纳米技术在建筑材料中的应用
纳米科技在建筑材料中的实际应用案例解析

纳米科技在建筑材料中的实际应用案例解析纳米科技是近年来迅速发展的一个领域,它以纳米尺度材料的研究和应用为基础,具有广泛的应用前景。
在建筑材料领域,纳米科技的应用可以提供创新的解决方案,改善建筑材料的性能,提高建筑的质量与可持续性。
本文将分析几个纳米科技在建筑材料中的实际应用案例,探讨其技术原理和应用效果。
1. 纳米涂料:提高建筑外墙的耐候性和自洁性纳米涂料是一种具有纳米尺度的颗粒和添加剂的涂料,可以改善建筑外墙的耐候性和自洁性。
例如,纳米二氧化钛涂料可以吸收紫外线,并通过光催化作用分解空气中的污染物,改善空气质量。
这种涂料还具有抗污染、自洁和耐候性能,能够延长建筑外墙的使用寿命。
2. 纳米保温材料:提高建筑节能效果和室内舒适度纳米保温材料是一种以纳米颗粒为基础的保温材料,具有较低的热传导率和较好的隔热性能。
与传统的保温材料相比,纳米保温材料可以降低建筑物的能量损失,并提高建筑物的节能效果。
此外,纳米保温材料还能够吸收和释放湿气,维持室内空气湿度的平衡,提高室内舒适度。
3. 纳米混凝土:提高建筑材料的强度和耐久性纳米混凝土是一种通过在混凝土基材中添加纳米颗粒来改善其性能的材料。
纳米颗粒可以填充混凝土中的微小孔隙和缺陷,提高混凝土的密实度和强度。
此外,纳米混凝土还具有抗裂、耐久和自修复等特性,可以延长建筑材料的使用寿命,并减少维修和更换的频率。
4. 纳米玻璃:提高建筑材料的透明性和耐磨性纳米玻璃是一种通过纳米技术改善玻璃性能的材料。
由于纳米颗粒具有比玻璃原料更细小的尺寸,添加纳米颗粒可以提高玻璃的透明性,并降低光的反射和散射。
此外,纳米玻璃还具有较好的耐磨性,能够减少表面划痕和磨损,延长玻璃的使用寿命。
5. 纳米涂层: 提高建筑表面的防污性和防腐性纳米涂层是一种应用纳米材料制备的涂层,可以提供优良的防污性和防腐性。
例如,纳米银复合涂层可以抑制细菌的生长,减少涂层表面的细菌和病毒污染,更好地保护建筑物表面的卫生环境。
纳米科技在建筑领域中的应用与结构性能分析

纳米科技在建筑领域中的应用与结构性能分析引言:随着科学技术的不断发展,纳米科技逐渐成为各个领域中的热门议题。
在建筑领域中,纳米科技的应用也逐渐得到了广泛关注。
本文将探讨纳米科技在建筑领域中的应用,并重点分析其对建筑结构性能的影响。
纳米科技在建筑领域中的应用:1. 纳米材料的应用:纳米技术可以通过改变材料的物理、化学性质来增强建筑材料的性能。
例如,通过在混凝土中加入纳米粒子,可以提高混凝土的强度和耐久性,从而延长建筑物的使用寿命。
此外,纳米材料还可以用于涂料、绝缘材料等方面,改善建筑外墙的耐候性和保温性能。
2. 纳米涂料的应用:纳米涂料的应用是纳米科技在建筑领域中的另一个重要方向。
纳米涂料具有抗菌、防污、自洁等特性,可以用于建筑物的外墙和屋顶涂料,有效减少建筑物的维护和清洁成本。
此外,纳米涂料还可以对建筑物进行防火、防护等处理,提高建筑物的安全性和可靠性。
3. 纳米传感器的应用:纳米传感器可以通过检测和监测建筑物的结构变化、环境参数等信息,提供实时的数据反馈和预警功能。
例如,纳米传感器可以用于检测建筑物的载荷情况,及时发现结构的变形和破坏,并进行预警,以保障建筑物的安全性。
