应化-结构第1章 量子力学基础知识 (13应化)

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

17第十七章

第十七章 量子力学基础 一、基本要求 1. 了解德布罗意的物质波概念,理解实物粒子的波粒二象性,掌握物质波波长的计算。 2. 了解不确定性原理的意义,掌握用不确定关系式计算有关问题。 3. 了解波函数的概念及其统计解释,理解自由粒子的波函数。 4. 掌握用定态薛定谔方程求解一维无限深势阱的简单问题,并会计算一维问题中粒子在空间某区间出现的概率。 5. 了解能量量子化、角动量量子化和空间量子化,了解斯特恩-盖拉赫试验及微观粒子的自旋。 6. 理解描述原子中电子运动状态的四个量子数的物理意义,了解泡利不相容原理和原子的壳层结构。 二、基本内容 1. 物质波 与运动的实物粒子相联系的波动,在此意义下,微观粒子既不是经典意义下的粒子,也不是经典意义下的波。描述其波动特性的物理量v 、λ和描述其粒子特性的物理量E 、p 由德布罗意关系 h E v = p h = λ 联系起来,构成一幅统一的图像。 2. 波函数 对具有波粒二象性的微观粒子进行描述所使用的函数,一般写为(,)t ψr , 波函数的主要特点: (1)波函数必须是单值、有限、连续的; (2)*(,)(,)1t t d xd yd z ψψ=???r r (归一化条件) ; (3)*(,)t ψr ,(,)t ψr 表示粒子在t 时刻在(x 、y 、z )处单位体积中出现的

概率,称为概率密度。 特别注意自由粒子的波函数:/() i E t A e --ψ= p.r 式中P 和E 分别为自由粒子 的动量和能量。 3. 不确定性原理 1927年海森堡提出:对于一切类型的测量,不确定量?x 和? x p 之间总有 如下关系: ?x ?x p ≥2 同时能量的不确定量? E 与测定这个能量所用的时间(间隔)? t 的关系为: ?E ?t ≥ 2 不确定性原理完全起源于粒子的波粒二象特性,与所用仪器与测量方法无关。 4. 薛定谔方程 波函数(,)t ψr 所满足的方程。若已知微观粒子的初始条件,则可由薛定谔方程决定任一时刻粒子的状态。在势场(,) U t r 中,薛定谔方程可写为 2 2 2?- m (,)U t ψ+r t i ?ψ?=ψ 若势能函数() U U ≡r 与时间无关,则可将(),t ψr 写成()() f t ψr ,其中()ψr 满 足定态薛定谔方程 2 2 2? -m () ψr +()U r () ψr =E () ψr 而)(t f =Et i e - ,此时有 () ,t ψr 、)t =() ψr Et i e - 这种形式的波函数称为定态波函数,它所描写的微观粒子的状态则称为定态。在一维情况下,定态薛定谔方程成为 2 22 ()()()() 2d x U x x E x m d x -ψ+ψ=ψ 5. 一维无限深势阱中粒子的定态薛定锷方程及波函数

第22章量子力学基础教案

第二十二章量子力学基础知识 1924年德布罗意提出物质波概念。1926年薛定谔给出物质波的波函数基本动力学方程—薛定谔方程, 玻恩对波函数统计解释。1927年海森堡提出著名的不确定关系。 海森堡、狄拉克、薛定谔各建立矩阵力学、新力学和波动力学, 形成了完整的量子力学理论。--------------------------------------------------------------------------- 教学要求: * 了解实物粒子的波动性及实验,理解物质波的统计意义; * 能用德布罗意关系式计算粒子的德布罗意波长; * 了解波函数统计意义及其标准化条件和归一化条件,

会简单计算粒子的概率密度及归一化常数; * 理解不确定关系并作简单的计算; * 了解薛定谔方程及一维定态薛定谔方程 * 了解一维无限深势阱中粒子的波函数求解步骤, 学会用波函数求概率密度和发现粒子的概率。 教学内容: §22-1 波粒二象性 §22-2 波函数 §22-3 不确定关系 §22-4 薛定谔方程(简略,一维定态薛定谔方程) §22-5 一维无限深势阱中的粒子 §22-6 势垒隧道效应 * §22-7 谐振子 * 教学重点: 实物粒子的波粒二象性及其统计意

