函数展开成傅里叶级数

合集下载

傅里叶级数公式总结

傅里叶级数公式总结

傅里叶级数公式总结傅里叶级数是一种电磁波、声波等周期性信号的频谱分析方法,通过将一个周期性函数展开成无穷多个正弦和余弦函数的和来描述这个函数。

傅里叶级数公式是傅里叶级数的数学表达式,也是傅里叶分析的核心工具之一。

傅里叶级数公式可以表示为:\[f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}(a_{n}\cos(\fra c{2\pi n}{T}x)+b_{n}\sin(\frac{2\pi n}{T}x))\]其中,\(f(x)\)是一个周期为\(T\)的函数,\(a_0\)、\(a_n\)、\(b_n\)是系数,可以通过傅里叶级数的积分公式计算得到。

在这个公式中,\(a_0\)表示函数的直流分量,即函数在一个周期内的平均值。

而\(a_n\)和\(b_n\)则表示函数在一个周期内的振幅和相位信息。

傅里叶级数公式的意义在于它将一个周期函数分解成许多不同频率的正弦和余弦函数的和。

通过傅里叶级数分析,我们可以得到函数在不同频率上的能量分布情况,从而揭示了周期性信号的频谱特性。

通过傅里叶级数公式,我们可以深入理解周期函数的谐波分量以及它们在函数中的作用。

具体来说,\(a_n\)和\(b_n\)分别对应了频率为\(n/T\)的正弦和余弦波的振幅,而相位则决定了每个谐波分量在函数中的位置。

傅里叶级数公式的应用十分广泛。

在信号处理中,它可以用于滤波、降噪、频谱分析等方面。

在图像处理中,傅里叶级数可以用于图像的频域分析和图像的压缩。

在通信领域,傅里叶级数也被广泛应用于调制解调和信号检测等方面。

总之,傅里叶级数公式是一种重要的数学工具,它能够将周期函数分解成不同频率的正弦和余弦波的和,揭示了周期性信号的频谱特性。

通过傅里叶级数的分析,我们可以更好地理解周期性信号的谐波分量和它们在函数中的作用。

傅里叶级数公式的应用广泛,可以用于信号处理、图像处理、通信等领域,对于这些领域的研究和实际应用具有重要的指导意义。

第11章第6节傅里叶级数2015-03-2405311.2MB

第11章第6节傅里叶级数2015-03-2405311.2MB

例2.设函数
数展式为
2
3
(93 考研)
解:
的傅里叶级 则其中系数
利用“偶倍奇零”
例1. 设 f (x) 是周期为 2 的周期函数 ,它在
上的表达式为
f (x)
1
,



x0

f
(x)
展成傅里叶级数.
1, 0 x
y
解: 先求傅里叶系数
1
o
x
1
它的傅里叶级数在 x 处收敛于 (n 1, 2, 3,...)
f1n(2fx1()0(n1010)4ss2ci([inocns,ffsion在nn((nsx0xnxdx0x)x)xd213nxsf1210in(n20[11310处1x,)s收0ixn(n1敛10nn0141xc0于)c2ond,2os]0ks1xn1nxx0d1,00sx0in2(nn.2n1,k
第十一章
11.6 傅里叶级数
一、函数展开成傅里叶级数 二、正弦级数和余弦级数
一、函数展开成傅里叶级数
设 f (x) 是周期为 2 的周期函数, 若 f (x) 并满足狄利克雷 ( Dirichlet ) 条件:
1) 在一个周期内连续 或只有有限个第一类间断点;
2) 在一个周期内只有有限个极值点,
则 f (x) 的傅里叶级数 收敛,且
a0 2

n1
(an
cos nx
bn
sin nx)