此外,纳米传感器还可以用于监测建筑物的能耗情况,提供节能建筑的设计和管理方案。
纳米科技对建筑结构性能的影响:1. 强度和耐久性:纳米材料的应用可以提高建筑材料的强度和耐久性。
通过纳米级粒子的增强作用,建筑材料的强度可以得到提高,从而增加建筑物的承载力和抗震性能。
同时,纳米材料的耐久性也得到了增强,可以减少材料的老化和损伤,延长建筑物的使用寿命。
2. 热性能和保温效果:利用纳米技术开发的保温材料可以显著提高建筑物的保温效果。
例如,纳米气凝胶材料具有低热导率和优异的隔热性能,可以用于建筑物的外墙保温层,有效减少能量的散失,降低建筑物的能耗。
此外,纳米涂料的应用也可以在一定程度上改善建筑物的热性能,实现室内温度的稳定控制。
3. 自洁和防污性能:纳米涂料的应用可以使建筑物表面具有自洁和防污的特性。
纳米技术在建筑材料中的应用

纳米技术在建筑材料中的应用随着科技的不断进步和发展,纳米技术逐渐成为一项备受关注的领域。
在建筑行业中,纳米技术的应用逐渐被广泛采用,并为建筑材料的开发和改良带来了许多新的机遇和挑战。
本文将探讨纳米技术在建筑材料中的应用,介绍其在材料性能、环境友好性和持久性方面所带来的优势。
首先,纳米技术在建筑材料中的应用使得材料的性能得到了显著的提升。
通过纳米材料的加入,建筑材料的硬度、强度和耐久性都得到了增强。
例如,采用纳米二氧化硅改性的水泥可以显著提高水泥的抗压强度,延长其使用寿命。
纳米碳纤维也可以用于增强混凝土的强度,使其更具抗震性能。
此外,纳米材料还能够优化建筑材料的导热性能和隔热性能,实现节能效果。
通过纳米技术的应用,建筑材料的功能得到了全面提升,满足了不同建筑环境和需求的要求。
其次,纳米技术在建筑材料中的应用还有助于提高环境友好性。
传统的建筑材料往往会对环境造成负面的影响,如排放有害物质和产生大量废弃物。
而纳米技术的应用可以减轻对环境的污染。
比如,使用纳米材料包覆传统材料表面,可以有效减少有害气体的排放,提高材料的耐候性和耐腐蚀性。
纳米材料还可以用于污染物的吸附和催化分解,实现对空气和水质的净化。
因此,纳米技术的应用有助于建筑材料的环境友好性改良,促进可持续建筑的发展。
此外,纳米技术在建筑材料中的应用还可以提高材料的持久性和耐久性。
通过纳米技术,可以改善建筑材料的防水性、耐久性和抗老化性能。
例如,纳米多孔材料能够增强建筑物表面的防水层,阻止水分渗透,进而延长材料的使用寿命。
纳米涂层也可以用于提高建筑材料的耐污性和防尘性,保持建筑外观的美观性。
纳米技术的应用可以增强材料的稳定性和耐用性,降低维修和更换的频率,从而降低了建筑的维护成本。
然而,纳米技术在建筑材料中的应用也面临一些挑战。
首先,纳米材料的成本仍然较高,导致其在建筑材料中的应用受到限制。
其次,纳米材料的稳定性和安全性也需要进一步研究和验证。
在纳米材料的制备和使用过程中,需要注意对环境和人体的潜在风险进行评估和控制。
创新建筑技术纳米材料在建筑设计中的应用

创新建筑技术纳米材料在建筑设计中的应用创新建筑技术:纳米材料在建筑设计中的应用一、引言随着科技的进步和社会的发展,建筑设计领域也在不断创新与进步。
近年来,纳米材料作为一种新型材料,逐渐引起了建筑设计师的关注与应用。
