2019-2020学年江苏省镇江市扬中市八年级(下)期末数学试卷
2019-2020学年镇江市八年级下学期期末数学试卷

2019-2020学年镇江市八年级下学期期末数学试卷一、选择题(本大题共6小题,共18.0分)1.下列图形中,既是轴对称图形,又是中心对称轴图形的是()A. B. C. D.2.下列事件中,必然事件是()A. 随机抛掷一颗骰子,朝上的点数是6B. 今天考试小明能得满分C. 明天气温会升高D. 早晨的太阳从东方升起3.若将分式a+b4ab中的a与b的值都扩大为原来的2倍,则这个分式的值将()A. 缩小为原来的12B. 缩小为原来的14C. 分式的值不变D. 扩大为原来的2倍4.如图所示,已知A(12,y1),B(2,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A. (12,0)B. (1,0)C. (32,0)D. (52,0)5.如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,顶点B在第一象限,函数y=2x(x>0)的图象经过对角线OB上的一点D.若DB= 2OD,则矩形OABC的面积为()A. 6B. 8C. 9D. 186.某次列车平均提速vkm/ℎ,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A. s50+v km/ℎ B. s+50v+50km/ℎ C. s50km/ℎ D. sv50km/ℎ二、填空题(本大题共12小题,共24.0分)7.已知y=√x−1−√1−x,则x+y的值为______.8.写一个你喜欢的实数m的值,使得事件“对于二次函数,当x<−3时,y随x的增大而减小”成为随机事件.9.如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则√b2−|a−b|=______.10.化简:(√5)2=______;√(−5)2=______;√9=______.11.小明统计了本班40名学生出生月份,其中在9月份出生的频率为0.5,那么九月份出生的有______人.12.如图,在锐角△ABC中,BD⊥AC,DE⊥BC,AB=14,AD=4,BE:EC=5:1,则CD=______ .13.在平行四边形ABCD中,E为CD边的中点,且∠EAF=∠DAE,AF交射线BC于点F,若AF=13,CF=3,则BF的长度为______.14.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/ℎ,到达时所用的时间是th,那么t是v的______ 函数,t可以写成v的函数关系式是______ .15.连云港与上海两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍.求高铁列车的平均行驶速度.如果设高铁的行驶速度为xkm/ℎ,则可列出方程为______ .16.如图所示,直线y=12x分别与双曲线y=k1x(k1>0,x>0)、双曲线y=k2x(k2>0,x>0)交于点A,点B,且OA=2AB,将直线向左平移4个单位长度后,与双曲线y=k2x交于点C,若S△ABC=1,则k1k2的值为______.17.使关于x的分式方程k−1x−1=2的解为非负数,且使正比例函数y=(k−3)x图象过第二、四象限时满足条件的所有整数k的和为______.18.已知A(−4,2),B(2,−4)是一次函数y=kx+b的图象和反比例函数y=mx图象的两个交点.则关于x的方程kx+b=mx的解是______.三、解答题(本大题共8小题,共78.0分)19.在学习二次根式化简时,有时会碰到形如1√2−1的式子,这时可以将其进一步化简,例如:①√5=√5√5⋅√5=2√55;②(√2−1)=√2+1)(√2−1)(√2+1)=√2+1(√2)2−12=√2+1.这种化简的步骤叫做分母有理化.(1)根据上述方法化简:√5−√2;(2)化简:√2+1+√3+√2+√4+√3+⋯√10+√9.20.解分式方程:4x2−4=3x+2+1x−221.每年12月4日是“国家宪法日”.某中学为了让学生学宪法,成为宪法小卫士,组织全校学生参加了“宪法知识网络答题”活动.该校德育处对九年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校九年级共有______ 名学生,“优秀”所占圆心角的度数为______ .(2)请将图1中的条形统计图补充完整.(3)已知该市共有20000名学生参加了这次“宪法知识网络答题”活动,请以该校九年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(n>0)交于点A(1,3),B(3,m).22.一次函数y1=kx+b与反比例函数y2=nx(1)分别求两个函数的解析式;(2)根据图象直接写出,当x为何值时,y1<y2.23.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求证:△MNC是等边三角形.24.解下列方程:100x =30x−7.25.如图,在平面直角坐标系中,点A,B的坐标分别是(−3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造平行四边形PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:AC=DE;(3)在线段PE上取点F,使PF=2,过点F作MN⊥PE,截取FM=√3,FN=1,且点M,N分别在第一、四象限,在运动过程中,当点M,N中,有一点落在四边形ADEC的边上时,直接写出所有满足条件的t的值.26.△ABC的三边AB、BC、AC的长分别为√5、√10、√13,求这个三角形的面积,小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求△ABC的高,而借用网格就能计算出它的面积,这种方法叫做构图法.(1)△ABC的面积为:______.(2)若△DEF三边的长分别为√5、√8、√17,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图4,一个六边形绿化区ABCDEF被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为8,13,17,请在图3的正方形网格中画出相应的△PQR,据此可得图4中的△PQR的面积为______六边形花坛ABCDEF的面积为______.【答案与解析】1.答案:D解析:解:A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、不是中心对称图形,也不是轴对称图形,故此选项错误;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,符合题意;故选:D.根据中心对称图形以及轴对称图形的定义即可作出判断.此题主要考查了中心对称图形与轴对称图形的定义,正确理解定义是解题关键.2.答案:D解析:解:A、随机抛掷一颗骰子,朝上的点数是6是随机事件,不符合题意;B、今天考试小明能得满分是随机事件,不符合题意;C、明天气温会升高是随机事件,不符合题意;D、早晨的太阳从东方升起是必然事件,符合题意,故选:D.直接利用随机事件以及概率的意义分别分析得出答案.此题主要考查了概率的意义以及随机事件,正确区分各事件的意义是解题关键.3.答案:A解析:解:∵a+b4ab中的a与b的值都扩大为原来的2倍,∴2a+2b4×2a⋅2b =2(a+b)4×4ab=12·a+b4ab,∴这个分式的值将缩小为原来的12.故选:A.a与b的值都扩大为原来的2倍代入原分式,再化简即可得出关系.本题主要考查了分式的基本性质,解题的关键是代入化简与原分式比较.4.答案:D解析:解:∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP 中,由三角形的三边关系定理得:|AP −BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA −PB =AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入得:{2=12k +b 12=2k +b , 解得:k =−1,b =52,∴直线AB 的解析式是y =−x +52,当y =0时,x =52,即P(52,0),故选:D .求出AB 的坐标,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP −BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA −PB =AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可. 本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度. 5.答案:D解析:解:如图作DE ⊥x 轴垂足为E ,∴S △AOD =12×2=1, ∵DE//AB ,∴△ODE∽△OBA ,∴S △ODES △OBA =(OD OB )2=(13)2=19, ∴S △OBA =9S △ODE =9,∴S 矩形OABC =2S △OBA =18.故选:D .作DE ⊥x 轴垂足为E ,求出△ODE 的面积,根据相似三角形的性质即可求得△AOB 的面积,从而求得矩形OABC 的面积.本题考查反比例函数k的几何意义,求出△ODE的面积是解题的关键,记住反比例函数的比例系数12|k|=S△ODE,属于中考常考题型.6.答案:D解析:解:设提速前这次列车的平均速度xkm/ℎ.由题意得,sx =s+50x+v,方程两边乘x(x+v),得s(x+v)=x(s+50)解得:x=sv50,经检验:由v,s都是正数,得x=sv50是原方程的解.∴提速前这次列车的平均速度sv50km/ℎ,故选:D.设列车提速前的平均速度是xkm/ℎ,则提速后的速度为(x+v)km/ℎ,根据用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,列方程解答即可.本题考查了列代数式(分式),解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.7.答案:1解析:解:由题意可知:x−1≥0且1−x≥0,∴x=1,∴y=0,∴x+y=1+0=1,故答案为:1根据二次根式有意义的条件即可求出x与y的值.本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.8.答案:解析:9.答案:−a解析:解:根据题意得:a>0,b<0,即a−b>0,则原式=|b|−|a−b|=−b−a+b=−a.故答案为:−a.