义; 概率密度和发现粒子的概率计算; 实物粒子波的统计意义—概率波; 波函数的物理意义及不确定关系。 作业 22-01)、22-03)、22-05)、22-07)、 22-09)、22-11)、22-13)、22-15)、 22-17)、22-18)、 ---------------------------------- --------------------------------- §22-1 波粒二象性 1924年,法国德布罗意在博士论文中提出:“整个世 纪以来,在辐射理论方面,比起波动的研究方法来, 是过于忽略了粒子的研究方法;那么在实物理论上, 是否发生了相反的错误,把粒子的图象想象得太多, 而过于忽略了波的图象?”德布罗意根据光与实物的

(完整版)南华物理练习第13章答案

第十三章早期量子论和量子力学基础 练习一 选择题 1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B)吸收了辐 射在它上面的全部能量; (C)不辐射能量; (D)只吸收不辐射能量。 2. 一绝对黑体在温度 T i = 1450K 时,辐射峰值所对应的波长为 1,当温度降为 725K 时, 辐射峰值所对应的波长为 2,则1/ 2为(D ) 3. 一般认为光子有以下性质( A ) (1)不论在真空中或介质中的光速都是 c ; (2)它的静止质量为零;(3)它的动量为h v /c 2; (4)它 的动能就是它的总能量;(5)它有动量和能量,但没有质量。 以上结论正确的是 (A ) (A) ( 2) (4); (B) (3) (4) ( 5); (C) (2) (4) (5); (D) ( 1) (2) ( 3)。 4. 已知某单色光 照射到一金属表面产生了光电效应,若此金属的逸出电势是 U b (使电子从 二. 填空题 1. 用辐射高温计测得炉壁小孔的辐射出射度为 2 2.8 W/cm 2,则炉内的温度为 1.416X 103K o 2. 设太阳表面的温度为 5800K ,直径为1 3.9 X 108m 如果认为太阳的辐射是常数,表面积 保持不变,则太阳在一年内辐射的能量为 1.228X 1b 34 j ,太阳在一年内由于辐射而损失 的质量为 1.3647 X 1b 17 kg o 3. 汞的红限频率为 1.09 X 1015H Z ,现用=2000?的单色光照射,汞放出光电子的最大初速 度 V b = 7.73 105 m/s ,截止电压"=1.7V o 4. 如果入射光的波长从 400nm 变到300nm 则从表面发射的光电子的遏止电压 增大(增大、 减小)。 三. 计算题 1. 星星可以看作绝对黑体, 今测得太阳辐射所对应的峰值 (A) ,2 ; (B) 1/ . 2 ; (C) 2 ; (D) 1/2。 金属逸出需做功eU b ),则此单色光的波长 必须满足:(A ) hc hc (A) ; (B) elb elb (C) eU b hc , (D) eU0 o hc

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

作业10量子力学基础( I ) 作业及参考答案

() 一. 选择题 [ C]1.(基础训练2)下面四个图中,哪一个 正确反映黑体单色辐出度 M Bλ (T)随λ 和T的变化关 系,已知T2 > T1. 解题要点: 斯特藩-玻耳兹曼定律:黑体的辐 射出射度M0(T)与黑体温度T的四次方成正比,即 . M0 (T)随温度的增高而迅速增加 维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长 m λ向短波方向移动。 [ D]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能 为E K;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K.(B) 2hν - E K.(C) hν - E K.(D) hν + E K. 解题要点: 根据爱因斯坦光电效应方程:2 1 2m h mv A ν=+, 式中hν为入射光光子能量, A为金属逸出功,2 1 2m mv为逸出光电子的最大初动能,即 E K。所以有:0 k h E A ν=+及' 2 K h E A ν=+,两式相减即可得出答案。 [ C]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁 到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV.(B) 3.4 eV.(C) 10.2 eV.(D) 13.6 eV. 解题要点: 根据氢原子光谱的实验规律,莱曼系: 2 11 (1 R n ν λ ==- 式中,71 1.09677610 R m- =?,称为里德堡常数,2,3, n= 最长波长的谱线,相应于2 n=,至少应向基态氢原子提供的能量1 2E E h- = ν, 又因为 2 6. 13 n eV E n - =,所以l h E E h- = ν=?? ? ? ? ? - - - 2 21 6. 13 2 6. 13eV eV =10.2 eV [ A]4.(基础训练8)设粒子运动的波函数图线 分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒 子动量的精确度最高的波函数是哪个图? 解题要点: 根据动量的不确定关系: 2 x x p ???≥ (B) x (A) x (B) x (C) x (D)