本文将探讨纳米材料在建筑设计中的应用,重点介绍其在建筑外立面、保温隔热、智能控制和可持续发展方面的优势和实践。
二、纳米材料在建筑外立面中的应用1. 纳米涂料纳米涂料是一种采用具有纳米级尺寸的颗粒作为基本组分的新型涂料。
由于纳米颗粒的特殊结构和高比表面积,纳米涂料能够提供更好的抗污染、自洁和耐候性能,有效改善建筑外立面的清洁和维护问题。
2. 纳米氧化镁纳米氧化镁是一种具有优异性能的纳米材料。
通过将纳米氧化镁与建筑材料混合使用,可以显著提高建筑物的耐火性能和抗菌性能,降低火灾发生的风险,并减少维护成本。
三、纳米材料在建筑保温隔热中的应用1. 纳米保温材料纳米保温材料具有优异的隔热性能和热稳定性,可以有效降低建筑物的能耗。
与传统保温材料相比,纳米保温材料的导热系数更低,同时具备较高的抗压性能和防水性能,能够提供更好的室内舒适度和节能效果。
2. 纳米气凝胶纳米气凝胶是一种超轻质高孔隙率的材料,具有极佳的隔热性能。
在建筑保温隔热中,纳米气凝胶可以作为填充材料填充于建筑墙体或屋顶中,有效隔离热传导,实现能源的节约和环境的保护。
四、纳米材料在智能控制中的应用1. 纳米光敏材料纳米光敏材料具有高度敏感的光学特性,能够实现建筑外立面的智能调光和自动控制。
通过在建筑外墙涂层或窗户上应用纳米光敏材料,可以根据光照强度自动调节室内的采光亮度,提高建筑的能源利用效率。
2. 纳米传感器纳米传感器作为一种新兴的智能材料,能够实时监测建筑物的温度、湿度、气体浓度等参数。
通过在建筑结构中嵌入纳米传感器,可以实现对建筑物运行状态的精准监测,提高建筑的安全性和舒适度。
五、纳米材料在可持续发展中的应用1. 纳米光伏材料纳米光伏材料作为一种新型的光电转换材料,具有高效率、轻质和柔性等特点。
纳米技术在建筑材料中的应用方法与技巧分享

纳米技术在建筑材料中的应用方法与技巧分享近年来,纳米技术在各个领域都得到了广泛的应用,包括建筑行业。
纳米技术在建筑材料中的应用不仅可以提升材料的性能和功能,还可以改善建筑的能源效率和可持续性。
在本文中,我们将分享一些关于纳米技术在建筑材料中的应用方法和技巧。
首先,纳米技术可以改善建筑材料的性能。
通过纳米颗粒的添加,可以改变材料的机械性能、热导性能、光学性能等。
例如,在混凝土中添加纳米颗粒可以提高混凝土的强度和耐久性,使其在承受高温和冷冻融化循环等极端条件下表现更好。
另外,在窗户玻璃中添加纳米颗粒可以显著提高隔热性能,减少能量损失。
因此,选择合适的纳米颗粒,并将其加入到建筑材料中,可以有效地改善材料的性能。
其次,纳米技术可以改善建筑材料的功能。
例如,在建筑外墙涂料中添加纳米颗粒可以使涂料具有自洁能力和抗污能力。
这是因为纳米颗粒具有较大的比表面积,使其能够吸附和分解大气污染物,从而保持涂料表面的清洁。
另外,纳米技术还可以用于开发新型的防水材料和防火材料,提供更好的建筑保护。
因此,纳米技术在建筑材料中的应用可以赋予材料新的功能和更好的性能。
此外,纳米技术可以改善建筑的能源效率。
通过采用纳米材料和纳米涂层,可以降低建筑的能量消耗和碳排放。
例如,使用纳米涂层可以提高太阳能电池板的效率,将更多的太阳能转化为电能,从而减少对传统能源的依赖。
另外,在建筑外墙上使用纳米涂层可以降低建筑物的热吸收,减少能源消耗用于室内空调。