根据题意判断出a与b的正负,以及a−b的正负,利用绝对值及二次根式的性质化简,计算即可得到结果.此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握绝对值的代数意义是解本题的关键.10.答案:5 5 3解析:解:(√5)2=5,(√(−5)2)=5,√9=3,故答案为:5,5,3根据二次根式的性质即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.11.答案:20解析:解:因为该班共有40名学生,其中9月份出生的频率为0.5,所以九月份出生的有40×0.5=20人,故答案为:20.根据频数=总数×频率解答可得.本题主要考查频数与频率,解题的关键是掌握频率=频数÷数据总数.12.答案:6解析:解:∵BD⊥AC,∴∠ADB=∠BDC=∠BDE+∠CDE=90°,∵AB=14,AD=4,∴BD=√142−42=6√5.∵DE⊥BC,∴∠BED=∠CED=90°,∴∠C+∠CDE=90°,∴∠C=∠BDE,∴△DEB∽△CED.∴DE:CE=BE:DE,CD:BD=CE:DE,∵BE:EC=5:1,∴CE:DE=1:√5,∴CD=6.根据垂线的性质及勾股定理先求出BD的长,再通过已知证明△DEB∽△CED,根据相似三角形的性质求出CD的长.本题综合考查了勾股定理,三角形相似的判定与性质等知识.有一定的难度.13.答案:7或19解析:解:延长AE交BC的延长线于G,分两种情况:①如图1所示:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∴∠G=∠DAE=∠EAF,∠D=∠GCE,∴GF=AF=13,∴GC=GF−CF=13−3=10,∵E为CD边的中点,∴DE=CE,在△ADE和△GCE中,{∠DAE=∠G ∠D=∠GCE DE=CE ,∴△ADE≌△GCE(AAS),∴AD=GC=10,∴BC=10,∴BF=BC−CF=7;②如图②所示:同①得:GF=AF=13,△ADE≌△GCE,∴GC=GF+CF=16,AD=GC=16,∴BC=16,∴BF=BC+CF=19;综上所述,BF的长度为7或19;故答案为:7或19.延长AE交BC的延长线于G,分两种情况:①如图1所示:由平行四边形的性质得出AD//BC,AD= BC,证出∠G=∠DAE=∠EAF,∠D=∠GCE,得出GF=AF=13,求出GC=GF−CF=10,由AAS证明△ADE≌△GCE,得出AD=GC=10,BC=10,即可求出BF的长度;②如图②所示:同①得:GF =AF =13,△ADE≌△GCE ,求出GC =GF +CF =16,AD =GC =16,得出BC =16,即可求出BF 的长度即可.本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.14.答案:反比例;t =300v 解析:解:t =300v ,符合反比例函数的一般形式. 时间=路程速度,把相关字母代入即可求得函数解析式,看符合哪类函数的特征即可. 解决本题的关键是得到所求时间的等量关系,注意反比例函数的一般形式为y =k x (k ≠0,且k 为常数).15.答案:480x +4=48013x解析:解:设高铁的行驶速度为xkm/ℎ,则普通快车的平均行驶速度为13xkm/ℎ,根据题意,可得:480x +4=48013x , 故答案为480x +4=48013x . 设高铁的行驶速度为xkm/ℎ,则普通快车的平均行驶速度为13xkm/ℎ,根据“乘坐高铁列车比乘坐普通快车能提前4h 到达”可列方程.本题主要考查由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程. 16.答案:9解析:解:直线y =12x 向左平移4个单位后的解析式为y =12(x +4),即y =12x +2,∴直线y =12x +2交y 轴于E(0,2),作EF ⊥OB 于F ,可得直线EF 的解析式为y =−2x +2,由{y =12x y =−2x +2解得{x =45y =25,∴EF =√(45)2+(2−25)2=45√5,∵S △ABC =1,∴12⋅AB ⋅EF =1,∴AB =√52,OA =2AB =√5,∴A(2,1),B(3,32),∴k 1=2,k 2=92,∴k 1⋅k 2=9.故答案为9想办法求出A 、B 两点坐标求出k 1、k 2即可解决问题.本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题. 17.答案:1解析:解:∵关于x 的分式方程k−1x−1=2的解为非负数,∴x =k+12≥0,且x −1≠0,解得:k ≥−1且k ≠1,∵正比例函数y =(k −3)x 的图象过第二、四象限,∴k −3>0,解得:k <3,∴−1≤k <3且k ≠1,∴k =−1,0,2,∴−1+0+2=1.故答案为1.根据题意可以求得k 的满足条件的所有整数值,从而可以解答本题.本题考查正比例函数的性质、分式方程的解、解一元一次不等式,解答本题的关键是明确题意,找出所求问题需要的条件,利用正比例函数的性质、分式方程和不等式的性质解答.18.答案:x 1=−4,x 2=2解析:解:∵A(−4,2),B(2,−4)是一次函数y =kx +b 的图象和反比例函数y =m x 图象的两个交点,∴关于x的方程kx+b=m的解是x1=−4,x2=2,x故答案为x1=−4,x2=2.利用数形结合的思想解决问题即可.本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,属于中考常考题型.19.答案:解:(1)原式=√5+√2)(√5−√2)(√5+√2)=√5+√2;(2)原式=√2−1+√3−√2+√4−√3+⋯+√10−√9=√10−1.解析:(1)把分子分母都乘以(√5+√2),然后利用平方差公式计算;(2)先分母有理化,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.答案:解:去分母:4=3x−6+x+2解得:x=2,经检验当x=2时,x−2=0,所以x=2是原方程的增根,此题无解解析:找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到原分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.答案:500 108°解析:解:(1)该校九年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为=108°;360°×150500故答案为:500,108°;(2)“一般”的人数为500−150−200−50=100(名),补全条形统计图如下:(3)20000×50500=2000(名),该校九年级学生答题成绩统计情况估计该市大约有2000名学生在这次答题中成绩不合格.(1)由“良好”的人数和其所占的百分比即可求出总人数;由360°乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数;(2)求出“一般”的人数,补全条形统计图即可;(3)由20000乘以“不合格”所占的比例即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.答案:解:(1)把A(1,3)代入y2=nx得n=1×3=3,∴反比例函数解析式为y2=3x,把B(3,m)代入y2=3x得3m=3,解得m=1,则B(3,1),把A(1,3),B(3,1)代入y1=kx+b得{k+b=33k+b=1,解得{k=−1b=4,∴一次函数解析式为y1=−x+4;(2)从图象看,当0<x<1或x>3时,y1<y2;解析:(1)先把A点坐标代入y2=nx中求出n得到反比例函数解析式,再利用反比例函数解析式确定B点坐标,然后利用待定系数法求一次函数解析式;(2)利用函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.23.答案:证明:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACB+∠BCD=∠ACD,∠DCE+∠BCD=∠BCE,∴∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE;(2)∵△ACD≌△BCE,∴∠CAD=∠CBE,∵点M、N分别是线段AD、BE的中点,AD=BE,∴AM=BN,在△ACM和△BCN中,{AC=BC∠CAD=∠CBE AM=BN,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∴∠MCN=∠BCM+∠BCN=∠BCM+∠ACM=∠ACB=60°,∴△MNC是等边三角形.解析:本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握三角形全等的判定方法并准确识图找出全等的条件是解题的关键.(1)根据等边三角形的性质可得AC=BC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠CBE,再根据中点定义求出AM=BN,然后利用“边角边”证明△ACM和△BCN全等,根据全等三角形对应边相等可得CM=CN,全等三角形对应角相等可得∠ACM=∠BCN,然后求出∠MCN=∠ACB=60°,从而得证.24.答案:解:方程两边同乘x(x−7)得100(x−7)=30x解得:x=10,检验:当x =10时,x(x −7)≠0,所以x =10是原分式方程的解.解析:利用等式的基本性质,把原分式方程转化为一元一次方程,求得x 的值,进一步检验得出答案即可.此题考查解分式方程,掌握解答的步骤与方法是解决问题的关键.25.答案:解:(1)∴A(−3,0),B(0,6),∴OA =3,OB =6∵CO =12BO =3,则t =32, OP =32,则OE =OP +PE =OP +OA =32+3=92,则E 的坐标是(92,0);(2)∵四边形PCOD 是平行四边形,∴OC =PD ,在△AOC 和△EPD 中,{OA =PE ∠AOC =∠EPD OC =PD,∴△AOC≌△EPD(SAS),∴AC =DE .(3)C 的坐标是(0,6−2t),P 的坐标是(t,0),则F 的坐标是(t +2,0),E 的坐标是(t +3,0),D 的坐标是(t,2t −6).设CE 的解析式是y =kx +b ,则{b =6−2t (t +3)k +b =0, 解得:{k =2t−6t+3b =6−2t, 则CE 的解析式是y =2t−6t+3x +6−2t ,同理DE 的解析式是y =6−2t 3x −2(9−t 2)3.当M 在CE 上时,M 的坐标是(t +2,√3),则2t−6t+3⋅(t +2)+6−2t =√3,解得:t =21−12√3.当N 在DE 上是,N 的坐标是(t +2,−1),则6−2t 3⋅(t +2)−23(9−t 2)=−1, 解得:t =32.