第19章 量子力学简介(1)作业答案

(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系) 一. 选择题 [ C ]1.(基础训练2)下面四个图中,哪一个正确反映黑体单色辐出度M B λ(T )随λ 和T 的变化关系,已知T 2 > T 1. 【提示】(1)黑体的辐射度(即曲线下的面积)满足: 4 0()M T T σ=,所以0()M T 随温度的增高而迅速增 加。 (2)单色辐出度最大值所对应的波长m λ满 足:m T b λ=,所以,随着T 的升高,m λ向短波方向移动。 [ D ]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K . 【提示】设金属逸出功为A ;设频率为2ν 的单色光照射金属时,逸出光电子的最大动能为 'K E ;则根据爱因斯坦光电效应方程,有: k h E A ν=+ 2'k h E A ν=+ 两式相减即可得出答案。 [ C ]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV . 【提示】赖曼系中最长波长的谱线,来自21E E →的跃迁,所以至少应使基态氢原子先 吸收一个光子的能量h ν跃迁到E 2能级,然后向下跃迁发出谱线。所以有 212213.613.610.221eV eV h E E eV ν???? =-=- --= ? ?? ???

第十九章 量子力学基础2(答案)

第十九章 量子力学基础(Ⅱ) (薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,21?). (B) (2,0,0,21 ). (C) (2,1,-1,21?). (D) (2,0,1,2 1 ). 【提示】p 电子:l =1,对应的m l 可取-1、0、1, m s 可取 21或2 1?。 [ C ]2.(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3.(自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4.(自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如附图所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. 【提示】隧道效应 二. 填空题 1.(基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是_________. 【提示】L 壳层:n =2,能够填充的最大电子数是2n 2=8。考虑到本题m s 只取2 1 ,此时能够填充的最大电子数是4。 2.(基础训练20)在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:(2) (3 ) (4) (5). (1)自发辐射.(2)受激辐射.(3)粒子数反转.(4)三能极系统.(5)谐振腔. x O U (x )U 0 a

第十七章量子力学简介解答和分析

习题十七 17-1 计算电子经过V U 1001=和V U 100002=的电压加速后,它的德布罗意波长1λ和2λ分别是多少? 分析 本题考察的是德布罗意物质波的波长与该运动粒子的运动速度之间的关系。 解:电子经电压U 加速后,其动能为eU E k =,因此电子的速度为: m 2e v U = 根据德布罗意物质波关系式,电子波的波长为: )(23 .12nm U emU h m h ==v =λ 若V U 1001=,则12301.=λnm ;若V U 100002=,则012302.=λnm 。 17-2 子弹质量m =40 g, 速率m/s 100=v ,试问: (1) 与子弹相联系的物质波波长等于多少? (2) 为什么子弹的物质波性不能通过衍射效应显示出来? 分析 本题考察德布罗意波长的计算。 解:(1)子弹的动量 )s /m kg (410010403?=??==-v m p 与子弹相联系的德布罗意波长 )m (1066.14 1063.63434 --?=?==p h λ (2) 由于子弹的物质波波长的数量级为m 10 34-, 比原子核的大小(约m 1014-)还小得多, 因此不能通过衍射效应显示出来. 17-3 电子和光子各具有波长0.2nm ,它们的动量和总能量各是多少? 分析 本题考察的是德布罗意物质波的波长公式。 解:由于电子和光子具有相同的波长,所以它们的动量相同,即为: )/(1032.3102.01063.624934 s m kg h p ??=??==---λ 电子的总能量为: )(1030.81420J hc c m E e -?=+=λ 而光子的总能量为:

11第十九章量子力学基础2作业答案.doc

3.(自 提高16)有一种原子,在基态时 =1和〃 =2的主壳层都填满电子, 3s 次壳层也 作业+—(第十九章 量子力学简介(II)) (薛定谱方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 电子组态 [C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(〃,I, 可能 取的值为 (A ) (2, 2, 1, ")? (B ) (2, 0, 0, O (C ) (2, 1, -1, 少 (D ) (2, 0, 1, 1 【提示】P 电子:Z=b 对应的叫可取一1、0、1,风可取上或一 2 2 2.(基础训练17)在主量子数// =2,自旋磁量子数=上的量子态中,能够填充的最大电 2 子数是 4 . 【提示】主量子数〃 =2的L 克层上最多可容纳2^=8个电子(电子组态为2$22p6),如 仅考虑自旋磁量子数=-的量子态,则能够填充的电子数为上述值的一半。 2 填满电子,而3p 壳层只填充一半.这种原子的原子序数是_15 ,它在基态的电子组态为 “2 2s? 2I )6 3S 2 31)3 . 4.(自测提高17)在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子 中电子的状态: 1 I (1) n =2, / = 1 ,如=一1, in.=—. 2 n 1 (2) (2) n =2, / =0, nil = 0 , in,=—. ------ 2 If 1 (3) 〃 =2, / =1? mi — m s =—或-—. 2 2 【提示】/的取值:0,1,2,……(〃-1); 叫的取值:0,±1,±2,……±/; 的取值:±1 激光 [C ]5,(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性.

(完整版)南华物理练习第13章答案

第十三章 早期量子论和量子力学基础 练 习 一 一. 选择题 1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。 2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A) 2; (B) 2/1; (C) 2 ; (D) 1/2 。 3. 一般认为光子有以下性质( A ) (1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。 以上结论正确的是 ( A ) (A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。 4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从 金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤ ; (B) 0hc eU λ≥; (C) 0eU hc λ≤; (D) 0 eU hc λ≥。 二. 填空题 1. 用辐射高温计测得炉壁小孔的辐射出射度为2 2.8W/cm 2,则炉内的温度为 1.416×103K 。 2. 设太阳表面的温度为5800K ,直径为1 3.9×108 m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。 3. 汞的红限频率为1.09×1015 Hz ,现用λ=2000?的单色光照射,汞放出光电子的最大初速度0v =5 7.7310 m/s ? ,截止电压U a = 1.7V 。 4. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电压增大(增大、减小)。 三. 计算题 1. 星星可以看作绝对黑体,今测得太阳辐射所对应的峰值波长λm1=5500?,北极星辐射所对应的峰值波长λm2=0.35μm ,求太阳的表面温度T 1和北极星的表面温度T 2 .

第十七章 量子物理基础习题解

第十七章 量子物理基础 17–1 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 。 解:将炉壁小孔看成黑体,由斯特藩—玻耳兹曼定律()4T T M B σ=得炉内的温度为 34 8 44 10416.11067.5108.22) (?=??==-σ T M T B K 17–2 人体的温度以36.5?C 计算,如把人体看作黑体,人体辐射峰值所对应的波长为 。 解:由维恩位移定律b T =m λ得人体辐射峰值所对应的波长为 33m 10363.95.30910898.2?=?== -T b λnm 17–3 已知某金属的逸出功为A ,用频率为1ν的光照射该金属刚能产生光电效应,则该金属的红限频率0ν= ,遏止电势差U c = 。 解:由爱因斯坦光电效应方程W m h += 2 m 2 1v ν,A W =,当频率为1ν刚能产生光电效应,则02 12 m =v m 。故红限频率 h A /0=ν 遏止电势差为 ()01011ννννν-=-=-= e h e h e h e W e h U c 17–4 氢原子由定态l 跃迁到定态k 可发射一个光子,已知定态l 的电离能为0.85eV ,又已知从基态使氢原子激发到定态k 所需能量为10.2eV ,则在上述跃迁中氢原子所发射的光子的能量为 eV 。 解:氢原子的基态能量为6.130-=E eV ,而从基态使氢原子激发到定态k 所需能量为 E ?=10.2eV ,故定态k 的能量为 eV 4.32.106.130-=+-=?+=E E E k 又已知eV 85.0-=l E ,所以从定态l 跃迁到定态k 所发射的光子的能量为 eV 55.2=-=k l E E E 17–5 一个黑体在温度为T 1时辐射出射度为10mW/cm 2,同一黑体,当它的温度变为2T1时,其辐射出射度为[ ]。 A .10mW/cm 2 B .20mW/cm 2 C .40mW/cm 2 D .80mW/cm 2 E .160mW/cm 2 解:由斯特藩—玻耳兹曼定律,黑体的总辐射能力和它的绝对温度的四次方成正比,即 ()4T T M B σ= 故应选(E )。

