《函数的最大值和最小值与导数》教学设计说明书

合集下载

高中选修2《函数的最大小值与导数》教案设计

高中选修2《函数的最大小值与导数》教案设计

课题:函数的最大(小)值与导数---导数在研究函数中的应用教材:普通高中课程标准实验教科书人教版A版选修2-2 一.【教学目标】1.知识目标(1)理解函数的最值与极值的区别和联系。

(2)掌握用导数法求函数的最大值与最小值的方法和步骤。

2.能力目标(1)通过在教师引导下学生自主探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础。

(2)培养学生的数学语言表达和数学符号表示能力。

3.情感和价值目标(1)让学生感受数学问题探索的乐趣和成功的喜悦,激发学生学习数学的兴趣和信心。

(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

二.【教学重点、难点】1.教学重点:利用导数求函数的最大值和最小值。

2.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别和联系。

三.【教学方法与手段】1. 教学方法:启发探究式教学法2. 教学手段:多媒体、实物投影 四.【教学过程】 【复习引入】复习:函数极大值、极小值是怎样定义的?函数最大值、最小值又是怎样定义的?【设计意图】通过复习前面所学的极值的概念,也通过展现学生作业中出现的书写形式:把极大值)(x f 写成max )(x f ,从而回顾函数最值的概念。

为后面探索最值与极值的关系作了铺垫。

【探究新知】观察图中定义在闭区间[]b a ,上的函数)(x f 的图象。

图中哪些是极大值,哪些是极小值 你能找出所给函数的最大值和最小值吗? 答:2()f x 是极大值,)(1x f 与3()f x 是极小值。

)(b f 是最大值,3()f x 是最小值观察所给的4个图像,探究:函数的最值与极值有什么关系?【设计意图】让学生观察所给出的函数图像,讨论函数最值与极值的联系与区别,同时让学生发表各自的见解。

在学生讨论的过程中可以作适当的提示。

比如:1)闭区间[]b a,上的函数)(xf的最值一定存在吗?个数是多少?那极值?2)函数最值可以在哪里取得?函数极值可以在哪里取得?3)函数的极值与最值之间有没有必然的联系?小结1:函数的最值与极值之间的联系与区别:(1)整体与局部的关系函数的最值是一个整体性概念,是比较整个定义域内的所有函数值得出,具有绝对性;函数的极值是一个局部性概念,是比较极值点左右的函数值得出的,具有相对性。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案一、教学目标1. 让学生理解函数的最大值和最小值的概念,并掌握求解函数最大值和最小值的方法。

2. 让学生掌握导数的定义和性质,并能运用导数求解函数的极值。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 求解函数最大值和最小值的方法。

3. 导数的定义和性质。

4. 运用导数求解函数的极值。

5. 实际问题中的应用。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数的定义和性质,运用导数求解函数的极值。

2. 教学难点:导数的运算规则,运用导数求解复杂函数的最大值和最小值。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的教学方法。

2. 使用多媒体课件辅助教学,提高学生的学习兴趣。

3. 引导学生通过合作、探究、实践等方式,提高解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引入函数的最大值和最小值的概念。

2. 讲解:讲解求解函数最大值和最小值的方法,并举例演示。

3. 练习:让学生独立完成练习题,巩固所学知识。

4. 讲解:讲解导数的定义和性质,并举例演示。

5. 练习:让学生独立完成练习题,巩固所学知识。

6. 讲解:讲解如何运用导数求解函数的极值,并举例演示。

7. 练习:让学生独立完成练习题,巩固所学知识。

8. 讨论:分组讨论实际问题,运用所学知识解决问题。

9. 总结:对本节课的内容进行总结,回答学生提出的问题。

10. 作业:布置作业,巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习题:评估学生在练习题中的表现,检验学生对知识的掌握程度。