当点C 在y 轴的负半轴上时,如果点M 在DE 上时,2t−63=√3,可得t =3+3√32, 如果点N 在CE 上时,−(6−2t)3+t =1,可得t =9.综上所述,满足条件的t 的值:t 1=21−12√3,t 2=32,t 3=3+3√32,t 4=9. 解析:(1)当C 运动到OB 的中点时,根据时间t =路程/速度即可求得,进而求得E 的坐标;(2)证明△AOC≌△EPD ,则AC =DE ,∠CAO =∠DEP ,则AC 和DE 平行且相等,则四边形ADEC 为平行四边形;(3)首先确定直线DE ,EC 的解析式,分两种情形分别构建方程解决问题即可.本题属于四边形综合题,考查了平行四边形的判定与待定系数法求函数解析式,正确求得CE 和DE 的解析式是关键,学会用分类讨论的思想思考问题,属于中考压轴题.26.答案:72 5 58解析:解:(1)S △ABC =3×3−12×2×1−12×2×3−12×1×3=72,故答案为72.(2)△DEF 如图2所示.S △DEF =2×4−12×2×1−12×2×2−12×1×4=3.(3)△PQR 如图3所示,S △PQR =3×4−12×2×2−12×2×3−12×2×4=5,由构图法可知:S △BRC =S △APF =S △EQD =S △PQR =5,∴六边形花坛ABCDEF 的面积=4×5+8+13+17=58.(1)利用构图法解决问题即可.(2)画出图形,利用构图法解决问题即可.(3)由构图法可知:S △BRC =S △APF =S △EQD =S △PQR =5,由此即可解决问题.本题考查作图−应用与设计,勾股定理等知识,解题的关键是理解题意,学会利用分割法求多边形面积,属于中考常考题型.。
江苏省镇江市2020年(春秋版)八年级下学期数学期末考试试卷(II)卷

江苏省镇江市2020年(春秋版)八年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)一次函数y=—2x+3的图象与两坐标轴的交点是()A . (3,1)(1,);B . (1,3)(, 1);C . (3,0)(0,) ;D . (0,3)(, 0)2. (2分) (2018七上·铁岭月考) 已知关于x的方程的解是,则a的值是()A . 1B .C .D .3. (2分)下列方程中,是二元一次方程的是()A .B .C .D .4. (2分)下列不是必然事件的是()A . 角平分线上的点到角两边的距离相等B . 三角形任意两边之和大于第三边C . 面积相等的两个三角形全等D . 三角形内心到三边距离相等5. (2分) (2019八上·普兰店期末) 已知△ABC的三条边长都是整数,其中两条边长分别为则第三条边长等于()A . 1B . 2C . 3D . 1或26. (2分)如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明().A . AB=AD且AC⊥BDB . AB=AD且AC=BDC . ∠A=∠B且AC=BDD . AC和BD互相垂直平分二、填空题 (共12题;共14分)7. (1分) (2018九上·花都期中) 已知、是抛物线上的两点,则________ 填、、.8. (1分) (2019八下·邓州期中) 如图,在平面直角坐标系中点的坐标分别为,若直线与线段有公共点,则的取值范围是:________.9. (1分) (2016八下·微山期末) 将直线y=2x+3向下平移5个单位长度后,所得直线解析式________.10. (1分) (2019八上·惠山期中) 3的算术平方根是________;________的立方根是- .11. (1分) (2018八下·嘉定期末) 用换元法解方程时,如果设,那么所得到的关于的整式方程为________12. (1分) (2018七上·青浦期末) 如果方程会产生增根,那么k的值是________.13. (2分) (2017九下·杭州期中) 如图,随机闭合开关S1 , S2 , S3中的两个,能够让灯泡发光的概率为________.14. (1分) (2016八上·顺义期末) 如图,△ABC中,∠ACB=90°,∠ABC=60°,BD⊥AB,∠DAC=50°,则∠D的度数为________.15. (1分)(2020·青浦模拟) 已知向量与单位向量方向相反,且,那么 =________(用向量的式子表示)16. (1分)画已知图形关于某点成中心对称的图形(1)画一个点关于某点(对称中心)的对称点的画法是:①先连接________与________。
江苏省镇江市2020年八年级下学期数学期末考试试卷C卷

江苏省镇江市2020年八年级下学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)样本数据5,7,7,x的中位数与平均数相同,则x的值是()A . 9B . 5或9C . 7或9D . 52. (2分)下列各式中,是最简二次根式的是()A .B .C .D .3. (2分) (2016八上·重庆期中) 在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2019八上·利辛月考) 已知A(2,a)、B(-1,b)、C(c,0)都在一次函数y=kx+3(k<0)的图象上,则下列结论一定正确的是()A . a<bB . a>bC . a>3D . c<05. (2分)(2012·绵阳) 如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A . 1:B . 1:2C . :2D . 1:6. (2分)菱形的两条对角线的长分别为6和8,则菱形的高为()A .B .C .D .7. (2分)小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是()A . 37.2分钟B . 48分钟C . 30分钟D . 33分钟8. (2分)一次函数y=2x-的图象经过()A . 第一、二、三象限B . 第二、三、四象限C . 第一、三、四象限D . 第一、二、四象限9. (2分) (2015九上·宜昌期中) 在下列函数中,当x>0时,y随x的增大而增大的是()A . y=﹣x+1B . y=x2﹣1C . y=﹣5xD . y=﹣x2+110. (2分)(2017·河北模拟) 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A . 48B . 60C . 76D . 80二、填空题 (共5题;共5分)11. (1分)要使二次根式有意义,x应满足的条件是________12. (1分)已知函数y=是正比例函数,且图象在第二、四象限内,则m的值是________13. (1分) (2017九·龙华月考) 如图6,已知函数y=kx与函数y= 的图象交于A、B两点,过点B作BC⊥y 轴,垂足为C,连接AC.若△ABC的面积为,则k的值为________14. (1分) (2015七下·杭州期中) 如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A,B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为________米2 .15. (1分)(2018·广州) 如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0)点D在y轴上,则点C的坐标是________。
江苏省镇江市2020年初二下期末综合测试数学试题含解析

江苏省镇江市2020年初二下期末综合测试数学试题一、选择题(每题只有一个答案正确)1.若点A(3,2)与B(-3,m)关于原点对称,则m的值是()A.3 B.-3 C.2 D.-22.在一次学生田径运动会上.参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数是()A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,43.如图,在平面直角坐标系中,点A、B的坐标分别是(4,0)、(0,3),点O'在直线y=2x(x≥0)上,将△AOB沿射线OO'方向平移后得到△A'O'B’.若点O'的横坐标为2,则点A'的坐标为()A.(4,4)B.(5,4)C.(6,4)D.(7,4)4.如图(图在第二页)所示是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是A.13 B.26 C.47 D.945.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米6.如图,在ABC ∆中,点D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若6BC =,则DF 的长是( )A .2B .3C .6D .4 7.在ABCD 中,∠A+∠C=160°,则∠C 的度数为( )A .100°B .80°C .60°D .20° 8x 2-x 的取值范围是( )A .x 2<B .x 2≠C .x 2≤D .x 2≥9.直角三角形的两条直角边分别是6,8,则此直角三角形三条中线的和是( )A 1573213B 1577213+C .573213+D .577213+10.下列命题中是真命题的是( )A .若a >b ,则3﹣a >3﹣bB .如果ab =0,那么a =0,b =0C .一组对边相等,另一组对边平行的四边形是平行四边形D .有两个角为60°的三角形是等边三角形二、填空题11.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB=90°,直角边AO 在x 轴上,且AO=1.将Rt△AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O=2AO ,再将Rt△A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O=2A 1O…,依此规律,得到等腰直角三角形A 2OB 2.则点B 2的坐标_______12.若关于若关于x 的分式方程的解为正数,那么字母a 的取值范围是___.13.在市业余歌手大奖赛的决赛中,参加比赛的10名选手成绩统计如图所示,则这10名选手成绩的中位数是__________.14.图1是一个地铁站人口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘56AC BD cm ==,且与闸机侧立面夹角30PCB BDQ ︒∠=∠=.当双翼收起时,可以通过闸机的物体的最大宽度PQ 为______cm15.如图所示,在Rt △ABC 中,∠C =90°,AC =4,将△ABC 沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于_______.16.写出一个经过点()2,1-,且y 随x 的增大而减小的一次函数的关系式:______.17.如果一组数据a 1 ,a 2 ,…a n 的平均数是2,那么新数据3a 1 ,3a 2 ,…3a n 的平均数是______.三、解答题18.2017年5月14日——5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?19.(6分)如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)20.(6分)计算:|﹣3|﹣(+1)0+﹣21.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