大学物理讲义(第15章量子力学基础)第五节

§15.5 量子力学的基本概念和基本原理 描述微观粒子运动的系统理论是量子力学,它是薛定谔、海森伯等人在 1925~1926年期间初步建立起来的.本节介绍量子力学的基本概念和基本方程. 一、波函数极其统计解释 在经典力学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用 它的位置矢量和动量来描述的.但是,对于微观粒子,由于它具有波动性,根据不确 定关系,其位置和动量是不同时具有确定值的,所以我们就不可能仍然用位置、动 量及轨道这样一些经典概念来描述它的运动状态.微观粒子的运动状态称为量子 态,是用波函数来描述的,这个波函数所反映的微观粒子的波动性,就是德布罗意 波.这是量子力学的一个基本假设. 例如一个沿X 轴正方向运动的不受外力作用的自由粒子,由于能量E 和动量p 都是恒量,由德布罗意关系式可知,其物质波的频率ν和波长λ也都不随时间变化,因此自由粒子的德布罗意波是一个单色平面波. 对机械波和电磁波来说,一个单色平面波的波函数可用复数形式表示为 )(2)x/λνt πi Ae t y(x,--= 但实质是其实部.类似地,在量子力学中,自由粒子的德布罗意波的波函数可表示 为 η)/(0)(Px Et i e t x,--ψ=ψ 式中0ψ是一个待定常数, η/0iPx e ψ相当于x 处波函数的复振幅,而ηiEt/e -则反映波函 数随时间的变化. 对于在各种外力场中运动的粒子,它们的波函数要随着外场的变化而变化.力 场中粒子的波函数可通过下面要讲的薛定谔方程来求解. 经典力学中的波函数总代表某一个物理量在空间的波动,然而量子力学中的 波函数又代表着什么呢?对此,历史上提出了各种不同的看法,但都未能完善的解 释微观粒子的波—粒二象性,直到1926年玻恩(M.Born,1882—1970)提出波函数的 统计解释才完善的解释了微观粒子的波—粒二象性.玻恩认为:实物粒子的德布 罗意波是一种几率波;t 时刻,粒子在空间 r 附近的体积元dV 中出现的几率dW 与该处波函数的模方成正比,即 V t r,Ψt r,ΨV t r,ΨW *d d d 2 )()()(== (15.35) 由式(15.35)可知,波函数的模方2)(t r,Ψ代表t 时刻粒子在空间r 处的单位体积中 出现的几率,称为几率密度.这就是波函数的物理意义,波函数本身没有直接的物

《新编基础物理学》第15章习题解答和分析

第15章 早期量子论 15-1 某物体辐射频率为14 6.010Hz ?的黄光,问这种辐射的能量子的能量是多大? 分析 本题考察的是辐射能量与辐射频率的关系. 解: 根据普朗克能量子公式有: -3414196.6310 6.010 4.010(J)h εν-==???=? 15-2 假设把白炽灯中的钨丝看做黑体,其点亮时的温度为K 2900. 求: (1) 电磁辐射中单色辐出度的极大值对应的波长; (2) 据此分析白炽灯发光效率低的原因. 分析 维恩位移定律告诉我们,电磁辐射中单色辐出度的极大值对应的波长与温度的乘积等于一个常量.由此可以直接由维恩位移定律求解. 解 (1)由维恩位移定律,得 -3 -72.89810=9.9910(m)=999(nm)2900 b T λ?==? (2)因为电磁辐射中单色辐出度的极大值对应的波长在红外区域,所以白炽灯的发光 效率较低。 15-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108km )。 分析 本题是斯忒藩—玻尔兹曼定律的应用。 解: 由 40T M σ= 太阳的辐射总功率为 242 8482 0026 44 5.671060004(6.9610)4.4710(W) S S S P M R T R πσππ-===?????=? 地球接受到的功率为 622262211 17 6.3710() 4.4710()422 1.49610 2.0010(W) S E E E S P R P R P d d ππ?===???=? 把地球看作黑体,则 2 4 2 44E E E E E R T R M P πσπ== 290(K)E T ===