通过这些纳米技术的应用,可以大幅提升建筑的能源效率和可持续性。
最后,纳米技术在建筑材料中的应用还需要注意一些技巧。
首先,选择合适的纳米材料和纳米颗粒是至关重要的。
不同的纳米材料具有不同的特性,需要根据具体的建筑需求选择合适的材料。
其次,纳米材料的添加量也应该适中,过多的添加可能会对材料的性能产生负面影响。
此外,纳米颗粒的分散均匀度和稳定性也需要注意,不良的分散可能导致材料性能的不稳定性。
因此,在具体应用时,需要进行适当的测试和实验,确保纳米材料的应用效果。
纳米技术在建筑材料中的发展与应用

纳米技术在建筑材料中的应用越来越广泛,其主要优势是可以带来材料的高性能和多功能特性,进而提高建筑材料的性能、耐久性和安全性。
以下是纳米技术在建筑材料中的一些发展与应用:
1. 纳米改性剂:通过添加纳米改性剂,可以对建筑材料进行表面改性,提高材料的耐久性、抗污染性和防水性等,从而提高材料的性能和寿命。
2. 纳米氧化物:纳米氧化物如二氧化钛和氧化锌等,可以用于建筑涂料和玻璃幕墙的制备,具有防紫外线、自清洁、抗菌等多种功能。
3. 纳米碳管:纳米碳管可以用于增强混凝土和增加其力学性能,同时还可以降低混凝土的渗透性和提高其耐久性。
4. 纳米气凝胶:纳米气凝胶可以用于隔热、保温和吸声等方面,可以有效地提高建筑墙体的节能性能。
5. 纳米硅酸盐:纳米硅酸盐可以用于制备高性能水泥基材料,如高强度混凝土、自密实混凝土等,同时还可以提高材料的抗裂性和耐久性。
总之,纳米技术在建筑材料中的应用领域广泛,可以带来很多新的功
能和性能,进而提高建筑材料的质量和安全性,促进建筑行业的可持续发展。
纳米科技在建筑材料中的实际应用

纳米科技在建筑材料中的实际应用随着科学技术的不断进步和创新,纳米科技作为一项前沿领域逐渐应用于各个行业。
在建筑领域中,纳米科技为我们带来了许多前所未有的机会和挑战。
纳米材料的应用不仅可以增强建筑材料的性能,同时也可以改善建筑物的功能和环境效应。
本文将介绍纳米科技在建筑材料中的实际应用,并探讨其对建筑行业发展的潜力。
首先,纳米材料的应用可以提升建筑材料的性能。
纳米材料具有比普通材料更大的比表面积,这使得纳米材料具有更高的强度和硬度。
例如,使用纳米纤维增强建筑材料可以使其更加耐磨损和耐高温,在地震等自然灾害中也具有更好的抗摇摆性能,从而提高建筑物的安全性。
此外,纳米材料的应用还可以改善建筑材料的耐久性,减少环境因素对建筑材料的影响。
例如,使用纳米氧化锌涂料可以增强建筑材料的紫外线防护性能,延长建筑物的使用寿命。
其次,纳米材料的应用还可以改善建筑物的功能性。
纳米光触媒是一种利用纳米粒子吸附并分解有害气体的技术,可以应用于建筑物内外的空气净化和除臭。
通过在建筑物表面涂覆纳米光触媒涂料,可以有效降解空气中的甲醛、苯等有害气体,改善室内空气质量。
此外,纳米技术还可以用于制造自洁建筑材料。
研究人员利用纳米涂层的超疏水性和自洁性,使建筑表面对水、油等污垢具有较好的抗黏附性,减少清洗和维护的工作量。
纳米科技的应用还可以提高建筑物的能源效益。
通过运用纳米材料制造的高效隔热材料,建筑物的保温性能可以得到显著改善。
纳米气凝胶是一种常用的隔热材料,其微小的孔隙结构可以降低热传导,提高建筑物的隔热性能。