江苏省镇江市2019-2020学年八年级第二学期期末经典数学试题含解析

江苏省镇江市2019-2020学年八年级第二学期期末经典数学试题 一、选择题(每题只有一个答案正确)1.若一个正方形的面积为(ɑ+1)(ɑ+2)+14,则该正方形的边长为( ) A .2a - B .32a + C .2a + D .52a + 2.下列图形中,是轴对称图形的有( )①正方形; ②菱形; ③矩形; ④平行四边形; ⑤等腰三角形; ⑥直角三角形A .6个B .5个C .4个D .3个3.下列各组数中,属于勾股数的是( )A .1,3,2B .1.5,2,2.5C .6,8,10D .5,6,74.如图,在ABC ∆中,4AC =,3BC =,5AB =,D 为AB 上的动点,连接CD ,以AD 、CD 为边作平行四边形ADCE ,则DE 长的最小值为( )A .3B .4C .165D .1255.已知2416x mx ++是完全平方式,则m 的值为( )A .2B .4C .2±D .4±6.如图,在长方形ABCD 中,DC =5cm ,在DC 上存在一点E ,沿直线AE 把△AED 折叠,使点D 恰好落在BC 边上,设此点为F ,若△ABF 的面积为30cm 2,那么折叠△AED 的面积为( )cm 2A .16.9B .14.4C .13.5D .11.87.如图,已知正方形ABCD 边长为1,45EAF ︒∠=,AE AF =,则有下列结论:①1222.5︒∠=∠=;②点C 到EF 的距离是2-1;③ECF △的周长为2;④BE DF EF +>,其中正确的结论有( )A .4个B .3个C .2个D .1个8.下列方程中,是一元二次方程的是( ) A .213x += B .22x y += C .2324x x += D .211x x+= 9.四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是( )A .AB=CDB .AC=BDC .AC ⊥BD D .AD=BC10.下列二次根式是最简二次根式的是( )A .13B .24C .2D .4二、填空题11.计算:3xy 2÷26y x =_______. 12.如图,某自动感应门的正上方A 处装着一个感应器,离地 2.5AB =米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD 正对门,缓慢走到离门1.2米的地方时( 1.2BC =米),感应门自动打开,则AD =_________米.13.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上.下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =2+3.其中正确结论的序号是________________14.计算:若113x y -=,求4353x xy y y xy x--+-的值是 . 15.若2220x y -=,且2x y +=-,则x y -的值是__________.16.已知ABCD □的面积为27,如果:2:3AB BC =,30ABC ∠=︒,那么ABCD □的周长为__________.17.如图,已知△ABC 是面积为43的等边三角形,△ABC ∽△ADE ,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于___(结果保留根号).三、解答题18.当自变量x取何值时,函数512y x=+与517y x=+的值相等?这个函数值是多少?19.(6分)求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)20.(6分)计算(1)148312242÷-⨯+(2)1251821-+-.21.(6分)已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.(1)试说明:∠EFD=(∠C﹣∠B);(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.22.(8分)关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;若不存在,说明理由.23.(8分)已知Rt ABC∆中,其中两边的长分别是3,5,求第三边的长.24.(10分)解不等式组:202(1)33xx x+>⎧⎨-+≥⎩①②.25.(10分)如图,在矩形ABCD中,AD nAB=,,E F分别在AB,BC上.(1)若1n =,AF DE ⊥.①如图1,求证:AE BF =;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH AD =,求证:AE BG AG +=; (2)如图3,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为 (结果用含n 的式子表示)参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】把所给代数式重新整理后用完全平方公式分解因式即可.【详解】 (ɑ+1)(ɑ+2)+14=2934a a ++=23()2a +, ∴正方形的边长为:32a +. 故选B.【点睛】本题考查了完全平方公式进行因式分解,熟练掌握a 2±2ab+b 2=(a±b)2是解答本题的关键.两项平方项的符号需相同;有一项是两底数积的2倍,是易错点.2.C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:①正方形,是轴对称图形;②菱形,是轴对称图形;③矩形,是轴对称图形;④平行四边形,不是轴对称图形;⑤等腰三角形,是轴对称图形;⑥直角三角形,不一定,是轴对称图形,故轴对称图形共4个.故选:C .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.3.C【解析】【分析】根据勾股数的定义:满足a 2+b 2=c 2 的三个正整数,称为勾股数,据此判断即可.【详解】A .1,2,因为不是正整数,故一定不是勾股数,故此选项错误;B .1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;C .因为62+82=102,故是勾股数.故此选项正确;D .因为52+62≠72,故不是勾股数,故此选项错误.故选C .【点睛】本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.4.D【解析】【分析】由勾股定理可知ABC ∆是直角三角形,由垂线段最短可知当DE ⊥AB 时,DE 有最小值,此时DE 与ABC∆斜边上的高相等,可求得答案.【详解】如图:∵四边形ADCE 是平行四边形,∴CE ∥AB ,∵点D 在线段AB 上运动,∴当DE ⊥AB 时,DE 最短,在ABC ∆中,4AC =,3BC =,5AB =,∴AC 2+BC 2=AB 2,∴ABC ∆是直角三角形,过C 作CF ⊥AB 于点F , ∴DE=CF=431255AC BC AB ⋅⨯==, 故选:D .【点睛】本题主要考查平行四边形的性质和直角三角形的性质,确定出DE 最短时D 点的位置是解题的关键. 5.C【解析】【分析】根据完全平方公式的形式,可得答案.【详解】解:已知2416x mx ++=x²+4mx+4²是完全平方式,∴4m=±8m=2或m=-2,故选:C .【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.6.A【解析】【分析】根据矩形的性质及三角形的面积公式求得BF=12cm ,在Rt △ABF 中,由勾股定理可得,AF=13cm ;由折叠的性质可得AD=AF ,DE=EF ,设DE=xcm ,则EC=(5-x )cm ,EF=xcm ,FC =1cm .在Rt △ECF 中,由勾股定理可得方程(5-x )2 +12 =x 2 ,解方程求得x 的值,再由三角形的面积公式即可求得△AED 的面积.【详解】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD=5cm,BC=AD,∵△ABF的面积为30cm2,∴BF=12cm,在Rt△ABF中,由勾股定理可得,AF=222251213AB BF+=+=(cm);由折叠的性质可得AD=AF,DE=EF,∴BC=AD=13cm,设DE=xcm,则EC=(5-x)cm,EF=xcm,FC=BC-BF=13-12=1(cm).在Rt△ECF中,由勾股定理可得,(5-x)2 +12 =x2,解得x=135,即DE=135cm,∴△AED的面积为:12AD×DE=113169131692510.⨯⨯==(cm2)故选A.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.7.C【解析】【分析】先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连接EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1-x,利用等腰直角三角形的性质得到2x=2(1-x),解方程,则可对②进行判断.【详解】解:∵四边形ABCD为正方形,∴AB=AD ,∠BAD=∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,AE AF AB AD ⎧⎨⎩== , ∴Rt △ABE ≌Rt △ADF (HL ),∴∠1=∠2,∵∠EAF=45°,∴∠1=∠2=∠22.5°,所以①正确;连接EF 、AC ,它们相交于点H ,如图,∵Rt △ABE ≌Rt △ADF ,∴BE=DF ,而BC=DC ,∴CE=CF ,∵AE=AF ,∴AC 垂直平分EF ,AH 平分∠EAF ,∴EB=EH ,FD=FH ,∴BE+DF=EH+HF=EF ,所以④错误;∴△ECF 的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;设BE=x ,则EF=2x ,CE=1-x ,∵△CEF 为等腰直角三角形,∴CE ,即1-x ),解得-1,∴-1,Rt △ECF 中,EH=FH ,∴CH=12, ∵CH ⊥EF ,∴点C 到EF-1,所以②错误;本题正确的有:①③;故选:C .