算法习题回溯法

合集下载

回溯法和分支限界法解决0-1背包题(精)[精品文档]

回溯法和分支限界法解决0-1背包题(精)[精品文档]

0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。

由此得一个解为[1,0.2,1,1],其相应价值为22。

算法设计与分析——批处理作业调度(回溯法)

算法设计与分析——批处理作业调度(回溯法)

算法设计与分析——批处理作业调度(回溯法)之前讲过⼀个相似的问题流⽔作业调度问题,那⼀道题最开始⽤动态规划,推到最后得到了⼀个Johnson法则,变成了⼀个排序问题,有兴趣的可以看⼀下本篇博客主要参考⾃⼀、问题描述给定n个作业的集合{J1,J2,…,Jn}。

每个作业必须先由机器1处理,然后由机器2处理。

作业Ji需要机器j的处理时间为t ji。

对于⼀个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。

所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。

批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度⽅案,使其完成时间和达到最⼩。

例:设n=3,考虑以下实例:看到这⾥可能会对这些完成时间和是怎么计算出来的会有疑问,这⾥我拿123和312的⽅案来说明⼀下。

对于调度⽅案(1,2,3)作业1在机器1上完成的时间是2,在机器2上完成的时间是3作业2在机器1上完成的时间是5,在机器2上完成的时间是6作业3在机器1上完成的时间是7,在机器2上完成的时间是10所以,作业调度的完成时间和= 3 + 6 + 10这⾥我们可以思考⼀下作业i在机器2上完成的时间应该怎么去求?作业i在机器1上完成的时间是连续的,所以是直接累加就可以。

但对于机器2就会产⽣两种情况,这两种情况其实就是上图的两种情况,对于(1,2,3)的调度⽅案,在求作业2在机器2上完成的时间时,由于作业2在机器1上还没有完成,这就需要先等待机器1处理完;⽽对于(3,1,2)的调度⽅案,在求作业2在机器2上完成的时间时,作业2在机器1早已完成,⽆需等待,直接在作业1被机器1处理之后就能接着被处理。

综上,我们可以得到如下表达式if(F2[i-1] > F1[i])F2[i] = F2[i-1] + t[2][i]elseF2[i] = F1[i] + t[2][i]⼆、算法设计类Flowshop的数据成员记录解空间的结点信息,M输⼊作业时间,bestf记录当前最⼩完成时间和,数组bestx记录相应的当前最佳作业调度。

回溯法练习1

回溯法练习1

火柴游戏• 有红,绿,蓝三种颜色的火柴,所有火柴长度一样。

用它们可以组成一些数字, 如下图所示:•• 为了让组成的火柴好看一些,我们规定:有公共点的火柴必须不同色。

例如,用红火柴4根和蓝火柴3根可以组成数12,21,7等。

而且有些方案虽然数字和它们的排列顺序都相同,但是有颜色之分。

问:一共可以组成多少个数(可以包含多个数字,但至少包含一个数字)?同一个数用不同颜色表示算作不同的数,火柴可以有剩余。

• 输入• 三个整数n1, n2, n3 (0 ≤ n1,n2,n3 ≤ 15),即三种颜色的火柴的数目。

• 输出• 仅一个数,即可以组成的数的数目。

结果保证不超过1016。

骑士游历问题设有一个n*m 的棋盘(2≤n ≤50,2≤m ≤50),如下图。

在棋盘上任一点有一个中国象棋马,马走的规则为:1.马走日字2.马只能向右走。

即左图所示:当n ,m 给出之后,同时给出马起始的位置和终点的位置,试找出从起点到终点的所有路径的数目。

例如:(n=10,m=10),(1,5)(起点),(3,5)(终点)。

应输出2(即由(1,5)到(3,5)共有2条路径,如下图):输入:n ,m ,x1,y1,x2,y2(分别表示n ,m ,起点坐标,终点坐标) 输出:路径数目(若不存在从起点到终点的路径,输出0)过河卒如图,A点有一个过河卒,需要走到目标B点。

卒行走的规则:可以向下、或者向右。

••同时在棋盘上的任一点有一个对方的马(如上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。

例如上图C点上的马可以控制8个点(图中的P1,P2….P8)。

卒不能通过对方马的控制点。

•棋盘用坐标表示,A点(0,0)、B点(n,m)(n,m为不超过20的整数,并由键盘输入),同样马的位置坐标是需要给出的(约定:C≠A,同时C≠B)。

现在要求你计算出卒从A点能够到达B点的路径的条数。

•输入:•键盘输入B点的坐标(n,m)以及对方马的坐标(X,Y)输出:•屏幕输出一个整数(路径的条数)。

基本算法-回溯法(迷宫问题)