此外,使用纳米涂料可以改善建筑物的光学性能,使得室内采光更加均匀,减少照明能耗。
同时,使用纳米太阳能电池可以将太阳能转换为电能,并有助于建筑物的自给自足能源系统的建设。
纳米科技在建筑材料中的应用不仅可以提升建筑物的性能和功能,还可以改善建筑物与环境的互动效应。
雾霾是当今社会面临的严重环境问题之一。
利用纳米材料可以净化室外空气中的有害物质,降低大气污染。
纳米技术在建筑材料中的实际应用技巧

纳米技术在建筑材料中的实际应用技巧随着科学技术的不断进步,纳米技术作为一项新兴技术正逐渐渗透进各个领域。
在建筑领域,纳米技术也开始展现其巨大的潜力。
通过利用纳米材料的特性,如其小尺寸、高比表面积以及良好的力学性能等,可以改善建筑材料的性能和功能。
本文将重点介绍纳米技术在建筑材料中的实际应用技巧。
首先,纳米技术在建筑材料中的一个重要应用就是增强材料的力学性能。
通过控制纳米材料的含量、尺寸和分布等因素,可以使得材料具有更高的强度、硬度和韧性。
例如,在混凝土中添加纳米氧化硅或纳米氧化铝可以提高其抗压强度和耐久性。
此外,纳米纤维的加入也可以增加材料的韧性,从而提高建筑结构的抗震能力。
其次,纳米技术还可以改善建筑材料的耐候性和防腐蚀性能。
纳米材料的高比表面积和特殊的表面性质使其能够吸附和分散有害物质,从而减少材料表面的污染和腐蚀现象。
例如,将纳米二氧化钛加入油漆中可以使油漆具有自净能力,降低光照下有害气体的浓度。
类似地,添加纳米氧化铜或纳米氧化锌可以提高涂层的防腐蚀性能,减少金属材料的氧化速度。
此外,纳米技术还可以用于改善建筑材料的绝热性能和节能效果。
纳米材料的小尺寸和大比表面积使其具有优异的热阻性能和热传导性能,能够有效地抑制热量的传递。
例如,将纳米石墨加入混凝土中可以提高其导热系数,从而减少热量的散失。
同样地,添加纳米空心球体材料可以改善墙体的隔热性能,减少室内外温差对室内温度的影响。
此外,纳米技术还可以用于改善建筑材料的自洁性能和抗污能力。
纳米材料的特殊表面性质使其能够形成一种超疏水表面或超亲水表面,从而实现自洁或抗污的效果。
例如,将纳米二氧化硅纳入玻璃表面可以使其具有自洁效果,降低清洗频次和成本。
类似地,将纳米涂层施加在建筑外墙或屋顶上可以增加材料的抗污能力,降低建筑物表面积聚尘土和污垢的可能性。
最后,纳米技术还可以用于改善建筑材料的声学性能和光学效果。
纳米材料的尺寸和分布可以改变材料对声波和光线的散射和吸收效果,从而影响其声学性能和光学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米技术在建筑材料中的应用纳米技术是二十世纪80年代末诞生并正在崛起的新技术,主要是指在0.1~100nm尺度范围内,研究物质组成体系中电子、原子和分子运动规律与相互作用,其研究目的是按人的意志直接操纵电子、原子或分子,研制出人们所希望的、具有特定功能特性的材料和制品。
纳米技术是高度交叉的综合性学科,它主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学、纳米机械学。
纳米技术已应用于建筑材料、光学、医药、半导体、信息通讯、军事等领域。
目前,纳米材料技术是唯一可以实现的纳米技术。
纳米材料以其特有的光、电、热、磁等性能为建筑材料的发展带来一次前所未有的革命。