3. 实际问题解决:评估学生在讨论实际问题时的表现,检验学生运用知识解决问题的能力。

4. 作业:评估学生的作业完成情况,检验学生对知识的掌握程度。

七、教学资源1. 教材:《数学分析》2. 多媒体课件3. 练习题4. 实际问题案例八、教学进度安排1. 第一课时:介绍函数的最大值和最小值的概念,讲解求解方法。

(完整word)《函数的最大(小)值与导数》教案完美版

(完整word)《函数的最大(小)值与导数》教案完美版

《函数的最大(小)值与导数》教案§1。

3.3 函数的最大(小)值与导数(1)【教学目标】1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件;2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法.【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习引入:1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点.2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点.3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个.(ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f 〉)(1x f .(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.4. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.5. 求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x )在这个根处无极值.二、讲解新课:1.函数的最大值和最小值观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中值.函数)(x f 在[]b a ,上的)(1x f 与3()f x 是极小值,2()f x 是极大最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的. ⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.⒉利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.三、讲解范例:例1求函数5224+-=x x y 在区间[]2,2-上解:先求导数,得x x y 443/-=令/y =0即0443=-x x 解得1,0,1321==-=x x x 导数/的正负以及,如下表从上表知,当2±=x 时,函数有最大值13,当1±=x 时,函数有最小值4.例2 已知23()log x ax bf x x ++=,x ∈(0,+∞).是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f )在(0,1)上是减函数,在[1,+∞)上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由.解:设g (x )=xb ax x ++2∵f (x )在(0,1)上是减函数,在[1,+∞)上是增函数∴g (x )在(0,1)上是减函数,在[1,+∞)上是增函数.∴⎩⎨⎧==3)1(0)1('g g ∴⎩⎨⎧=++=-3101b a b 解得⎩⎨⎧==11b a 经检验,a =1,b =1时,f (x )满足题设的两个条件. 四、课堂练习:1.下列说法正确的是( )A .函数的极大值就是函数的最大值B .函数的极小值就是函数的最小值C .函数的最值一定是极值D .在闭区间上的连续函数一定存在最值2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) ( ) A .等于0 B .大于0 C .小于0 D .以上都有可能3.函数y =234213141x x x ++,在[-1,1]上的最小值为( )A .0B .-2C .-1D .12134.函数y =122+-x x x 的最大值为( )A .33 B .1 C .21 D .23 5.设y =|x |3,那么y 在区间[-3,-1]上的最小值是( ) A .27 B .-3 C .-1 D .16.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a 〉b ,则( ) A .a =2,b =29 B .a =2,b =3 C .a =3,b =2 D .a =-2,b =-3 答案:1.D 2.A 3.A 4.A 5.D 6.B五、小结 :⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;⑵函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件;⑶闭区间[]b a ,上的连续函数一定有最值;开区间),(b a 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值. 六、课后作业:§1.3.3 函数的最大(小)值与导数(2)【教学目标】1.进一步熟练函数的最大值与最小值的求法; 2.初步会解有关函数最大值、最小值的实际问题. 【教学重点】解有关函数最大值、最小值的实际问题. 【教学难点】解有关函数最大值、最小值的实际问题. 【教学过程】 一、复习引入:1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点.2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点.3.极大值与极小值统称为极值.4.判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.5. 