【点睛】本题考查四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解题的关键是证明AC 垂直平分EF .8.C【解析】【分析】根据一元二次方程的定义即可求解.【详解】A. 213x +=是一元一次方程,故错误;B. 22x y +=含有两个未知数,故错误;C. 2324x x +=为一元二次方程,正确;D. 211x x+=含有分式,故错误, 故选C.【点睛】此题主要考查一元二次方程的定义,解题的关键是熟知一元二次方程的特点.9.C【解析】【分析】由已知条件得出四边形ABCD 是平行四边形,再由对角线互相垂直,即可得出四边形ABCD 是菱形.【详解】如图所示:需要添加的条件是AC ⊥BD ;理由如下:∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴平行四边形ABCD 是菱形(对角线互相垂直的平行四边形是菱形);故选:C .【点睛】考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.10.C【解析】【分析】最简二次根式: ① 被开方数不含有分母(小数);② 被开方数中不含有可以开方开得出的因数或因式;【详解】A. ,被开方数含有分母,本选项不能选;B.,被开方数中含有可以开方开得出的因数,本选项不能选;C.是最简二次根式;D. ,被开方数中含有可以开方开得出的因数,本选项不能选.故选:C【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.二、填空题11.22x 【解析】分析:根据分式的运算法则即可求出答案.详解:原式=3xy 2•26x y =22x 故答案为22x . 点睛:本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 12.1.1【解析】【分析】过点D 作DE ⊥AB 于点E ,构造Rt △ADE ,利用勾股定理求得AD 的长度即可.【详解】解:如图,过点D 作DE ⊥AB 于点E ,依题意知,BE =CD =1.6米,ED =BC =1.2米,AB =2.1米,则AE =AB−BE =2.1−1.6=0.9(米).在Rt △ADE 中,由勾股定理得到:AD 22220.9 1.2ED =1.1(米)故答案是:1.1.【点睛】本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD 的长度.13.①②④【解析】【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【详解】解:∵四边形ABCD 是正方形,∴AB=AD ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,∴①说法正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+()2=4,解得则a2S正方形ABCD④说法正确,故答案为①②④.【点睛】本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.14.﹣12.【解析】试题分析:∵1x-1y=3,∴y-x=3xy,∴4353x xy yy xy x--+-=()43()5y x xyy x xy----+=3495xy xyxy xy--+=714xyxy-=12-.故答案为:12 -.点睛:本题考查了分式的化简求值,把已知进行变形得出y-x=3xy,并进行整体代入是解决此题的关键.15.-1【解析】根据平方差公式解答即可.【详解】∵x 2-y 2=(x+y )(x-y )=20,x+y=-2,∴x-y=-1.故答案为:-1.【点睛】本题考查了平方差公式,解题的关键是熟记平方差公式.16.1【解析】【分析】过点A 作AE BC ⊥交BC 于点E ,先根据含1°的直角三角形的性质得出12AE AB =,设2,3AB x BC x ==,则AE x =,根据ABCD 的面积为27建立方程求出x 的值,进而可求出AB,CD 的长度,最后利用周长公式求解即可.【详解】过点A 作AE BC ⊥交BC 于点E ,∵AE BC ⊥,30ABC ∠=︒,12AE AB ∴=. ∵:2:3AB BC =,∴设2,3AB x BC x ==,则AE x =.∵ABCD 的面积为27,27BC AE ∴⋅= ,即327x x ⋅=,解得3x =或3x =-(舍去),∴6,9AB BC ==,∴ABCD 的周长为(69)230+⨯=.故答案为:1.本题主要考查含1°的直角三角形的性质及平行四边形的周长和面积,掌握含1°的直角三角形的性质并利用方程的思想是解题的关键.17.3-3【解析】【分析】根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.【详解】解:作CM⊥AB于M,∵等边△ABC的面积是43,∴设BM=x,∴tan∠BCM=BM3CM,∴BM=3CM,∴12×CM×AB=12×2×33CM2=43,∴CM=23,BM=2,∴AB=4,AD=12AB=2,在△EAD中,作HF⊥AE交AE于H,则∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=33x.又∵AH+EH=AE=AD=2,∴x+33x=2,解得∴S △AEF =12×2×()故答案为三、解答题18.当325x =-时,函数512y x =+与517y x =+的值相等,函数值是15y =. 【解析】【分析】依题意列出方程组,解出方程组的解即可.【详解】 解:由题意可得,512517y x y x ⎧=+⎪⎨⎪=+⎩ 解得325-15x y ⎧=-⎪⎨⎪=⎩∴当325x =-时,函数512y x =+与517y x =+的值相等,函数值是-15y =. 【点睛】本题考查了函数值与自变量的关系,能依题意列出方程组,是解题的关键.19.见解析.【解析】【分析】先根据题意画出图形,写出已知,求证,然后通过平行线的性质得出∠1=∠2,再利用SAS 证明△ABC ≌△CDA ,则有∠3=∠4,进一步得出AD ∥BC ,最后利用两组对边分别平行的四边形为平行四边形即可证明.【详解】已知:如图,在四边形ABCD 中,AB ∥CD ,AB=CD .求证:四边形ABCD 是平行四边形.证明:连接AC ,如图所示:∵AB ∥CD ,∴∠1=∠2,在△ABC 和△CDA 中,12AB CD AC CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDA (SAS ),∴∠3=∠4,∴AD ∥BC ,∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).【点睛】本题主要考查平行四边形的判定,全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形和平行线的判定及性质是解题的关键.20.6;526【解析】【分析】(1)先根据二次根式的乘除法则运算,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可.【详解】解:(1)原式483÷1122⨯6=4666; (2)原式=5﹣262﹣526 考点:二次根式的混合运算21.(1)见详解;(2)成立,证明见详解.【解析】(1) 根据三角形内角和定理以及角平分线的定义得到∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C),然后根据三角形的外角的性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;(2)根据(1)可以得到∠AEC=90°+12(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解. 【详解】解:(1)∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C),∵∠FEC=∠B+∠BAE,则∠FEC=∠B+90°﹣12(∠B+∠C)=90°+12(∠B﹣∠C),∵FD⊥EC,∴∠EFD=90°﹣∠FEC,则∠EFD=90°﹣[90°+12(∠B﹣∠C)]=12(∠C﹣∠B);(2)成立.证明:同(1)可证:∠AEC=90°+12(∠B﹣∠C),∴∠DEF=∠AEC=90°+12(∠B﹣∠C),∴∠EFD=90°﹣[90°+12(∠B﹣∠C)]=12(∠C﹣∠B).【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.22.(1)m>﹣且m≠﹣;(2)不存在.理由见解析.【解析】【分析】(1)根据方程有两个不相等的实数根结合根的判别式以及二次项系数不为0,即可得出关于m的一元一次不等式组,解不等式组即可得出结论;(2)利用根与系数的关系即可求解.【详解】(1)∵方程有2个不相等的实数根,∴△>0,即16m2﹣4×(2m+1)(2m﹣3)>0,解得:m>,又2m+1≠0,∴m≠,∴m>且m≠;(2)∵x1+x2=、x1x2=,∴=,由=﹣1可得=﹣1,解得:m=,∵,∴不存在.【点睛】本题考查了根的判别式,解题关键是根据方程解的个数结合二次项系数不为0得出关于m的一元一次不等式组.23.434【解析】【分析】分5是斜边长、5是直角边长两种情况,根据勾股定理计算即可.【详解】解:当5是斜边长时,第三边长22=-=,534当5是直角边长时,第三边长=则第三边长为4【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c . 24.2<x≤1【解析】【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:解①得:x >2解②得:x≤1不等式组的解集是2<x≤1.【点睛】本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.25.(1)①见解析;②见解析;(2)241n -【解析】【分析】(1)①由“ASA”可证△ADE ≌△BAF 可得AE=BF ;②过点A 作AF ⊥HD 交BC 于点F ,由等腰三角形的性质和平行线的性质可得∠HAF=∠AFG=∠DAF ,可得AG=FG ,即可得结论;(2)过点E 作EH ⊥DF 于H ,连接EF ,由角平分线的性质可得AE=EH=BE ,由“HL”可证Rt △BEF ≌Rt △HEF ,可得BF=FH ,由勾股定理可求解.【详解】证明(1)①∵四边形ABCD 是矩形,AD=AB,∴四边形ABCD 是正方形,∴AD=AB ,∠DAB=90°=∠ABC ,∴∠DAF+∠BAF=90°,∵AF ⊥DE ,∴∠DAF+∠ADE=90°,∴∠ADE=∠BAF ,且AD=AB ,∠DAE=∠ABF=90°,∴AE=BF ;②如图,过点A 作AF ⊥HD 交BC 于点F ,由(1)可知AE=BF ,∵AH=AD ,AF ⊥HD ,∴∠HAF=∠DAF.∵AD ∥BC ,∴∠DAF=∠AFG ,∴∠HAF=∠AFG ,∴AG=GF , ∴AG=GB+BF=GB+AE ;(3)如图,过点E 作EH ⊥DF 于H ,连接EF ,∵E 为AB 的中点,∴AE=BE=12AB , ∵∠ADE=∠EDF ,EA ⊥AD ,EH ⊥DF , ∴AE=EH ,AD=DH=nAB ,∴BE=EH ,EF=EF ,∴Rt △BEF ≌Rt △HEF (HL ),∴BF=FH ,设BF=x=FH ,则FC=BC-BF=nAB-x ,∵DF 2=FC 2+CD 2,∴(nAB+x )2=(nAB-x )2+AB 2,∴x=4AB n=BF ,∴FC=2414nnAB,∴CFBF=4n2-1.【点睛】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.。