利用纳米材料的随角异色现象开发的新型涂料,利用纳米材料的自洁功能开发的抗菌防霉涂料、PPR供水管,利用纳米材料具有的导电功能而开发的导电涂料,利用纳米材料屏蔽紫外线的功能可大大提高PVC塑钢门窗的抗老化黄变性能,利用纳米材料可大大提高塑料管材的强度等。
由此可见,纳米材料在建材中具有十分广阔的市场应用前景和巨大的经济、社会效益。
近年来,国内外开始探索纳米材料和纳米技术在建材中的发展及应用工作,并取得了一些可喜的成果,现分类介绍如下:1纳米技术在建筑涂料中的应用涂料是建筑物的内衣(内墙涂料)和外衣(外墙涂料),国内传统的涂料普遍存在悬浮稳定性差、不耐老化、耐洗刷性差、光洁度不高等缺陷。
纳米复合涂料就是将纳米粉体用于涂料中所得到的一类具有耐老化、抗辐射、剥离强度高或具有某些特殊功能的涂料。
在建材(特别是建筑涂料)方面的应用已经显示出了它的独特魅力。
同一种纳米粒子在不同粒径下会有不同的作用,不同种类的纳米粒子也可以在涂料中起相同的作用。
按纳米复合涂料的用途可归纳为以下几种:1.1光学应用纳米复合涂料纳米粒子的粒径远小于可见光的波长400~750nm,具有透过作用,从而保证了纳米复合涂料具有较高的透明性。
纳米粒子对紫外线具有较强的吸收作用。
在外墙建筑涂料中添加TiO2、SiO2等纳米粒子以提高耐候性,在汽车面漆中添加TiO2以提高汽车涂料的耐老化性等。
纳米SiO2是无定型白色粉末(指其团聚体),表面存在不饱和的残键及不同键合状态的羟基,其分子状态呈三维链状结构[5]。
一般来讲,纳米粒子表面氢键会在外部剪切力消除后迅速复原,使其结构迅速重组。
这种依赖时间与外力作用而回复原状的剪切力弱化反应,称为“触变性”。
触变性是纳米二氧化硅改善传统涂料各项性能的主要因素。
徐国财等人[8]通过纳米微粒填充法,将纳米二氧化硅掺杂到紫外光固化涂料中。
实验表明,纳米二氧化硅减弱了紫外光固化涂料吸收UV 辐照的强度,从而降低了光固化涂料的固化速度,但可明显提高紫外光固化涂料的硬度和附着力。
特别是金红石型超细TiO2在汽车面漆中还可起到效应颜料作用,与其它片状效应颜料如铝粉颜料或珠光颜料并用时,会产生伴有乳光的随角异色性,可用于豪华轿车面漆,这是目前纳米TiO2的最大用途,也是国外纳米材料在涂料中应用最为成功的例子之一[9]。
纳米氧化锌由于尺寸小,比表面积大,表面的键态与颗粒内部的不同,表面原子配位不全等,导致表面的活性位置增多,加大了反应接触面,因此,纳米氧化锌也是一种很好的光催化剂。
在紫外光照射下,它能分解有机物质,起抗菌和除臭作用。
具有这一性质的光催化剂可用于环保涂料中,纳米ZnO加入涂料可显著提高涂料的耐人工老化能力。
1.2吸波纳米复合涂料由于纳米超细粉末尺寸非常小,具有吸收电磁波的性能,它们对不同波长的雷达波和红外线具有很强的吸收作用。
因此,被纳米颗粒改性后的涂料可成为军事上用的隐身涂料。
美国曾报道过一种“超”黑体纳米吸收材料,即超细石墨粉纳米吸波涂料,对雷达波的吸收率可达99%。
国外用纳米级羰基铁粉、镍粉、铁氧体粉末已成功配制了军事隐身涂料,涂到飞机、军舰、导弹、潜艇等武器装备上,使其具有隐身性能。
纳米涂层材料由于具有吸收频带宽、重量轻、厚度薄等优点,可望在未来军事隐身化方面大展身手。