求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x ) ; (2)求方程f ′(x )=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x )在这个根处无极值.6.函数的最大值和最小值:在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的. (3)函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 7.利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二、讲解范例:例1在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 602xh -=cm ,得箱子容解法一:设箱底边长为xcm ,则箱高积260)(322x x h x x V -== )600(<<x .23()602x V x x '=- )600(<<x令 23()602x V x x '=-=0,解得 x =0(舍去),x =40, 并求得 V(40)=16000由题意可知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值. 答:当x =40cm 时,箱子容积最大,最大容积是16000cm 3解法二:设箱高为xcm ,则箱底长为(60-2x )cm ,则得箱子容积x x x V 2)260()(-=)300(<<x .(后面同解法一,略) 由题意可知,当x 过小或过大时箱子容积很小,所以最大值出现在极值点处.260)(322x x h x x V -==、事实上,可导函数x x x V 2)260()(-=在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值.例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?解:设圆柱的高为h ,底半径为R ,则表面积S=2πR h +2πR 2由V=πR 2h ,得2V h R π=,则S(R)= 2πR 2V R π+ 2πR 2=2V R +2πR 2令 22()Vs R R '=-+4πR=0解得,R=32Vπ,从而h =2V R π=23()2V V ππ=34V π=23Vπ即h =2R因为S(R )只有一个极值,所以它是最小值. 答:当罐的高与底直径相等时,所用材料最省.变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使所用材料最省?提示:S =2Rh π+22R π⇒h =RR S ππ222-⇒V (R )=RR S ππ222-πR 2=3221)2(21R SR R R S ππ-=- )('R V )=026R S π=⇒ ⇒R h R Rh R 222622=⇒+=πππ.例3已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为q p 8125-=.求产量q 为何值时,利润L 最大?分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格.由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭,利润221125(1004)2110088L R C q q q q q ⎛⎫=-=--+=-+- ⎪⎝⎭(0100)q <<1214L q '=-+,令0L '=,即12104q -+=,求得唯一的极值点84q =.答:产量为84时,利润L 最大.x60-2x60-2x60-2xx60-2x 6060三、课堂练习:1.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________. 2.函数f (x )=sin 2x -x 在[-2π,2π]上的最大值为_____;最小值为_______. 3.将正数a 分成两部分,使其立方和为最小,这两部分应分成______和___.4.使内接椭圆2222b y a x +=1的矩形面积最大,矩形的长为_____,宽为_____.5.在半径为R 的圆内,作内接等腰三角形,当底边上高为___时,它的面积最大.答案:1. -15 2.2π -2π 3.2a 2a 4.2a 2b 5.23R四、小结 :(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义.(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较.(3)相当多有关最值的实际问题用导数方法解决较简单.五、课后作业:1.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?解:(1)正方形边长为x ,则V =(8-2x )·(5-2x )x =2(2x 3-13x 2+20x )(0〈x 〈25)V ′=4(3x 2-13x +10)(0<x <25),V ′=0得x =1根据实际情况,小盒容积最大是存在的,∴当x =1时,容积V 取最大值为18.2.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . 解:由梯形面积公式,得S =21 (AD +BC )h ,其中AD =2DE +BC ,DE =33h ,BC =b ,∴AD =332h +b , ∴S =h b h h b h )33()2332(21+=+ ①∵CD =h h 3230cos =︒,AB =CD .∴l =h 32×2+b②由①得b =33-h S h ,代入②,∴l =h Sh h h S h +=-+333334 l ′=23h S -=0,∴h =43S , 当h 〈43S 时,l ′<0,h 〉43S 时,l ′>0. ∴h =43S时,l 取最小值,此时b =S 3324. 六、板书设计(略)b七、教学后记:风,没有衣裳;时间,没有居所;它们是拥有全世界的两个穷人生活不只眼前的苟且,还有诗和远方的田野。