f (x) 的傅里叶系数
f (x) ,
f (x) 2
x 为连续点
f ( x ) , x 为间断点
例1. 设周期函数 在一个周期内 的表达式为

在指定的区间内把下列函数展开成傅里叶级数(完整版)实用资料

在指定的区间内把下列函数展开成傅里叶级数(完整版)实用资料

在指定的区间内把下列函数展开成傅里叶级数(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)1. 在指定的区间内把下列函数展开成傅里叶级数:(1) (),(),()02.f x x i x ii x πππ=-<<<<(2)2(),(),()02.f x x i x ii x πππ=-<<<< (3),0(),(,0,0).,0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩解 (1)()i()f x 是x ππ-<<的奇函数,所以0,1,2,n a n ==1022cos (1)2sin ,n n n b x nxdx n nπππ---===⎰因()f x 在x ππ-<<连续且光滑,所以11(1)2sin ,(,).n n x nx x n ππ-∞=-=∈-∑()ii 20012,a xdx πππ==⎰201cos 0,n a x nxdx ππ==⎰2012sin(),n b x nx dx nππ==-⎰因()f x 在(0,2)π上光滑且连续,所以1sin 2,(0,2).n nxx x n ππ∞==-∈∑(2) (i) 2()f x x =是(,)ππ-上的偶函数,故0,1,2,;n b n ==2012()3a f x dx ππππ-==⎰,222311sin 2cos 2sin ()cos cos n x nx nx nx nxf x nxdx x nxdx nπππ+-==⎰⎰ 223221sin 2cos 2sin 4(1)4()cos cos (1)n n n x nx nx nx nx a f x nxdx n n n n n πππππππ--+--====≥⎰ 又2()f x x =在(,)ππ-上光滑,故22211(1)4,(,).3n nn x x x n πππ∞=-=+∈-∑ (ii) 222200118()3a f x dx x dx πππππ===⎰⎰,22223201sin 2cos 2sin 4()cos (1),n n x nx nx nx nx a f x nxdx n n n ππππ+-===≥⎰ 222231cos 2cos 2sin 4()sin (1).n n x nx nx nx nx b f x nxdx n n n πππππ-++===-≥⎰又2()f x x =在(0,2)π上光滑,故22214cos 4(sin ),(0,2).3n nx x nx x n n πππ∞==+-∈∑(3)00011()[](),2a f x dx axdx bxdxb a πππππππ--==+=-⎰⎰⎰002211()cos [cos cos ]2(), (cos 1)0, n a f x nxdx ax nxdx bx nxdx a b n b a n n n n πππππππππ--==+-⎧-⎪=-=⎨⎪⎩⎰⎰⎰为奇数为偶数10011(1)()sin [sin sin ]cos (),n n a b b f x nxdx ax nxdx bx nxdx n a b n nπππππππ+--+-==+=-=+⎰⎰⎰所以1112()1(1)()cos(21)()sin ,4(21)n n n b a a b f x n x a b nx n n ππ+∞∞==---=+-++-∑∑(,).x ππ∈- 2. 把函数,04(),04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出:11111157111317=-+-+-+解:()f x 是(,)ππ-上的奇函数,故0,0,1,2,n a n ==.1,211cos ()sin sin 220,n n n b f x nxdx nx nn n ππππ⎧-⎪====⎨⎪⎩⎰⎰为奇数为偶数. 又()f x 在(,0)(0,)ππ-连续,故1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.当23x π=时, 12sin (21)23()3214n n f n πππ∞=⎡⎤-⎢⎥⎣⎦==-∑.当213n k -=时,2sin (21)0,3n π⎡⎤-=⎢⎥⎣⎦当2131n k -=+时,2sin (21)32n π⎡⎤-=⎢⎥⎣⎦当2132n k -=+时,2sin (21)3n π⎡⎤-=⎢⎥⎣⎦所以,11111(1)4257111317π=-+-+-+,即111111657111317=-+-+-+.3.设函数()f x 满足条件:()()f x f x π+=。

傅里叶级数展开公式证明

傅里叶级数展开公式证明

傅里叶级数展开公式证明傅里叶级数展开公式的证明涉及到傅里叶级数的定义和傅里叶系数的计算方法。

以下是傅里叶级数展开公式的证明:假设函数f(x)是一个周期为2π的可积函数,那么它可以用傅里叶级数表示为:f(x) = a0/2 + ∑[an*cos(nx) + bn*sin(nx)]其中,a0表示f(x)在一个周期内的平均值,an和bn分别是傅里叶系数,可以通过以下公式计算得到:an = (1/π)∫[f(x)*cos(nx)]dxbn = (1/π)∫[f(x)*sin(nx)]dx根据欧拉公式,可得:cos(nx) = (1/2)*(e^(inx) + e^(-inx))sin(nx) = (1/2i)*(e^(inx) - e^(-inx))将上式代入an和bn中,得到:an = (1/π)∫[f(x)*(1/2)*(e^(inx) + e^(-inx))]dx= (1/2π)∫[f(x)*e^(inx)]dx + (1/2π)∫[f(x)*e^(-inx)]dx= (1/2π)[∫[f(x)*e^(inx)]dx + ∫[f(x)*e^(-inx)]dx]bn = (1/π)∫[f(x)*(1/2i)*(e^(inx) - e^(-inx))]dx= (1/2πi)∫[f(x)*e^(inx)]dx - (1/2πi)∫[f(x)*e^(-inx)]dx= -(1/2πi)[∫[f(x)*e^(-inx)]dx - ∫[f(x)*e^(inx)]dx]将an和bn代入傅里叶级数公式,得到:f(x) = a0/2 + (1/2π)[∫[f(x)*e^(inx)]dx + ∫[f(x)*e^(-inx)]dx]*cos(nx) + -(1/2πi)[∫[f(x)*e^(-inx)]dx - ∫[f(x)*e^(inx)]dx]*sin(nx)对于周期为2π的函数f(x),它的傅里叶级数展开是唯一的,因此可将上式中的积分写成复数形式:c(n) = (1/2π)∫[f(x)*e^(-inx)]dx (n < 0)c(0) = a0/2c(n) = (1/2π)∫[f(x)*e^(-inx)]dx (n > 0)傅里叶级数可以写成如下形式:f(x) = ∑[c(n)*e^(inx)]其中,n可以取所有整数值。