1.3纳米自洁抗菌涂料光的照射可以引起TiO2表面在纳米区域形成亲水性及亲油性两相共存奇妙的超双亲性。
如将国内已经工业化生产的纳米抗菌粉用于涂料中,可制得纳米杀菌涂料,涂覆于建材产品,如卫生洁具、室内空间、用具、医院手术间和病房的墙面、地面等,起到杀菌、保洁作用。
纳米TiO2颗粒在波长小于400nm的光照下,能吸收高于其禁带宽度的短波光辐射,产生电子跃迁,使价带电子被激发到导带,并形成电子-空穴对,将能量传递到周围介质,诱导光化学反应,从而具有光催化性能。
纳米ZnO也是一种高效杀菌剂,纳米氧化锌在紫外线照射下,在水和空气(氧气)中能自行分解出带负电的电子(e-),同时留下带正电的空穴(h+),这种空穴可以激活空气中的氧变为活性氧,有极强的化学活性,能与多种有机物发生氧化反应(包括细菌内的有机物),从而把大多数病菌和病毒杀死。
西北大学曾进行过纳米氧化锌的定量杀菌试验,在5min内纳米氧化锌的浓度为1%时,金黄色葡萄球菌的杀灭率为98.86%,大肠杆菌的杀灭率为99.93%。
所以在化妆品中添加纳米氧化锌既能屏蔽紫外线防晒,又能抗菌除臭。
1.4纳米导电涂料日本松下公司已研制成功具有良好静电屏蔽作用的纳米复合涂料,所用的纳米粒子有Fe2O3、TiO2、ZnO等。
这些具有半导体特性的纳米氧化物粒子在室温下具有比常规的氧化物高的导电特性,同时,纳米氧化物粒子的颜色不同,这种涂料不但具有静电屏蔽特性,而且克服了涂料颜色的单调性。
1.4.1纳米高力学性能涂料当涂料的重要组成部分颜料颗粒达到纳米级大小并分散在涂膜中时,由于比界面很大,具有很大的结合力,对有机涂层有一定的增强作用,提高了涂层的硬度、抗冲击性和耐磨性。
此外,纳米颗粒还可以降低涂层在干燥过程中的残余应力,从而增强涂层的附着力。
研究表明[8],纳米SiO2颗粒在紫外光固化涂料中可明显提高涂膜的硬度和附着力,并且经纳米材料改性后的家具表面漆、汽车面漆的耐磨性和耐刮伤性也有很大提高。
2纳米技术在混凝土材料中的应用随着社会工业化的深入发展和我国基础建设的广泛开展,水泥混凝土作为一种传统的建材,其产量和用量都在不断地增加,高性能混凝土已成为水泥基复合材料领域中的研究热点。
同时,许多特殊领域要求水泥混凝土具有一定的功能性,如希望其具有吸声、防冻、高强且高韧性等功能。
纳米材料由于具有小尺寸效应、量子效应、表面及界面效应等优异特性,因而能够在结构或功能上赋予其所添加体系许多不同于传统材料的性能。
利用纳米技术开发新型的混凝土可大幅度提高混凝土的强度、施工性能和耐久性能。
2.1纳米矿粉在水泥混凝土中的应用纳米矿粉如纳米SiO2、纳米CaCO3和纳米硅粉等不但可以填充水泥的空隙,提高混凝土的流动度,更重要的是可改善混凝土中水泥石与骨料的界面结构,使混凝土的强度、抗渗性与耐久性均得以提高。
有研究报道,当纳米材料的添加量为水泥用量的1%~3%,并在高速混合机中与其他混合料进行混合后,制备的纳米复合水泥结构材料在7d和28d龄期的水泥硬化强度,比未添加纳米材料提高约50%,而且韧性、耐久性等性能也得到较大的改善。
李颖等人[15]研究了硅灰和纳米级SiO2对水泥浆体需水量的影响。
研究表明,当纳米级SiO2掺量达到水泥用量的8%时,水泥浆体的需水量增大一倍。