《函数的最大值和最小值与导数》教学设计

《函数的最大值和最小值与导数》教学设计

《函数的最大值和最小值与导数》教学设计教学设计:函数的最大值和最小值与导数一、教学目标:1.知识与技能目标:了解函数的最大值和最小值的概念,掌握求解函数最大值和最小值的方法,理解导数与函数最大值和最小值的关系。

2.过程与方法目标:培养学生观察、分析和解决问题的能力,培养学生的逻辑思维和创新思维能力。

3.情感态度价值观目标:培养学生对数学的兴趣,提高学生的数学自信心,培养学生的合作与交流能力。

二、教学重难点:1.教学重点:函数的最大值和最小值的概念、求解函数最大值和最小值的方法、导数与函数最大值和最小值的关系。

2.教学难点:导数与函数最大值和最小值的关系的理解与运用。

三、教学过程:1.导入新概念(15分钟)2.探索函数的最大值和最小值(20分钟)教师出示一个简单的函数图像,并引导学生观察图像中的极值点。

学生可以自由讨论,提出他们观察到的现象和规律。

3.寻找函数的最大值和最小值的方法(20分钟)教师向学生介绍函数的最值存在定理,并讲解寻找函数最大值和最小值的方法:通过函数图像、函数的性质、函数的导数等途径。

然后,教师通过例题的形式,具体讲解每种方法的步骤和注意事项。

4.导数与函数最大值和最小值的关系(25分钟)教师向学生介绍导数的概念,并讲解导数与函数最大值和最小值的关系。

通过导数的定义和极值的判定条件,教师引导学生理解导数与函数最值的关系,并通过例题进行实际应用。

5.综合运用(15分钟)教师出示一些综合运用的问题,要求学生通过函数的最值和导数的知识进行求解。

学生可以自由讨论,提出解决问题的思路,并互相交流讨论。

6.总结与拓展(15分钟)教师对本节课的重点内容进行总结,并引导学生对本节课所学内容进行思考和拓展。

教师可以提出一些拓展问题,要求学生进行独立思考和解决。

四、教学手段:1.多媒体投影仪、计算器等教学工具。

2.学生课前预习和课堂讨论,学生自主学习与合作学习相结合。

3.教师示范讲解、学生自主探究、小组讨论、问题解决等多种教学方法相结合。

函数最大(小)值与导数教案

函数最大(小)值与导数教案

函数最大(小)值与导数教案一、教学目标1. 让学生理解函数最大值和最小值的概念,知道它们在数学分析中的重要性。

2. 引导学生掌握利用导数求函数最大值和最小值的方法。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数最大值和最小值的概念。

2. 利用导数求函数最大值和最小值的方法。

3. 实际例子中的应用。

三、教学方法采用讲解、演示、练习、讨论相结合的方法,让学生在理解函数最大值和最小值的概念的基础上,学会利用导数求解实际问题。

四、教学步骤1. 引入函数最大值和最小值的概念,通过图形和实际例子让学生直观地理解。

2. 讲解利用导数求函数最大值和最小值的方法,引导学生掌握判断极值点和确定最大值、最小值的方法。

3. 布置练习题,让学生巩固所学知识。

4. 通过讨论,让学生理解在实际问题中如何运用函数最大值和最小值。

五、课后作业1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,加深对函数最大值和最小值以及导数的应用的理解。

3. 选择一个实际问题,尝试运用函数最大值和最小值的知识进行解决。

六、教学评价通过课堂表现、课后作业和练习题的成绩,评价学生对函数最大值和最小值以及导数求解方法的掌握程度。

七、教学资源1. 教学PPT。

2. 课后练习题及答案。

3. 实际问题案例。

八、教学时长1课时(40分钟)九、教学难点1. 函数最大值和最小值的概念。

2. 利用导数求函数最大值和最小值的方法。

十、教学准备1. 提前准备教学PPT。

2. 准备课后练习题及答案。

3. 收集实际问题案例。

六、教学拓展1. 引导学生思考:在求函数最大值和最小值时,还有哪些方法可以运用?2. 讲解其他求解函数最大值和最小值的方法,如构造法、函数图像分析法等。

3. 对比各种方法的应用范围和优缺点,让学生学会选择合适的方法解决问题。

七、教学实践1. 安排一次课堂实践,让学生分组讨论并解决一个实际问题。

2. 各组汇报讨论成果,教师进行点评和指导。

3.3.3函数的最大(小)值与导数教案

3.3.3函数的最大(小)值与导数教案

§1.3.3 函数的最大(小)值与导数一、教学内容分析1.在教材中的位置:本节内容安排在《普通高中课程标准实验教科书数学选修2-2》人教A版,第一章。

第三节“导数在研究函数中的应用”2.学习的主要工具:基本初等函数的识图能力与函数的极值与导数知识。

3.学习本节课的主要目的:本节内容是在学生学习完导数基本概念与基本初等函数求导公式后的应用性知识,强调在应用中进一步理解导数,并为以后内容“生活中的优化问题”打好基础。