江苏省镇江市2019-2020学年8年级下学期全市统一期末考试 WORD版含答案

2019~2020学年第二学期八年级期末考试物理试卷一、选择题(本题共12小题,每小题2分,共24分,每小题只有一个选项是正确的)1.下列现象中,不能用分子动理论解释的是()A.海绵很容易被压缩B. 湿衣服在阳光下逐渐晒干C. 春天,校园里花香扑鼻D. 高压下,油罐里的油能从罐壁渗出2.下列实例中,目的是为了增大压强的是()A.书包带做得较宽B. 刀刃磨得很薄C. 坦克装有宽大的履带D. 大型卡车装有很多轮子3.已知ρ盐水>ρ水,关于图中两杯液体中a、b、c三点处压强的说法正确的是()A.a点向下的压强比向上的压强大B. a、b两点的压强相等C.b点的压强比c点的压强小D. b、c两点的压强相等4. 甲、乙、丙三个轻质小球用绝缘细绳悬挂,相互作用如图所示,若丙带正电,则甲()A. 一定带正电荷B. 一定带负电荷C.可能带负电荷D. 可能带正电荷5. 如图所示,一块长为L的均匀木板A放在水平桌面上,A右端与桌面相齐。
在A的右端施一个水平力F使其右端缓慢离开桌面L/3,在A移动过程中,木板A()A.对桌面压强变大B. 对桌面压力变小C. 与桌面摩擦力变大D. 对桌面压强变小6. 如图所示,小鱼在水中吐出气泡,在气泡升至水面的过程中,体积会逐渐变大,下列关于气泡上升时受到的浮力和气泡内气体的压强变化情况的描述中,正确的是()A. 浮力不变,压强不变B. 浮力变小,压强变小C. 浮力变大,压强变大D. 浮力变大,压强变小7.中国南极泰山科考站采用轻质材料装配而成,为避免被南极的强横风吹得移动位置,其独特的支架悬空形状发挥了重要作用。
泰山站的悬空形状接近于本题四幅图中的()8. 如图所示,一瓶香醋静止在水平桌面上。
则这瓶香醋()A. 水平方向不受摩擦力B. 受到的重力和它对桌面的压力是平衡力C. 竖直方向受的是非平衡力D. 受到的重力和桌面支持力是相互作用力9. 如图所示,在“探究二力平衡的条件”时,选质量为10g的卡片作为研究对象,在线的两端分别挂上等质量的重物,对卡片施加两个拉力,为探究这两个力满足什么条件才能平衡,则所挂重物质量合适的是()A. 5gB. 10gC. 200gD. 任意质量均可10.如图,一小球从密度均匀的油中A处由静止释放后竖直上浮的图景,小球在AB段做加速运动,在BC段做匀速运动。
2019-2020学年江苏省镇江市八年级(下)期末数学试卷 (解析版)

2019-2020学年江苏省镇江市八年级(下)期末数学试卷一.填空题(共12小题)1.若二次根式在实数范围内有意义,则x的取值范围是.2.“三次抛掷一枚硬币,三次反面朝上”这一事件是事件(填“必然”、“不可能”、“随机”).3.的相反数是.4.如果最简二次根式与是同类二次根式,则a=.5.一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是.6.已知菱形的两条对角线长分别是6cm和8cm,则周长是cm.7.如图,在▱ABCD中,E是边BC上一点,且AB=BE,AE、DC的延长线相交于点F,∠F=62°,则∠D=°.8.反比例函数y=,当x<0时,y随x的增大而减小,那么k的取值范围是.9.某校学生到离学校15km处植树,部分学生骑自行车出发40min后,其余学生乘汽车出发,汽车速度是自行车速度的2倍,全体学生同时到达目的地.设自行车速度是xkm/h,则根据题意列得方程.10.设函数y=x﹣4与y=的图象的交点坐标为(m,n),则﹣的值为.11.若关于x的方程=3﹣的解为正数,则m的取值范围为.12.如图,在平面直角坐标系中,直线y=ax+b交坐标轴于A、B点,点C(﹣,)在线段AB上,以BC为一边向直线AB斜下方作正方形BCDE.且正方形边长为3,若双曲线y=经过点E,则k的值为.二.选择题(共6小题)13.下列图形中既是中心对称图形,又是轴对称图形的是()A.等边三角形B.平行四边形C.角D.正方形14.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件15.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的5倍B.不变C.扩大为原来的10倍D.缩小为原来的16.已知某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m3B.小于m3C.不小于m3D.小于m317.若点(﹣2,y1),(1,y2),(3,y3)都在反比例函数y=﹣的图象上,则()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y1>y3 18.同学们在生活中都有过陪同爸爸妈妈去加油站加油的经历,小明发现一个有趣的现象:爸爸和妈妈加油习惯有所不同.爸爸每次加油都说“师傅,给我加300元的油”,而妈妈则说“师傅帮我把油箱加满”这个时候小明若有所思,如果爸爸、妈妈加油两次,第一次加油汽油单价为x元/升,第二次加油汽油单价是y元/升(x≠y),妈妈每次加满油箱,需加油a升,我们规定谁的平均单价低谁就合算,请问爸爸、妈妈谁更合算呢?()A.爸爸B.妈妈C.一样D.不确定三.解答题19.计算:(1)2﹣+5;(2)÷﹣×+;(3)(3+)(3﹣)﹣(1+)2.20.(1)化简:1﹣÷;(2)化简:﹣a+1;(3)解方程:+=.21.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如图所示的扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了名居民的年龄,扇形统计图中a=;(2)补全条形统计图,并注明人数;(3)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为;(4)若该辖区年龄在0~14岁的居民约有2400人,请估计该辖区居民有多少人?22.如图,一次函数y=kx+b与反比例函数y=的图象相交于A、B两点,过点B作BC⊥x轴,x垂足为C,已知A点的坐标是(2,3),BC=2.(1)求反比例函数与一次函数的表达式;(2)根据所给条件,请直接写出不等式kx+b﹣≥0的解集;(3)求△ABC的面积.23.如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.24.甲乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同.(1)求甲每天加工服装多少件?(2)甲乙两人新接了200件服装加工订单,受供货时间限制,二人都提高了工作效率,设甲提高后每天能加工m件,乙提高后每天加工的件数是甲的k倍(1.5≤k≤2),这样两人工作10天恰好能完成任务,求m的最大值.25.[问题情境]在综合实践课上,同学们以“正方形和直线的旋转”为主题分组开展数学探究活动,已知正方形ABCD,直线PQ经过点A,并绕点A旋转,作点B关于直线PQ的对称点E,直线DE交直线PQ于点F,连结AE,BE.[操作发现](1)如图1,若∠P AB=20°.则∠ADF=°,∠BEF=°.[拓展应用](2)如图2,当直线PQ在正方形ABCD的外部时,“梦想小组”的同学们发现.①∠BEF的度数是一个定值,这个值为;②线段AB、DF、EF之间存在特殊的数量关系,请写出这一关系式,并说明理由.26.如图,动点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线,交函数y=(x>0)的图象于点B、C,作直线BC,设直线BC的函数表达式为y=kx+b.(1)若点M的坐标为(1,3)①B点坐标为,C点坐标为,直线BC的函数表达式为;②点D在x轴上,点E在y轴上,且以点B、C、D、E为顶点的四边形是平行四边形,请直接写出点D、E的坐标;(2)连接BO、CO.①当OB=OC时,求OB的长度;②试证明△BOC的面积是个定值.2019-2020学年江苏省镇江市八年级(下)期末数学试卷参考答案与试题解析一.填空题(共12小题)1.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.2.“三次抛掷一枚硬币,三次反面朝上”这一事件是随机事件(填“必然”、“不可能”、“随机”).【分析】根据事件发生可能性的大小,可得答案.【解答】解:“三次投掷一枚硬币,三次反面朝上”这一事件是随机事件,故答案为:随机.3.的相反数是﹣7.【分析】直接利用二次根式的性质化简,再利用相反数的定义得出答案.【解答】解:=7的相反数是:﹣7.故答案为:﹣7.4.如果最简二次根式与是同类二次根式,则a=5.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.5.一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是0.1.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:50﹣(12+10+15+8)=50﹣45=5,则第5组的频率为5÷50=0.1,故答案为:0.1.6.已知菱形的两条对角线长分别是6cm和8cm,则周长是20cm.【分析】根据菱形的性质利用勾股定理可求得其边长,再根据周长公式即可求得其周长.【解答】解:∵菱形的对角线互相垂直平分,两条对角线的一半与一边构成直角三角形,根据勾股定理可得菱形的边长为=5cm,则周长是4×5=20cm.故答案为20.7.如图,在▱ABCD中,E是边BC上一点,且AB=BE,AE、DC的延长线相交于点F,∠F=62°,则∠D=56°.