程守洙《普通物理学》(第5版)辅导系列-章节题库-第13章 早期量子论和量子力学基础【圣才出品】

第13章 早期量子论和量子力 学基础 一、选择题 1.用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为 ;若改用频率为2 ν的单色光照射此种金属时,则逸出光电子的最大动能为( )。 A . B . C .D .【答案】C 【解析】因为 所以2.关于不确定关系 ,以下几种理解正确的是( )。 A .粒子的动量不能准确确定 B .粒子的坐标不能准确确定 C .粒子的动量和坐标不能同时准确确定 D .不确定关系仅适用于电子和光子等微观粒子,不适用于宏观粒子 【答案】C 3.一个光子和一个电子具有相同的波长,则( )。

A.光子具有较大的动量B.电子具有较大的动量C.电子与光子的动量相等D.电子和光子的动量不确定【答案】C 4.设粒子运动的波函数如图A、B、C 、D四个选项所示。那么,其中 ______选项确定 粒子动量的准确度最高;而______选项确定粒子位置的准确度最高。 A. B. C. D. 【答案】A ;D 二、填空题 1.当波长为300nm的光照射在某金属表面时,光电子的最大动能为 那么,此金属的遏止电势差,截止频率。 【答案】2.5V;4.0×1014Hz 2.在康普顿效应中,波长为λ0的入射光子与静止的自由电子碰撞后反向弹回,而散射光子的波长变为λ,则反冲电子获得的动能为______。

【答案】 3.原子内电子的量子态由四个量子数表征.当一定时,不同量子态的数目为______,当n 、l 一定时,不同量子态数目为______,当n 一定时,不同的量子态数目为______。 【答案】2;2(21+1);2n 2 4.按量子力学理论,若氢原子中电子的主量子数n =3,那么它的轨道角动量可能有个取值;若电子的角量子数l =2,则电子的轨道角动量在磁场方向的分量可能取的各个值为______。 【答案】3; 三、问答题 1.用光的波动说解释光电效应实验存在哪些困难? 答:(1)金属中的自由电子,由于受到带正电的原子核的吸引,必须从外部获得足够的能量才能从金属中逸出。按照波动理论,光的能量是由光的强度决定的,而光的强度又是由光波的振幅决定的,跟频率无关,因此无论光的频率如何,只要光的强度足够大或照射时间足够长,都能够使电子获得足够的能量产生光电效应。然而这跟实验结果是直接矛盾的。极限频率的存在,即频率低于某一数值的光不论强度如何都不能产生光电效应,这是波动理论不能解释的。

第15章量子力学习题解答

第15章 量子物理基础习题 15.1 钾的光电效应红限波长为μm 62.00=λ。求(1)钾的逸出功;(2)在波长nm 330=λ的紫外光照射下,钾的遏止电势差。 解:(1)逸出功eV 01.2J 1021.31900=?== =-λνhc h W (2)由光电效应方程W m h m +=221υν及022 1eU m m =υ 可得 V 76.10=-=-=e W e hc e W e h U λν 15.2 铝的逸出功为4.2eV ,今用波长为200nm 的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?遏止电势差为多大?铝的红限波长是多大? 解:(1)由光电效应方程W m h m +=22 1υν,得 eV 0.2J 1023.321192=?=-=-=-W hc W h m m λ νυ (2)由022 1eU m m =υ,得 V 0.22120==e mv U m (3)由00λνhc h W ==,得 nm 2960==W hc λ 15.3 钨的逸出功是4.52eV ,钡的逸出功是2.50eV ,分别计算钨和钡的截止频率。哪一种金属可以作可见光范围内的光电管阴极材料? 解:由光电效应方程W m h m +=22 1υν可知,当入射光频率