4.本节课在教材中的地位:函数的最值是基本初等函数的重要性质,是历年高考的热点问题,也是解决实际问题,如成本最低,产量最高,效益最大等的重要工具。

学好本节内容对学生的可持续发展具有重要意义,可进一步完善学生知识结构,培养学生应用数学的意识。

二、学情分析学生已经在高一阶段必修一的学习中,学习了函数基础知识,并初步具备应用函数单调性求最值的基础,但是对于运用刚刚学习的导数工具研究函数性质,还不熟练,应用导数在思维上有很大的局限性。

三、课堂设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。

而问题驱动,问题引导,主动观察,主动发现又是帮助学生学会学习的重要好手段。

本节教学,将遵循这个原则而进行设计,让学生领会到知识的产生过程。

四、教学目标1.知识和技能目标(1)弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。

(2)掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的方法和步骤。

(3)复习巩固求函数最值的其他方法,例如单调性,基本不等式等。

2.过程和方法目标(1)问题驱动,自主探究,合作交流。

(2)培养学生在生活中学习数学的方法。

3.情感和价值目标(1)通过观察认识到事物的表象与本质的区别与联系.(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. (4)通过学生的参与,激发学生学习数学的兴趣。

高中数学:《导数与函数的最大值、最小值》教学设计

高中数学:《导数与函数的最大值、最小值》教学设计

高中数学教案Senior high school mathematics teaching plan人教A版数学选修2-2第一章第2节___________________________________________________________ 教材分析本节在学习了用导数处理函数的单调性与极值的基础上,利用导数的方法来解决函数的最值问题,并利用导数的方法解决实际生活中的一些最优化问题。

在讲授本课内容时,要让学生体会导数在处理最值问题中的特点。

培养学生数形结合的数学思想,函数与方程的思想,化归与转化的思想。

学情分析函数的最大值、最小值问题在必修模块中已经有所涉及,主要是在函数和不等式等章节中体现。

以前学习最值时要求比较低,学生掌握的方法比较局限。

本节内容在学生掌握了用导数求函数的单调性和极值的基础上,用导数的方法来处理最值的问题,进一步处理一些实际生活中的最优化问题。

从学生的知识准备上来讲,明确函数()=在区间[,]y f xa b上存在最值,且最值是函数在此区间上的极值或者端点处的函数值。

明确极值是函数的局部性质,最值是函数的整体性质,由局部到整体,由旧的知识生发新的知识,从极值的概念自然过渡到最值的概念,并总结出函数()=在区间[,]y f xa b上最值的求解步骤。

基于学生的情况教师可以通过具体的问题让学生观察、归纳,进而发现结果。

在用导数的方法求最值时,解方程、不等式也是本节的一个重要内容,应该引导学生养成良好的解题习惯。

教学目标分析1。

知识与技能:(1)理解函数最值的概念、最值与极值的关系;(2)掌握用导数的方法求函数的最值;(3)通过建立函数模型,掌握用求导的方法解决实际生活中的一些最优化问题。

2。

过程与方法:(1)体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、猜想、归纳、概括的能力;(2)从函数的图像出发,结合函数的单调性与函数的极值,发现函数()y f x=在区间[,]a b上的最值与函数在该区间上的极值及区间端点函数值的关系,从而用导数的方法解决最值问题。