【分析】由平行四边形的性质得出∠D=∠B,AB∥CD,得出∠BAE=∠F=62°,由等腰三角形的性质和三角形内角和定理求出∠B=56°,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B,AB∥CD,∴∠BAE=∠F=62°,∵AB=BE,∴∠AEB=∠BAE=62°,∴∠B=180°﹣2×62°=56°,∴∠D=56°.故答案为56.8.反比例函数y=,当x<0时,y随x的增大而减小,那么k的取值范围是k>﹣1.【分析】根据反比例函数y=,当x<0时,y随x的增大而减小,可得k+1>0,从而可以求得k的取值范围.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴k+1>0,解得,k>﹣1,故答案为:k>﹣1.9.某校学生到离学校15km处植树,部分学生骑自行车出发40min后,其余学生乘汽车出发,汽车速度是自行车速度的2倍,全体学生同时到达目的地.设自行车速度是xkm/h,则根据题意列得方程.【分析】根据时间关系,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,即,故答案为:.10.设函数y=x﹣4与y=的图象的交点坐标为(m,n),则﹣的值为﹣.【分析】由两函数的交点坐标为(m,n),将(m,n)代入一次函数与反比例函数解析式中得到mn与n﹣m的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.【解答】解:∵函数y=x﹣4与y=的图象的交点坐标为(m,n),∴n﹣m=﹣4,mn=3,∴﹣===﹣,故答案为:﹣.11.若关于x的方程=3﹣的解为正数,则m的取值范围为m<5且m≠1.【分析】表示出分式方程的解,由解为正数确定出x的范围即可.【解答】解:去分母得:x﹣1=3(x﹣2)+m,去括号得:x﹣1=3x﹣6+m,移项合并得:﹣2x=m﹣5,解得:x=﹣,由分式方程的解为正数,得到﹣>0且﹣≠2,解得:m<5且m≠1.故答案为:m<5且m≠1.12.如图,在平面直角坐标系中,直线y=ax+b交坐标轴于A、B点,点C(﹣,)在线段AB上,以BC为一边向直线AB斜下方作正方形BCDE.且正方形边长为3,若双曲线y=经过点E,则k的值为.【分析】作CF⊥y轴于F,EG⊥y轴于G,根据勾股定理求得BF,证得△BCF≌△EBG (AAS),从而求得E的坐标,然后代入y=,即可求得k的值.【解答】解:作CF⊥y轴于F,EG⊥y轴于G,如图.∵C(﹣,),∴CF=,OF=.∵正方形BCDE的边长为3,∴BC=BE=3,∴BF===.在△BCF与△EBG中,∴△BCF≌△EBG(AAS),∴BF=EG=,CF=BG=,∴FG=BG﹣BF=﹣=,∴OG=OF﹣FG=﹣=,∴E(,),∴双曲线y=经过点E,∴k=×=.故答案为:.二.选择题(共6小题)13.下列图形中既是中心对称图形,又是轴对称图形的是()A.等边三角形B.平行四边形C.角D.正方形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项不符合题意;B、平行四边形是中心对称图形,不是轴对称图形,故本选项不符合题意;C、角不是中心对称图形,是轴对称图形,故本选项不符合题意;D、正方形既是中心对称图形,又是轴对称图形,故本选项符合题意.故选:D.14.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.15.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的5倍B.不变C.扩大为原来的10倍D.缩小为原来的【分析】根据题意将10x与10y代入原式后化简即可求出答案.【解答】解:由题意可知:==,故选:B.16.已知某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m3B.小于m3C.不小于m3D.小于m3【分析】根据题意可知温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,且过点(1.6,60)故P•V=96;故当P≤120,可判断V≥.【解答】解:设球内气体的气压P(kPa)和气体体积V(m3)的关系式为P=∵图象过点(1.6,60)∴k=96即P=在第一象限内,P随V的增大而减小,∴当P≤120时,V≥=.故选:A.17.若点(﹣2,y1),(1,y2),(3,y3)都在反比例函数y=﹣的图象上,则()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y1>y3【分析】先根据函数的解析式得出反比例函数y=﹣的图象在第二、四象限,在每个象限内,y随x的增大而增大,再比较即可.【解答】解:∵﹣(m2+3)<0,∴反比例函数y=﹣的图象在第二、四象限,在每个象限内,y随x的增大而增大,∵点(﹣2,y1),(1,y2),(3,y3)都在反比例函数y=﹣的图象上∴点(﹣2,y1)在第二象限,点(1,y2)和(3,y3)在第四象限,∴y1>y3>y2,故选:B.18.同学们在生活中都有过陪同爸爸妈妈去加油站加油的经历,小明发现一个有趣的现象:爸爸和妈妈加油习惯有所不同.爸爸每次加油都说“师傅,给我加300元的油”,而妈妈则说“师傅帮我把油箱加满”这个时候小明若有所思,如果爸爸、妈妈加油两次,第一次加油汽油单价为x元/升,第二次加油汽油单价是y元/升(x≠y),妈妈每次加满油箱,需加油a升,我们规定谁的平均单价低谁就合算,请问爸爸、妈妈谁更合算呢?()A.爸爸B.妈妈C.一样D.不确定【分析】妈妈两次加油共需付款及爸爸两次加油升数,进而表示出两人的平均单价,列出关系式,通分并利用同分母分式的减法法则计算,整理后根据完全平方式大于等于0,确定出差的正负即可作出判断.【解答】解:根据题意得:妈妈每次加油共需付款a(x+y)元,爸爸两次能加升油,若爸爸两次加油的平均单价为M元/升,妈妈两次加油的平均单价为N元/升,则M=,N=,∵N﹣M=﹣=≥0,∴妈妈的加油方式更合算,故选:B.三.解答题19.计算:(1)2﹣+5;(2)÷﹣×+;(3)(3+)(3﹣)﹣(1+)2.【考点】4F:平方差公式;79:二次根式的混合运算.【专题】514:二次根式;66:运算能力.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=4﹣+=4;(2)原式=﹣+2=4﹣+2=4+;(3)原式=9﹣2﹣(1+2+2)=7﹣3﹣2=4﹣2.20.(1)化简:1﹣÷;(2)化简:﹣a+1;(3)解方程:+=.【考点】6C:分式的混合运算;B3:解分式方程.【专题】3:解题思想;513:分式;522:分式方程及应用;66:运算能力.【分析】(1)原式第二项利用除法法则变形,约分后与第一项通分并利用同分母分式的减法法则计算即可求出值;(2)原式通分并利用同分母分式的减法法则计算即可求出值;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣•=1﹣==;(2)原式=﹣==;(3)去分母得:4+3x+9=7,解得:x=﹣2,经检验x=﹣2是分式方程的解.21.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如图所示的扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了500名居民的年龄,扇形统计图中a=20%;(2)补全条形统计图,并注明人数;(3)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为;(4)若该辖区年龄在0~14岁的居民约有2400人,请估计该辖区居民有多少人?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X4:概率公式.【专题】523:一元二次方程及应用;65:数据分析观念.【分析】(1)用15~40岁的年龄段的人数除以它所占的百分比得到调查的总人数;用100除以总人数得到a的值;(2)先计算出41~59岁年龄段的人数,然后补全条形统计图;(3)根据概率公式计算;(4)用2400除以样本中年龄在0~14岁的居民所占的百分比即可.【解答】解:(1)230÷46%=500,所以小张同学共调查了500名居民的年龄,扇形统计图中a=×100%=20%;(2)41~59岁年龄段的人数为500×22%=110(人),补全条形统计图为:(3)这个人年龄是60岁及以上的概率==;(4)2400÷20%=12000,估计该辖区居民有12000人.故答案为:500,20%,.22.如图,一次函数y=kx+b与反比例函数y=的图象相交于A、B两点,过点B作BC⊥x轴,x垂足为C,已知A点的坐标是(2,3),BC=2.(1)求反比例函数与一次函数的表达式;(2)根据所给条件,请直接写出不等式kx+b﹣≥0的解集;(3)求△ABC的面积.【考点】G8:反比例函数与一次函数的交点问题.【专题】31:数形结合;521:一次方程(组)及应用;533:一次函数及其应用;534:反比例函数及其应用;66:运算能力;67:推理能力;68:模型思想.【分析】(1)将点A的坐标代入求出反比例函数关系式,由BC=2得出点B的纵坐标为﹣2,代入求出B的坐标,再根据待定系数法求出一次函数的关系式;(2)根据图象直接得出答案;(3)三角形ABC的面积等于以BC为底,AM为高计算面积即可.【解答】解:(1)A点的坐标是(2,3),代入反比例函数y=得,m=6,∴反比例函数的关系式为y=,由BC=2,可得点B的纵坐标y=﹣2,代入反比例函数关系式得,x=﹣3,∴点B(﹣3,﹣2),设一次函数的关系式为y=kx+b,将A(2,3),B(﹣3,﹣2)代入得,,解得,,∴一次函数的关系式为y=x+1,答:反比例函数的关系式为y=,一次函数的关系式为y=x+1;(2)根据函数图象可得,当﹣3≤x<0或x≥2时,不等式kx+b﹣≥0成立;(3)如图,过点A作AM⊥BC,交BC的延长线于点M,S△ABC=×BC•AM=×2×(2+3)=5,答:△ABC的面积为5.23.如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【考点】KD:全等三角形的判定与性质;KM:等边三角形的判定与性质;L7:平行四边形的判定与性质;LA:菱形的判定与性质;LD:矩形的判定与性质.【专题】14:证明题;67:推理能力.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由时,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.24.甲乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同.(1)求甲每天加工服装多少件?(2)甲乙两人新接了200件服装加工订单,受供货时间限制,二人都提高了工作效率,设甲提高后每天能加工m件,乙提高后每天加工的件数是甲的k倍(1.5≤k≤2),这样两人工作10天恰好能完成任务,求m的最大值.