1,2]B. [0,1)C. [1,2]D. [0,2] 6.函数y =的定义域是( )。

A. (1,)-+∞ B. [1,)-+∞ C. (1,)+∞ D. [1,)+∞7.设2,1,()1,1x e x f x x x ⎧<-=⎨-≥-⎩,则(0)f =( )。

大一高数础练习题.docx

高等数学》(理工类)1.设y = f(x)的定乂域为(0,1], 9(x) = l — lnx,则复合函数尸舟心]的定义域为; 0 < In x < 1, x e [1, e)2,已知KT时,arcta点与工是等价无穷小,则COSX. [.arctan3x 3 . 。

.a = ; lim ----------- = 一= 1,白=3;10 ax a3 .函数尸已丑+c任,W dy=_________________________ ;x 6—(2 cos 2x - sin 2x)dx;x4 . 函数VfL的拐点为;矿=e-' (x - 2) = 0, X = 2 , (2,2e-2). n5.设函数/(x)= SmX,X<| ,当。

二时,f⑴在3tz + X , x —~I 2处连续;1-^/2 ;6.设y = y(x) 是由方程八"2 = 0所确定的隐函数,则7.函数川)=工的跳跃间断点是/(r)= o, /(r)= i,x = i;8 .足分^「(Ji-/ +sinx)<ix =; 2\ll-x 2dx = ^/29 .已知点空间三个点肱(1,1,1), A(2,2,1),8(2,1,2),则ZAMB=;时3;10. 已矢口 a = (2,3,l)人= (1,2,3), axb =二、计算题(每小题6分,共42分)x = 求您以及空。

y — arctan t dx dx 2 1 解”虬(1 +尸),也= 1±Z = Z,空=-瑚2 dx t t dx 2 t1 +尸5. 计算不定积分俨日mjln(ln x)d Inx (7,-5,1)1. 求极限吨地<4=;。

arc sm2x 22. 求极限limC sin 3 x ,e dt _ 12 ____ — lim x-sinx x->0 3 sin 2 x^sin3% 右--------------=o 1 一 COS X3. 设y = e^ -sinx,求坐。

高数各章练习题上册

n →∞


(B) f ( x) − g ( x) 在 x0 点处间断 (D) f ( x) + g ( x) 在 x0 点处可能连续。 )
(2)设数列 xn 与 yn 满足 lim xn yn = 0 ,则下列断言正确的是( (A)若 xn 发散,则 yn 必发散。 (C)若 xn 有界,则 yn 必为无穷小。 (3)已知 lim
三、 完成下列各题: 1、设 f ( x) 在 [0,1] 上连续。且 0 < f ( x) < 1 ,则必存在 ξ ∈ (0,1) 使 f (ξ ) = ξ 。
(ln x) x / ,求 y x ln x ⎧ ax + b, x > 1 3、确定 a, b 使 f ( x ) = ⎨ ⎩ 0 , x ≤1
2 3
7.若 f ( x ) 在[a,b]上连续、在(a,b)内可导,则 f ( x ) 在[a,b]上单调减小的充分(非必要) 条件是__________________________________. 8. 若 f ( x ) 在[a,b]上连续、 在(a,b)内二阶可导且_______________________________, 则
五、若 lim
x→2
x 2 + ax + b = 2, x2 − x − 2
求 a , b 的值
六、设 x1 = 1 , xn = 1 + 七、设 f ( x) = lim
xn −1 ,证明 lim xn 存在,并求 lim xn n →∞ n →∞ 1 + xn −1
n →∞
1− x ,讨论 f ( x) 在其定义域内的连续性,若有间断点,指出其类型。 1 + x2n

高等数学练习册(1-5章)带答案

高等数学习题册(上册)目录习题1-1 函数 (1)习题1-2 常用的经济函数 (5)习题2-1 极限 (9)习题2-2 无穷小与无穷大,极限运算法则 (13)习题2-3 极限存在准则,两个重要极限及无穷小的比较 (17)习题2-4 函数的连续性 (21)习题2-5 闭区间上连续函数的性质 (25)第二章综合题 (29)第二章自测题 (36)习题3-1 导数概念 (40)习题3-2 求导法则与基本初等函数求导公式(一) (44)习题3-2 求导法则与基本初等函数求导公式(二) (48)习题3-3 高阶导数 (52)习题3-4 隐函数及由参数方程所确定的函数的导数 (56)习题3-5 函数的微分 (60)习题3-6 边际与弹性 (64)第三章综合题 (68)第三章自测题 (74)习题4-1 中值定理 (78)习题4-2 洛必达法则 (82)习题4-3 导数的应用(一) (86)习题4-3 导数的应用(二) (90)习题4-4 函数的最大值和最小值及其在经济中的应用 (94)习题4-5 泰勒公式 (98)第四章综合题 (100)第四章自测题 (104)习题5-1 不定积分的概念、性质 (108)习题5-2 换元积分法(一) (112)习题5-2 换元积分法(二) (116)习题5-3 分部积分法 (120)习题5-4 有理函数的积分 (122)第五章综合题 (124)第五章自测题 (128)微积分(上)模拟试卷一 (134)微积分(上)模拟试卷二 (138)参考答案 (142)习题1-1 函数1. 填空题:(1)()x y 32log log =的定义域 。