函数最大(小)值与导数教案

函数最大(小)值与导数教案

函数最大(小)值与导数教案一、教学目标1. 让学生理解函数的极值概念,掌握函数的极大值和极小值的求法。

2. 引导学生理解导数与函数单调性的关系,能够运用导数判断函数的单调性。

3. 培养学生运用导数解决实际问题的能力,提高学生的数学应用意识。

二、教学内容1. 函数的极值概念2. 函数的极大值和极小值的求法3. 导数与函数单调性的关系4. 运用导数解决实际问题三、教学重点与难点1. 教学重点:函数的极值概念,函数的极大值和极小值的求法,导数与函数单调性的关系。

2. 教学难点:运用导数解决实际问题。

四、教学方法与手段1. 教学方法:采用讲解、演示、练习、讨论相结合的方法。

2. 教学手段:利用多媒体课件辅助教学,结合板书进行讲解。

五、教学安排1课时教案一、导入新课通过复习导数的基本概念,引导学生回顾导数的计算公式,为新课的学习做好铺垫。

二、讲解函数的极值概念1. 定义:如果函数在某一区间内的任意一点的导数都小于(或大于)0,在这个区间内函数是单调递减(或单调递增)的。

2. 极值:在函数的单调区间内,如果函数在某一点取得局部最大值或最小值,这一点称为函数的极大值点或极小值点。

三、讲解函数的极大值和极小值的求法1. 求极值的方法:求出函数的导数,令导数为0,解方程得到可能的极值点。

2. 判断极值点的性质:根据导数的符号变化来判断极值点的性质。

如果导数从正变负,函数在这一点取得极大值;如果导数从负变正,函数在这一点取得极小值。

四、讲解导数与函数单调性的关系1. 单调性判断:如果函数的导数大于0,函数是单调递增的;如果函数的导数小于0,函数是单调递减的。

2. 单调区间:函数的单调递增区间为导数大于0的区间,单调递减区间为导数小于0的区间。

五、运用导数解决实际问题1. 问题提出:如何求解函数在实际问题中的最大值和最小值?2. 方法指导:建立函数模型,求出函数的导数,分析导数的符号变化,找出函数的极值点,根据实际意义选取合适的极值点作为最大值或最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的最大值和最小值与导数》教学设计
【课本教材内容分析】
本节教材知识间的前后联系,以及在课堂教学中的地位与作用:
导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿着函数思想。

新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,而且导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。

众所周知,函数又是中学数学研究导数的一个重要载体,因此函数问题涉及高中数学比较多的知识点和数学思想方法。

导数作为研究函数的一种重要工具,在宁夏高考进入新课标实验区之后,不但成为宁夏高考文理科数学的必考题,而且也逐渐成为高考试卷中起到拔高作用的热点难题。

在学习时应引起我们教师和学生的充分重视。

本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.为下一节“生活中的优化问题”的教学打下坚实的基础。

这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值.
高中阶段对用导数求可导函数在闭区间上的最值的方法不要求作严密的理论推导,这一方法完全可以由学生通过对函数图象的观察、归纳得到,所以本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦.
【课堂教学三维目标】
根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标:
1.知识和技能目标
(1).使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;并且能理解函数最值与极值的区别和联系
(2)理解可导函数的最值存在的可能位置.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)通过函数图象的直观,让学生发现函数极值与最值的关系,掌握利用导数求函数最值的方法。

(2) 在学习过程中,观察、归纳、表述、交流、合作,最终形成认识.
(3) 培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题.
3.情感态度和价值观目标
(1) 渗透数形结合的思想,体会导数在求函数最值中的优越性,优化学生的思维品质。