傅里叶级数的数学推导

傅里叶级数的数学推导
n 1 1 n 1 1 n 1
t 0 T 1 t0
a0
cos( kw1t ) dt [ an
cos( nw1t )cos( kw1t )dt bn
t 0 T 1
t0
sin( nw1t )cos( kw1t ) dt ]
当 k=n 时

t 0 T 1
t0
cos( nw1t ) f (t ) dt an
1.傅里叶级数展开表达式为:( T 1 为 f(t)的周期)
f (t ) a 0 a1 cos( w1t ) b1 sin( w1t ) a 2 cos(2 w1t ) b 2 sin( w2t )

.....+an cos(nw1t ) bn sin( nw1t ) a 0 [an cos(nw1t ) bn sin( nw1t )]
n 1
直流分量: a 0
1 t 0 T 1 f (t )dt T 12 t 0 T 1 cos(nw1t ) f (t )dt T 1 t 0
2 t 0 T 1 正弦分量的幅度: bn T 1 t 0 sin(nw1t ) f (t )dt
2.三角函数的正交性: 一个三角函数系:1,cosx, sinx, cos2x, sin2x……cosnx, sinnx,……….如果这一堆函数(包括 常数 1)中任何两个不同函数的乘积在区间[- , ]上 的积分等于 0,就说三角函数系在区间[- , ]上正交。 即有如下式子:
t 0 T 1
t0
cos( nw1t )cos( kw1t )dt an
t 0 T 1
t0
cos 2 ( nw1t )dt
an t 0 T 1 an (1 cos 2nw1t )dt T 1 2 t0 2

函数的傅里叶级数展开

函数的傅里叶级数展开

和函数图象为
u
u
Em
Em
o
t
o
t
Em
Em
例 3 在[0,2 ]上展开函数f ( x) x为 傅立叶级数.
解:
1 2
2
bn
0
x sin nxdx n
1
a0
2
xdx 2 ,
0
1 2
an 0 x cos xdx 0
f ( x) ~ 2[sin x 1 sin 2x 1 sin kx ]
(2)按公式算出a n ,bn ,写出Fourier级数
a0
2
(an
n 1
cos nx
bn
sin nx)
(3)根据逐点收敛定理指出级数的收敛情况
例 1 在[ , ]上展开函数f ( x) x为 傅立叶级数.
例 2 以2 为周期的矩形脉冲的波形
u(t ) EEmm, ,
0 t t 0
2 sin
2
0
u
2 sin
u2
du =
1 n ( + cos ku)du
2 0 k =1
=1
2
1
sn(f(x)) - s=
sin 2n+1 u
(f (x u)+f ( x - u)-2s)
0
2 u
du
2sin
2
记(u)=f (x+u)+f (x-u)-2s
则f(x)的傅里叶级数在x点收敛的问题归结为
dx
[
(ak
k 1
cos kx
bk
sin kx)]dx
a0 2, 2
a0
1
f ( x)dx

展开为傅里叶级数

展开为傅里叶级数

展开为傅里叶级数在数学领域中,傅里叶级数是一种非常重要的工具,它可以将周期函数分解为无穷个三角函数的和。

今天我们来讨论一下如何将一个函数展开为傅里叶级数。

首先,我们需要了解什么是傅里叶级数。

傅里叶级数是指将一个周期为T的函数f(x)展开为一组三角函数的和:f(x) = a0/2 + Σ(an*cos(nωx) + bn*sin(nωx))其中,ω=2π/T,an和bn是傅里叶系数。