(2)523arcsin3xx y -+-=的定义域 。

(3)xxy +-=11的反函数 。

(4)已知31122++=⎪⎭⎫ ⎝⎛+xx x x f ,则=)(x f 。

2. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3 , sin )(ππϕx x x ,求()2,6-⎪⎭⎫⎝⎛ϕπϕ,并作出函数()x ϕη=的图形。

高等数学练习册上_电子版发给学生用_

x x0 x x0
( x 1) 2 x 1 ,则 3、若 f ( x) 2 , g ( x) x 1 x 1
(A) f ( x) g ( x) (C) lim f ( x) lim g ( x)
x 1 x1

使得在该邻域内 g ( x) f ( x).
(B) lim f ( x) g ( x)
x
四、求 lim
x 0
x x
二.单项选择题 1、从 lim f ( x ) 1 不能推出
x x0

(A) lim f ( x) 1 (B) f ( x0 0) 1 (C) f ( x0 ) 1 (D) lim [ f ( x ) 1] 0
x x0 0 x x0
之值.
lim g( x) 都不存在,则 lim[ f ( x) g( x)] 必不存在; 命题甲:若 lim f ( x)、
7、 下列叙述不正确的是 。
1 是无穷小。 x
3、两个无穷小之和仍是无穷小。 4、两个无穷小之积仍是无穷小。 5、两个无穷大之和仍是无穷大。 6、无界变量必是无穷大量。 7、无穷大量必是无界变量。 8、 , 是x x0 时的无穷小,则对任意常数 A、B、C、D、E,
A.无穷小量与无穷大量的商为无穷小量; B.无穷小量与有界量的积是无穷小量; C.无穷大量与有界量的积是无穷大量; D.无穷大量与无穷大量的积是无穷大量。
1 ,当n为奇数 2、 xn n 则 10 7 ,当n为偶数
(A) lim xn 0;
n
lim u n a , 证明 lim |u n || a | . 并举例说明: 如果数列{|xn|}有极限, 但数列{xn}未必 五、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(上)练习一
一 填空:(每空2分,共20分) 1 函数241
x y −=的定义域是: ; 2 函数1
1−=x y 的铅直渐近线为: ; 3 若数列有界,则该数列 }{n x ;
(填“必收敛”或“不一定收敛”)
4设函数在点处可导,当自变量由增加到()y f x =0x x 0x 0x x +Δ 时,记为y Δ()f x 的增量,d 为y ()f x 的微分,0d lim x y y x
Δ→Δ−=Δ ; 5 函数⎪⎩⎪⎨⎧=≠=.1,2
1,1,x x x y 则是该函数的 1=x 间断点; (填“第一类”或“第二类”)
6 当 =a 时,与是等价无穷小;
)0(cos 1→−x x )0(2→x ax 7由方程所确定的隐函数在03275=−−+x x y y 0=x 处的导数0
=x dx dy = ; 8 dt t dx d x ∫+0
21= ; 9 无穷积分∫
∞++021x dx = ; 10 =++∫−5
524231
2sin x x xdx x . 二 计算:(每题5分,共30分) 1 2)1(...321lim n
n n −++++∞→; 2 x x x x 2cos 1)1ln(lim 0−+→; 3 11lim 1ln x x x x →⎛⎞−⎜−⎝⎠
⎟; 4 24arctan x x x y −+=,求; dy
5 已知函数,确定该函数的单调区间,并判定其凹凸性;
24x x y −=6 已知椭圆的参数方程为求椭圆在⎩⎨⎧==,
sin ,cos t b y t a x 4π=t 相应的点处的切线方程. 三 计算:(每题5分,共30分) 1 求不定积分∫+)ln 21(x x dx ; 2 求不定积分∫+x
dx 21; 3 求不定积分; 4 求定积分,其中dx xe x ∫dx x f ∫
2
0)(⎪⎩⎪⎨⎧>≤+=1,2
11,1)(2x x x x x f ; 5 求定积分xdx x sin cos 20
5∫π; 6 设在连续,且)(x f ′′]1,0[5)2(,3)2(,1)0(=′==f f f ,求定积分
∫′′1
0)2(dx x f x
.
四 应用题:(每题7分,共14分)
1 某地区防空洞的截面拟建成矩形加半圆(如图).截面
面积为5. 问底宽为多少时才能使截面的周长最小,
从而使建造时所用的材料最省?
2m x 2 在曲线2
(0)2
x y x =>上求一点M ,使点M 处曲线的切线与曲线及x 轴所围图形面积为
13
. 五 综合题(本题6分) 以下四幅图是利用Matlab 软件绘制的某函数的自变量分别在区间
)(x f x ]60,60[],20,20[],2,2[],1,1[−−−−变化的图像,通过观察图形回答下列问题:
1 讨论的奇偶性; )(x f
2 观察当自变量时极限是否存在?若存在是多少? )(x f 0→x
3 讨论在区间的连续性; )(x f ]20,20[−
4 观察当自变量时是否为无穷大?是否无界? )(x f ∞→x。

相关文档
最新文档