基本算法-回溯法(迷宫问题)

基本算法-回溯法(迷宫问题)作者:翟天保Steven版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处前言本文介绍一种经典算法——回溯法,可作为迷宫问题的一种解法,以下是本篇文章正文内容,包括算法简介、算法应用(迷宫问题)、算法流程和C++代码实现。

一、回溯法简介回溯法(Backtracking)是枚举法的一种,可以找出所有或者一部分的一般性算法,且有效避免枚举不对的解。

当发现某个解的方向不准确时,就不再继续往下进行,而是回溯到上一层,减少算法运行时间,俗称“走不通就回头换路走”。

特点是在搜索过程中寻找问题的解,一旦发现不满足条件便回溯,继续搜索其他路径,提高效率。

二、算法应用(迷宫问题)1.问题描述迷宫问题是回溯法的一种应用。

迷宫问题的描述为:假设主体(人、动物或者飞行器)放在一个迷宫地图入口处,迷宫中有许多墙,使得大多数的路径都被挡住而无法行进。

主体可以通过遍历所有可能到出口的路径来到达出口。

当主体走错路时需要将走错的路径记录下来,避免下次走重复的路径,直到找到出口。

主体需遵从如下三个原则:1.一次步进只能走一格;2.遇到路径堵塞后,退后直到找到另一条路径可行;3.走过的路径记录下来,不会再走第二次。

2.解题思路首先创建一个迷宫图,比如用二维数组人为定义MAZE[row][col],MAZE[i][j]=1时表示有墙无法通过,MAZE[i][j]=0时表示可行,假设MAZE[1][1]为入口,MAZE[8][10]为出口,创建如下初始迷宫图:图1 初始迷宫图当主体在迷宫中前行时,有东南西北(即右下左上)四个方向可以选择,如下图所示:图2 方向示意图视情况而定,并不是所有位置都可以上下左右前进,只能走MAZE[i][j]=0的地方。

通过链表来记录走过的位置,并将其标记为2,把这个位置的信息放入堆栈,再进行下个方向的选择。

若走到死胡同且未到达终点,则退回到上一个岔路口选择另一个方向继续走。

算法习题回溯法

算法习题回溯法
x[j] = 0;
}
}
main(){
ifstream fin("input.txt",ios::in);
fin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
fin>>c[i][j];
x[j] = 0;
}
cost+=c[i][i];
}
work(1,0);
void backtrack(int i){
if(i>n){
if(cw<sum)
sum = cw;
return ;
}
for(int j=1;j<=m;j++){
cw+=w[i][j];
cp+=c[i][j];
if(cw<sum && cp<=d)
backtrack(i+1);
cw-=w[i][j];
ofstream fout("output.txt",ios::out);
cout<<cost<<endl;
fout<<cost<<endl;
system("pause");
fout.close();
return 0;
}
cp-=c[i][j];
}
}
int main(){
ifstream fin("input.txt",ios::in);
fin>>n>>m>>d;

第5章 回溯法(1-例子)

第5章 回溯法(1-例子)

n; // 作业数};
8
} //end Backtrack
旅行售货员问题
9
旅行售货员问题
解空间树 —— 排列树 剪枝函数:当搜索到第i 层,图G中存在从顶点1经i个 顶点到某其他顶点的一条路 径,且x[1:i]的费用和大于当前 已获得的最优值时,剪去该子 树的搜索。 算法效率:
O((n-1)!)*O(n) =O(n!)
cleft -= w[i];
b += p[i];
i++;
} // 装满背包
if (i <= n) b += p[i]/w[i] * cleft;
return b;
4
}
0-1背包问题
例:n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 解空间树如下:
物品 1 物品 2 物品 3 物品 4
class Flowshop { friend Flow(int**, int, int []);
f+=f2[i];
private:
if (f < bestf) {
void Backtrack(int i);
Swap(x[i], x[j]);
int **M, // 各作业所需的处理时间
Backtrack(i+1);
(2)将剩余的集装箱装上第二艘轮船。
将第一艘轮船尽可能装满等价于选取全体集装箱的一个子集,
使该子集中集装箱重量之和最接近c1。由此可知,装载问题等
价于以下特n殊的0-1背包问题。
max wi xi i 1
用回溯法设计解装载问题的O(2n)计
n
s.t. wi xi c1
算时间算法。