【考点】B7:分式方程的应用.【专题】522:分式方程及应用;534:反比例函数及其应用;69:应用意识.【分析】(1)设甲每天加工服装x件,则乙每天加工服装(x+1)件,根据工作时间=工作总量÷工作效率结合乙加工服装24件所用时间与甲加工服装20件所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作总量=工作效率×工作时间,即可得出m关于k的函数关系式,再利用反比例函数的性质即可求出m的最大值.【解答】解:(1)设甲每天加工服装x件,则乙每天加工服装(x+1)件,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:甲每天加工服装5件.(2)依题意,得:10m+10km=200,∴m=.∵20>0,1+k>0,∴m随k值的增大而减小,∴当k=1.5时,m取得最大值,最大值==8.答:m的最大值为8.25.[问题情境]在综合实践课上,同学们以“正方形和直线的旋转”为主题分组开展数学探究活动,已知正方形ABCD,直线PQ经过点A,并绕点A旋转,作点B关于直线PQ的对称点E,直线DE交直线PQ于点F,连结AE,BE.[操作发现](1)如图1,若∠P AB=20°.则∠ADF=65°,∠BEF=40°.[拓展应用](2)如图2,当直线PQ在正方形ABCD的外部时,“梦想小组”的同学们发现.①∠BEF的度数是一个定值,这个值为45°;②线段AB、DF、EF之间存在特殊的数量关系,请写出这一关系式,并说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题;556:矩形菱形正方形;69:应用意识.【分析】(1)利用等腰三角形的性质以及三角形的内角和定理解决问题即可.(2)①如图2中,连接BD,BF,证明△BEF是等腰直角三角形即可.②结论:EF2+DF2=2AB2.利用勾股定理解决问题即可.【解答】解:(1)如图1中,∵B,E关于PQ对称,∴∠P AB=∠P AE=20°,AB=AE,∵四边形ABCD是正方形,∴AB=AD=AE,∠BAD=90°,∴∠EAD=90°﹣40°=50°,∴∠ADE=∠AED=(180°﹣50°)=65°,∴∠AEB=∠ABE=(180°﹣40°)=70°,∴∠BEF=180°﹣70°﹣65°=45°,故答案为:65,45.(2)①如图2中,连接BD,BF,由折叠知,∠BEF=∠EBF,∠AEB=∠ABE,∴∠AED=∠ABF,由折叠知,EF=BF,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴AE=AD,∴∠AED=∠ADE,∴∠ABF=∠ADE,∵∠AOB=∠FOD,∴∠BFD=∠BAD=90°,∴∠BFE=90°,∵FE=FB∴∠BEF=∠EBF=45°故答案为:45°;②结论:EF2+DF2=2AB2.理由:∵∠BFD=90°∴BD2=BF2+DF2=EF2+DF2,∵BD是正方形ABCD的对角线,∴BD2=2AB2,∴EF2+DF2=2AB2.26.如图,动点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线,交函数y=(x>0)的图象于点B、C,作直线BC,设直线BC的函数表达式为y=kx+b.(1)若点M的坐标为(1,3)①B点坐标为(,3),C点坐标为(1,1),直线BC的函数表达式为y=﹣3x+4;②点D在x轴上,点E在y轴上,且以点B、C、D、E为顶点的四边形是平行四边形,请直接写出点D、E的坐标;(2)连接BO、CO.①当OB=OC时,求OB的长度;②试证明△BOC的面积是个定值.【考点】GB:反比例函数综合题.【专题】533:一次函数及其应用;534:反比例函数及其应用;554:等腰三角形与直角三角形;555:多边形与平行四边形;66:运算能力;69:应用意识.【分析】(1)①把x=1代入中求得C点的纵坐标,进而得C点坐标,把y=3代入中求得B点的横坐标,进而得B点坐标,再用待定系数法求得BC的解析式;②设D(m,0),E(0,n),显然BC为平行四边形的对角线时不存在,则BC必为平行四边形的边,分别两种情况BE∥CD或BD∥CE,求出结果便可;(2)①设M(m,),则B(,,由OB=OC列出方程求得m2,再两点距离公式求得OB;②延长MN与x轴交于点A,设M(m,),则B(,,A(m,0),根据梯形面积公式和三角形的面积公式计算便可得答案.【解答】解:(1)①∵点M的坐标为(1,3),BM∥x轴,BN∥y轴,∴x C=1,y B=3,把y=3代入中,得x=,∴,把x=1代入中,得y=1,∴C(1,1),把B、C的坐标都代入y=kx+b中,得,解得,,∴BC:y=﹣3x+4.故答案为:(,3);(1,1);y=﹣3x+4;②设D(m,0),E(0,n),当四边形BEDC为平行四边形时,∵B(,3),C(1,1),BE∥CD,BE=CD,∴﹣0=1﹣m,3﹣n=1﹣0,∴m=,n=2,∴,当四边形BDEC为平行四边形时,∵B(,3),C(1,1),BD∥CE,BD=CE,∴﹣m=1﹣0,3﹣0=1﹣n,∴m=﹣,n=﹣2,∴;(2)①设M(m,),则B(,,∵OB=OC,∴OB2=OC2,∴,解得,m2=3,∴;②延长MN与x轴交于点A,设M(m,),则B(,,A(m,0),∴BM=,MA=,AC=,CM=,OA=m,∴S△OBC=S梯形OAMB﹣S△BCM﹣S△OAC=为常数,∴△BOC的面积是个定值.。
江苏省镇江市八年级下学期数学期末考试试卷

江苏省镇江市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2020·云南模拟) 若反比例函数y= 的图象过点(-2,1),则一次函数y=kx-k的图象过()A . 第一、二、四象限B . 第一、三、四象限C . 第二、三、四象限D . 第一、二、三象限2. (2分)下面属于方程的是()A . x+5B . x-10=3C . 5+6=11D . x÷12>203. (2分)一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集在数轴上表示正确的是()A .B .C .D .4. (2分)(2020·虹口模拟) 已知、和都是非零向量,在下列选项中,不能判定∥ 的是()A .B . ∥ ,∥C . + =0D . + =,﹣=5. (2分)下列说法正确的是()A . 367人中有2人的生日相同,这一事件是随机事件.B . 为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C . 彩票中奖的概率是1%,买100张一定会中奖.D . 泰州市某中学生对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占80%,于是他得出泰州市80%的家庭拥有空调的结论.6. (2分)已知下列命题:①对角线互相平分的四边形是平行四边形;②对角线互相垂直平分的四边形是菱形;③对角线相等的四边形是矩形;④对角线相等的梯形是等腰梯形.其中真命题有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共12题;共12分)7. (1分)(2019·江陵模拟) 将一次函数y=x﹣1的图象向下平移3个单位得到的函数关系式为________.8. (1分)已知直线ln:y=-(n是不为零的自然数).当n=1时,直线l1: y=-2x+1与x轴和y 轴分别交于点A1和B1 ,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:与x轴和y轴分别交于点A2和B2 ,设△A2OB2的面积为S2;…依此类推,直线ln与x轴和y轴分别交于点An 和Bn ,设△AnOBn的面积为Sn.则S1=________ .S1+S2+S3+……+Sn=________ S1+S2+S3+……+S2001=________9. (1分) (2017八下·邵阳期末) 已知函数y=3x的图象经过点A(-1,y1)、点B(-2,y2),则y1________y2(填“>”或“<”或“=”).10. (1分) (2018八上·仁寿期中) 若(x-1)2 =4.则x=________.11. (1分)一元二次方程x2=3的根是________ .12. (1分)2015•潜江)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________ .13. (1分) (2018七下·太原期中) 地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间有如下关系:x/km1234Y/℃5590125160根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为________km.14. (1分)(2020·西安模拟) 如图,五边形ABCDE的每一个内角都相等,则外角∠CBF=________.15. (1分) (2018八上·前郭期中) 现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有________种.16. (1分)若与的方向相反,且,则的方向与的方向________ .17. (1分) (2018九上·柯桥期末) 如图,AB、BC是的弦,,OD、OE分别垂直AB,BC 于点D、E,若,,则的半径长为________.18. (1分) (2018九上·台州期末) 如图,矩形ABCD中,AB=5,BC=7,E为BC上的动点,将矩形沿直线AE 翻折,使点B的对应点B'落在∠ADC的平分线上,过点B'作B'F⊥BC于点F,求△B'EF的周长________.三、综合题 (共8题;共66分)19. (5分)综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江苏省镇江市扬中市八年级(下)期末数学试卷一、填空题(本大题共有10小题,每小题2分,共计20分.)
1.(2分)若根式有意义,则.
2.(2分)若分式的值为0,则x的值为.
3.(2分)化简:=.
4.(2分)反比例函数y=经过二、四象限,则k.
5.(2分)如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)
6.(2分)如图,菱形ABCD的周长是20,对角线AC,BD相交于点O,E是AD的中点,则OE=.7.(2分)如图所示,转盘被均匀分成8个扇形,自由转动转盘,停止后,指针落在阴影部分的概率是.
8.(2分)若关于x的分式方程+=2m有增根,则m的值为.
9.(2分)如图,一次函数y=2x+2与x轴、y轴分别交于A、B两点,以AB为一边在第二象限作正方形ABCD,反比例函数y=(k≠0)经过点D.将正方形沿x轴正方向平移a个单位后,点C恰好落在反比例函数上,则a的值是.。