.02 120===υννm h W 表面,其初动能时,电子刚能逸出金属因此0ν是能产生光电效应的入射光的最低频率(即截止频率),它与材料的种类有关。 钨的截止频率 z h W H 1009.115101?==ν 钡的截止频率 z h W H 10603.015202?== ν 对照可见光的频率范围0.395×1015~0.75×1015z H 可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管阴极材料。 15.4 钾的截止频率为4.62×1014z H ,今以波长为435.8nm 的光照射,求钾放出的光电子的初速度。 解:根据光电效应的爱因斯坦方程 W m h m +=22 1υν 其中 0νh W =, λ νc = 所以电子的初速度 152/10s m 1074.5)(2-??=??????-=νλυc m h 由于逸出金属的电子的速度c <<υ,故式中m 取电子的静止质量。 15.5 用波长nm 1.00=λ的光子做康普顿散射实验。求散射角为900的散射波长是多少?(普朗克常量h =6.63×10-34J ·s ,电子静止质量m e =9.11×10-31kg ) 解:(1)康普顿散射光子波长改变为: m 10024.0)cos 1(10-?=-=?θλc m h e m 10024.1100-?=?+=λλλ

程守洙《普通物理学》(第6版)(下册)-第13章 早期量子论和量子力学基础-课后习题详解【圣才出品】

第13章 早期量子论和量子力学基础 13.2 课后习题详解 一、复习思考题 §13-1 热辐射普朗克的能量子假设 13-1-1 两个相同的物体A和B,具有相同的温度,如A物体周围的温度低于A,而B物体周围的温度高于B.试问:A和B两物体在温度相同的那一瞬间,单位时间内辐射的能量是否相等?单位时间内吸收的能量是否相等? 答:单位时间内辐射的能量和吸收的能量不相等. (1)物体的辐出度M(T)是指单位时间内从物体表面单位面积辐射出的各种波长的 总辐射能.由其函数表达式可知,在相同温度下,各种不同的物体,特别是在表面情况(如粗糙程度等)不同时,Mλ(T)的量值是不同的,相应地M(T)的量值也是不同的. 若A和B两物体完全相同,包括具有相同的表面情况,则在温度相同时,A和B两物 体具有相同的辐出度. (2)A和B两物体在温度相同的那一瞬间,两者的温度与各自所处的环境温度并不 相同,即未达到热平衡状态.因为A物体周围的环境温度低于A,所以物体A在单位时间 内的吸收能小于辐射能;又因为B物体周围的环境温度高于B,所以物体B在单位时间内 的吸收能大于辐射能.因为两者的辐出能相同,所以单位时间内A物体从外界吸收的能量 大于B物体从外界吸收的能量.

13-1-2 绝对黑体和平常所说的黑色物体有何区别?绝对黑体在任何温度下,是否都是黑色的?在同温度下,绝对黑体和一般黑色物体的辐出度是否一样? 答:(1)①绝对黑体(黑体)是指在任何温度下,对任何波长的辐射能的吸收比都等于1,即aλ(T)=1的物体.绝对黑体不一定是黑色的,它是完全的吸收体,然而在自然界中,并不存在吸收比等于1的黑体,它是一种像质点、刚体、理想气体一类的理想化的物理模型.实验中通常以不透明材料制成开有小孔的空腔作为绝对黑体的近似,空腔的小孔就相当于一个黑体模型. ②黑色物体是指吸收大部分色光,并反射部分复色光,从而使人眼看不到其他颜色,在人眼中呈现出黑色的物体.现实生活中的黑色物体的吸收比总是小于1,如果吸收比等于1,那么物体将没有反射光发出,人眼也就接收不到任何光线,那么黑色物体也就不可视了. 因为绝对黑体对外界的能量不进行反射,即没有反射光被人眼接收,从这个角度讲,它是“黑”的.如同在白天看幽深的隧道,看起来是黑色,其实是因为进入隧道的光线很少被发射出来,但这并不代表隧道就是黑色的.然而,黑色物体虽然会吸收大部分色光,但还是会反射光线的,只是反射的光线很微弱而已.所以,不能将黑色的物体等同于黑体. (2)绝对黑体是没有办法反射任何的电磁波的,但它可以放出电磁波来,而这些电磁波的波长和能量则全取决于黑体的温度,却不因其他因素而改变.黑体在700K以下时,黑体所放出来的辐射能量很小且辐射波长在可见光范围之外,看起来是黑色的.若黑体的温度超过700K,黑体则不会再是黑色的了,它会开始变成红色,并且随着温度的升高,而分别有橘色、黄色、白色等颜色出现,例如,根据冶炼炉小孔辐射出光的颜色来判断炉膛温度.