回溯法

回溯法

回溯法一、回溯法:回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。

而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。

这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。

二、算法框架:1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。

问题的解空间应到少包含问题的一个(最优)解。

2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始结点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

换句话说,这个结点不再是一个活结点。

此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

运用回溯法解题通常包含以下三个步骤:(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;3、递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下可用递归函数来实现回溯法如下:procedure try(i:integer);varbeginif i>n then 输出结果else for j:=下界 to 上界 dobeginx[i]:=h[j];if 可行{满足限界函数和约束条件} then begin 置值;try(i+1); end;end;end;说明:i 是递归深度;n 是深度控制,即解空间树的的高度;可行性判断有两方面的内容:不满约束条件则剪去相应子树;若限界函数越界,也剪去相应子树;两者均满足则进入下一层;二、习题:1、0-1背包:n=3,w=[16,15,15],p=[45,25,25],c=302、旅行售货员问题:某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色。

如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。

图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。

2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。

3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。

他们想把参与者们尽可能分为实力相当的两支队伍。

每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。

4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。

每个作业J都有两项任务分别在两台机器上完成。

每个作业必须先由机器1处理,再由机器2处理。

作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。

对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。

批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。

二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。

(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。

(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。

(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。

三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。

四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fout<<cost<<endl;
system("pause");
fout.close();
return 0;
}
cw+=w[i][j];
cp+=c[i][j];
if(cw<sum && cp<=d)
backtrack(i+1);
cw-=w[i][j];
cp-=c[i][j];
}
}
int main(){
ifstream fin("input.txt",ios::in);
fin>>n>>m>>d;
for(int i=1;i<=n;i++){
Output
将计算的最小重量及每个部件的供应商输出到文件output.txt
Sample Input
3 3 41 2 33 2 12 2 21 2 33 2 12 2 2
Sample Output
4
1 3 1
#include<iostream>
#include<fstream>
#include <stdio.h>
3 4 5
输出:9
#include<iostream>
#include<fstream>
#include <stdio.h>
using namespace std;
int n,cost=0;
int x[100],c[100][100];
void work(int i,int count){
if(i>n && count<cost){
算法设计与分析第三次作业
计科三班康玥20110801330
5-3
设某一机器由n个部件组成,每一种部件都可以从m个不同的供应商处购得。设wi,j是从供应商j处购得的部件i的重量,ci,j是相应的价格。试设计一个算法,给出总价格不超过c的最小重量机器设计。
Input
由文件input.txt给出输入数据。每组测试数据第一行有3个正整数n,m和d。接下来的2n行,每行m个数。前n行是ci,j,后n行是wi,j。
cost = count;
return ;
}
if(count<cost)
for(int j=1;j<=n;j++)
if(x[j] == 0){
x[j] = 1;
work(i+1,count+c[i][j]);
x[j] = 0;
}
}
int main(){
ifst;
算法设计:设计一个算法,对于给定的工作费用,计算最佳工作分配方案,使总费用达到最小。
数据输入:由文件input.txt给出输入数据,第一行有一个正整数n(1<=n<=20)。接下来的n行,每行n个数,表示工作费用。
结果输出:将计算的最小总费用输出到文件output.txt
样例分析:
3
10 2 3
2 3 4
for(int j=1;j<=m;j++)
fin>>c[i][j];
sum+=c[i][1];
}
for(int k=1;k<=n;k++)
for(int j=1;j<=m;j++)
fin>>w[k][j];
backtrack(1);
ofstream fout("output.txt",ios::out);
cout<<sum<<endl;
fout<<sum<<endl;
system("pause"); fout.close();
return 0;
}
5-13
问题描述:
设有n件工作分配给n个人。为第i个人分配工作j所需的费用为c[i][j]。试设计一个算法,计算最佳工作分配方案,为每一个人都分配1件不同的工作,并使总费用达到最小。
fin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
fin>>c[i][j];
x[j] = 0;
}
cost+=c[i][i];
}
work(1,0);
ofstream fout("output.txt",ios::out);
cout<<cost<<endl;
#define N 1000
using namespace std;
int n,m,d,cp=0,cw=0,sum=0;
int c[N][N],w[N][N];
void backtrack(int i){
if(i>n){
if(cw<sum)
sum = cw;
return ;
}
for(int j=1;j<=m;j++){
相关文档
最新文档