同时,研究发现,当将水泥用量8%和10%进行复合添加时,纳米级SiO2的小球体填充于硅灰颗粒之间,与硅灰形成很好的颗粒级配结构。
当两者同时添加且纳米级SiO2为l%和硅灰为9%时,需水量并未双倍增加,可见两者的交互作用十分明显。
2.2纳米金属粉末在混凝土中的应用由于纳米材料的表面效应,增加了纳米材料的活性,使得纳米金属粉末具有两个特殊性能,其一是纳米金属粉末的强度、硬度高,并随着晶粒尺寸的减小,其强度、硬度不断提高,同时还表现出非常好的塑韧性;其二是纳米金属粉末是一种良好的吸波材料。
利用上述纳米金属粉末的特殊性能,如果把它掺入到水泥混凝土中,可制成具有功能性的电磁屏蔽混凝土。
2.3纳米金属氧化物在混凝土中的应用锐钛型纳米TiO2是一种优良的光催化剂,它具有净化空气、杀菌、除臭、表面自洁等特殊功能。
利用纳米TiO2具有净化空气的特性来制备光催化混凝土,它在净化机动车排出的尾气时发生了光催化反应,对机动车辆排放的二氧化硫、氮氧化物等对人体有害的污染气体进行分解去除,起到净化空气的作用。
利用纳米金属氧化物材料可以进行电磁屏蔽,还可以用来制备智能水泥混凝土,如自警水泥混凝土等。
这种水泥混凝土具有较强的导电性能,同时还具有传感作用。
这种智能型水泥混凝土可用于土木工程结构的实时和长期监测,便于监控混凝土结构的开裂与破坏情况及其损伤评价、检测车重与车速等,这对混凝土性能的检测是一场革命。
2.4聚合物/无机纳米复合材料在混凝土中的应用由于聚合物/无机纳米复合材料的优异性能,使得有关它的理论和应用研究成为当前复合材料的热点,它也有可能应用于水泥混凝土中。
把聚合物/无机纳米复合材料用于水泥混凝土中,不仅可以提高混凝土的抗压、抗拉和弯曲强度,而且可提高其耐久性。
在混凝土混合料中掺入一定量的聚合物/无机纳米复合材料,使之均匀分散在混凝土中,利用聚合物/无机纳米复合材料的导电性能,测试电阻的变化,建立电阻与荷载之间的模型,从而可以预测混凝土结构的破坏。
纳米材料和技术在新型建筑材料中的应用3纳米技术在陶瓷材料中的应用3.1纳米材料在耐高温陶瓷中的应用二十世纪90年代初,日本Nihara首次报道了以纳米尺寸SiC颗粒为第二相的纳米复相陶瓷具有很高的力学性能,并具有很多独特的性能。
含有20%纳米钴粉的金属陶瓷是火箭喷气口的耐高温材料。
氧化物纳米材料在这方面都优于同质传统陶瓷材料,在陶瓷基中添加其他纳米微粒的效果也正在研究。
纳米技术在陶瓷上的应用潜力不可估量。
近年来国内外对纳米复相陶瓷的研究表明,在微米级基体中引入纳米分散相进行复合,可使材料的断裂强度、断裂韧性大大提高(2~4倍),使最高使用温度提高400~600℃,同时还可使材料的硬度、弹性模量、抗蠕变性和抗疲劳破坏性能提高。
3.2纳米材料在保健抗菌陶瓷中的应用纳米材料的抗菌系列主要有TiO2系列、Ag系列、Cu系列、ZnO 系列等,主要是掺入陶瓷釉面中或掺入陶瓷面层中,生产抗菌陶瓷釉面砖和卫生陶瓷等产品,主要用于墙地面装饰、厨房、浴室及卫生间。
在生产抗菌陶瓷的过程中,如果再加入远红外陶瓷粉,就可以制成具有复合功能的抗菌保健陶瓷,这种产品不断向外辐射红外线,可促进人体微循环,增加血流量,并提高人体抗寒、抗病及抗衰老能力。
3.3纳米材料在环境友好陶瓷中的应用利用纳米技术生产的多孔陶瓷(陶瓷微孔材料)材料,可对工业废气进行过滤分离。