这组三角函数包括了所有频率为nω的正弦函数和余弦函数。

接下来,我们需要求解傅里叶系数an和bn。

我们可以根据傅里叶级数的定义,对傅里叶级数的各个部分进行求和,并且利用正交性条件得到傅里叶系数的表达式:an = (2/T) * Σ(f(x) * cos(nωx)dx)bn = (2/T) * Σ(f(x) * sin(nωx)dx)其中,Σ表示求和符号,dx表示微元,T是函数的周期。

这里需要注意的是,傅里叶系数的求解需要对周期函数进行积分,而且是在一个周期内进行的积分。

因此,我们需要等价地将函数在一个周期内展开为三角函数的和。

最后,我们来看一个例子,将一个周期为2π的函数f(x) = x 在[-π,π]内展开为傅里叶级数:1.首先求解a0,根据傅里叶级数的定义,a0等于函数在一个周期内的平均值,即a0=(1/π) * ∫(π,-π)(xdx) = 0。

2.接下来求解an,an等于函数与cos(nωx)在一个周期内的积分,即an = (2/π) * ∫(π,0)(x*cos(nx)dx) = (2/π) *[(π*sin(nπ))/n - (1/n^2)*cos(nπ)]an = (2/π) * ∫(0,-π)(x*cos(nx)dx) = (2/π) * [-(π*sin(nπ))/n + (1/n^2)*cos(nπ)]因为sin(nπ)=0,cos(nπ)=(-1)^n,因此an = (-1)^n/n。

3.最后求解bn,bn等于函数与sin(nωx)在一个周期内的积分,即bn = (2/π) * ∫(π,0)(x*sin(nx)dx) = (2/π) *[(1/n)*cos(nπ) - (π*cos(nπ))/n]bn = (2/π) * ∫(0,-π)(x*sin(nx)dx) = (2/π) *[(π*cos(nπ))/n - (1/n)*cos(nπ)]因为sin(nπ)=0,cos(nπ)=(-1)^n,因此bn = 0。

三角函数的级数展开与傅里叶级数

三角函数的级数展开与傅里叶级数

三角函数的级数展开与傅里叶级数在数学领域中,三角函数的级数展开与傅里叶级数是一项重要的概念。

它们在分析、物理和工程学中被广泛应用,可用于解决各种问题,例如信号处理、波动现象和谐波分析等。

一、三角函数的级数展开三角函数的级数展开是一种将三角函数表示为无穷级数的方法。

其中最著名的是正弦和余弦函数的级数展开。

1. 正弦函数的级数展开正弦函数的级数展开表达式为:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...其中,"!"表示阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

这个级数展开是基于幂级数的展开,可以用来近似计算任何角度的正弦值。

2. 余弦函数的级数展开余弦函数的级数展开表达式为:cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ...同样地,这个级数展开也是基于幂级数展开的。

通过使用这个展开式,我们可以计算出任何角度的余弦值。

二、傅里叶级数傅里叶级数是一种将周期函数表示为三角函数级数的方法。

它是基于三角函数的正交性质,将任意周期函数分解为一系列正弦和余弦函数的和。

1. 傅里叶级数的形式对于周期为2π的函数f(x),它的傅里叶级数展开形式为:f(x) = a0/2 + Σ(an*cos(nx) + bn*sin(nx))其中,a0是函数f(x)在一个周期内的平均值,an和bn分别是f(x)的余弦和正弦系数。

2. 傅里叶级数的计算要计算一个函数的傅里叶级数,需要先求解其系数。

系数的计算可以通过积分或复数的方法进行。

通过傅里叶级数展开,我们可以将任意周期函数表示为一系列简单的三角函数的和,从而更好地理解和分析周期现象。

三、应用领域三角函数的级数展开与傅里叶级数在各个领域都有广泛的应用。

以下是一些常见的应用领域:1. 信号处理在信号处理领域,三角函数的级数展开与傅里叶级数可以用于信号压缩、滤波和频谱分析等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在函数展开成傅里叶级数的过程中,a0作为直流分量,其计算公式具一系列正弦和余弦函数的线性组合,而a0则是这一组合中的常数项。为了求解a0,我们需要对f(x)在一个完整周期内进行积分,并将积分结果除以周期的长度。这样,我们就可以得到a0的具体数值。这一公式不仅揭示了a0与f(x)之间的内在联系,也为我们提供了一种通过积分运算来求解傅里叶级数系数的方法。在实际应用中,我们可以利用这一公式对信号进行频谱分析,从而提取出信号中的直流成分。
相关文档
最新文档