第13章 量子力学基础..

第13章 量子力学基础 13.1 绝对黑体和平常所说的黑色物体有什么区别? 答:绝对黑体是对照射其上的任意辐射全部吸收而不发生反射和透射的物体,而平常所说的黑色物体是只反射黑颜色的物体。 13.2 普朗克量子假设的内容是什么? 答:普朗克量子假设的内容是物体发射和吸收电磁辐射能量总是以νεh =为单位进行。 13.3 光电效应有哪些实验规律?用光的波动理论解释光电效应遇到了哪些困难? 答:光电效应的实验规律为:1)阴极K 在单位时间内所发射的光子数与照射光的强度成正比;2)存在截止频0ν;3)光电子的初动能与照射光的强度无关,而与频率成线性关系; 4)光电效应是瞬时的。 用光的波动理论解释光电效应遇到的困难在于:1)按照波动理论,光波的能量由光强决定,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能却与光强无关;2)若光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应存在红限;3)光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需时间就越长。这都与光电效应的实验事实相矛盾。 13.4 波长λ为0.1nm 的X 射线,其光子的能量ε= J 151099.1-?;质量m = kg 321021.2-?;动量p = 1241063.6--???s m kg . 13.5 怎样理解光的波粒二象性? 答:光即具有波动性,又具有粒子性,光是粒子和波的统一,波动和粒子是光的不同侧面的反映。 13.6 氢原子光谱有哪些实验规律? 答:氢原子光谱的实验规律在于氢原子光谱都由分立的谱线组成,并且谱线分布符合组合规律 )11()()(~2 2n k R n T k T kn -=-=ν k 取 ,3,2,1,分别对应于赖曼线系,巴耳米线系,帕形线系,. 13.7 原子的核型结构模型与经典理论存在哪些矛盾? 答:原子的核型结构与经典理论存在如下矛盾:1)按经典电磁辐射理论,原子光谱应是连续的带状光谱;2)不存在稳定的原子。这些结论都与实验事实矛盾。 13.8 如果枪口的直径为5mm,子弹质量为0.01kg,用不确定关系估算子弹射出枪口时的横

第十九章 量子力学基础( I ) 作业参考答案(2015)

() 一. 选择题 [ D ]1.(基础训练1)在加热黑体过程中,其最大单色辐出度(单色辐射本领)对应的波长由0.8 μm 变到0.4 μm ,则其辐射出射度(总辐射本领)增大为原来的 (A) 2倍. (B) 4倍. (C) 8倍. (D) 16倍. [ ] 提示: 由维恩位移定律:T m λ=b ,∴m λ∝ T 1,即1221 m m T T λλ= 又由斯特藩-玻耳兹曼定律,总辐射出射度: 0400 ()()M T M T d T λλσ∞ ==? 444022140112()0.8 ()(16()0.4 M T T M T T λλ∴==== [ D ]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最 大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大 动能为: (A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K . 提示: 根据爱因斯坦光电效应方程:2 012 m h mv A ν=+, 式中h ν为入射光光子能量,0A 为金属逸出功,2 12 m mv 为逸出光电子的最大初动能,即E K 。 所以有:0k h E A ν=+及' 02K h E A ν=+,两式相减即可得出答案。 [ C ]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV . 提示: 根据氢原子光谱的实验规律,莱曼系:2 1 1 (1)R n νλ = =- 最长波长的谱线,相应于2n =,至少应向基态氢原子提供的能量12E E h -=ν,又因为26.13n eV E n - =,所以l h E E h -=ν=???? ??---2216.1326.13eV eV =10.2 eV

相关文档
最新文档