(2) 认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.
(3) 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.
【教学重点、难点和关键点】
1.教学重点
基于以上对本节教材特点和教学目标的分析,将本节课的教学重点确定为:
(1)培养学生的探索精神,积累自主学习的经验;
(2)会求闭区间上的连续函数的最大值和最小值.
2.教学难点
高中年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是
(1)发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处;即理解函数的最大值、最小值与函数的极大值和极小值的区别与联系.
(2)理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
3.教学关键点
本节课突破难点的关键是:通过合作探究的方式,让学生在运动变化的过程中通过观察、比较,发现结论.
【课堂教学方法选择】
关于教法与学法:
(1)班杜拉的社会学习原理认为:观察学习是重要的学习方法.这节课采用的第一个方法就是“观察、比较法”;
(2)为了克服学生已有知识经验和阅历不足的弱点,采用多媒体辅助教学,设计了一个动画课件,让学生在函数图象的运动变化中观察、比较,发现数学本质;
(3)根据新课标的教学理念,教学中要培养学生合作共事的团队精神,这节课还采用了“合作、讨论法”,让学生共同探讨、合作学习、取长补短、形成共识.
【学法指导】
对于求函数的最值,高中学生在高一阶段的必修一的学习已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.
【教学过程】
本节课的教学,大致按照“回顾复习旧知-----创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈建构”四个环节进行组织.
值吗?
从图3.3-14可以看出,函数
值是f(a),最小值f(b).
在图3.3-14、3.3-15中,
象,它们在[a,b]上有最大值、最小值吗?如果有,最大值和最小值分别是什么?。

的球,球壳厚度为S'(a)=
【关于本节课教学设计的一些说明】
函数是中学数学的核心内容。

在整个中学数学课程中充当着联系各部分代数知识的“纽带”,可以说函数的观点和方法既贯穿了高中代数的全过程,又是学习高等数学的基础,是高考数学中极为重要的内容,而导数的思想方法和基本理论同样也有着广泛的应用,除对中学数学有重要的指导作用外,也能在中学数学的许多问题上起到居高临下和以简化繁的作用。

纵观全国及各自主命题省市近三年的高考试题,尤其是宁夏的高考试题,函数与导数在选择、填空、解答三种题型中每年都有试题,分值20分左右
高考对导数的考查主要以工具的方式进行命题,充分与函数相结合.其主要考点:
(1)考查利用导数研究函数的性质(单调性、极值与最值);
(2)考查原函数与导函数之间的关系;
(3)考查利用导数与函数相结合的实际应用题.从题型及考查难度上来看主要有以下几个特点:①以填空题、选择题考查导数的概念、求函数的导数、求单调区间、求函数的极值与最值;②与导数的几何意义相结合的函数综合题,利用导数求解函数的单调性或求
单调区间、最值或极值,属于中档题;③利用导数求实际应用问题中最值,为中档偏难题.
鉴于以上对“函数与导数”考点的分析,本节课重点在于加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开.但在课堂教学的过程中重点关注以下几个问题:
1.由于学生对导数的知识学习还谈不上深入熟练,甚至会感到还有些抽象,因此教学过程中从直观性观察和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.
2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能动性.
3.为充分调动学生的学习积极性,让学生能够主动愉快地学习,教师要精心设计现实的、有趣的、富有挑战性的教学情境、体验情景、认知情景, 以生动活泼的呈现方式, 展示数学的发生发展过程, 激发学生兴趣和美感, 引发学习激情和独立思考。

通过学生的主动活动, 包括观察、操作、猜想、收集、整理、交流等, 让其亲眼目睹数学形象而生动的过程, 亲身体验“做数学”, 实现数学的“再创造”, 并从中感受到数学的力量。

在数学
活动中, 学生的知识与技能、数学思考、问题解决、情感态度和价值观都将在主体参与的碰撞和生成活动中得到落实。

因此应该充分体现“教师为主导、学生为主体”的数学教学思想,引导学生主动参与到课堂教学全过程中
4.在教学手段上,本节课可通过制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,再结合其它多种多样的数学教学方法中,趣味性与知识性的自然融合可以给学生以愉快的求知情境;对启发和推动学生积极思维,加深理解基础知识,培养良好的思维具有十分重要的作用,是提高数学教学效率的有效途径。

相关文档
最新文档