抑癌基因p53的突变与修护激活
p53通路相关基因

p53通路相关基因p53通路与机体防御机制中起到重要作用的基因引言:在维持机体正常生理功能中,p53通路相关基因扮演着至关重要的角色。
p53是一种转录因子,它能够调控多个信号途径,参与细胞周期调控、DNA损伤修复以及细胞凋亡等关键过程。
本文将介绍几个与p53通路相关的基因,并探讨它们在维持机体健康中的作用。
I. BRCA1基因BRCA1 (Breast Cancer 1 Gene)是乳腺癌相关基因之一,也是与p53通路密切相关的基因。
BRCA1是一种抑癌基因,它参与了DNA修复途径中的核心机制。
具体而言,BRCA1与p53共同作用,通过参与细胞周期调控,维持基因组稳定性。
此外,一些研究还表明,BRCA1还能够调控p53的翻译水平,进一步增强了p53通路的功能。
II. MDM2基因MDM2 (Mouse Double Minute 2 Homolog)是p53通路中一个关键的负调控因子。
在正常情况下,MDM2通过与p53结合,促进p53的泛素化降解,从而调节p53的稳定性。
然而,在DNA损伤或应激情况下,MDM2的功能被抑制,从而导致p53的激活。
因此,MDM2在维持p53稳态的平衡中起到重要作用。
近年来,研究发现通过抑制MDM2-p53相互作用,可以提高p53的活性,从而对抗某些恶性肿瘤。
III. p21基因p21 (Cyclin Dependent Kinase Inhibitor 1A)是p53通路中的一个重要效应基因。
当细胞遭受DNA损伤时,p53通过与p21结合,抑制细胞周期的进行,从而给予细胞足够的时间进行DNA修复。
此外,p21还具有抑制细胞增殖的功能,能够抑制肿瘤的形成。
研究发现,p21的异常表达与多种肿瘤的发生发展密切相关,进一步证实了p53-p21途径的重要性。
IV. PUMA基因PUMA (p53 Upregulated Modulator of Apoptosis)是p53通路中一个重要的促凋亡基因。
致癌抑癌,还是别的什么 认识p53基因的40年

致癌抑癌,还是别的什么认识p53基因的40年p53基因是人类体内最重要的抑癌基因之一。
它在细胞发生DNA损伤或异常增殖时发挥重要的抑癌功能,可以通过多种途径来维护基因组的稳定性,阻止癌症的发生。
p53基因的研究已经进行了40年,科学家们不断深入研究,不仅揭示了p53基因在抑癌中的重要作用,也发现了p53基因在其他生理和病理过程中的多种功能。
本文将围绕p53基因的功能和研究进展展开讨论,以期更好地认识这一重要的基因。
p53基因的发现和结构p53基因是在1979年由David P. Lane和Arnold J. Levine等科学家们发现的,他们发现p53基因可以通过蛋白质反应产生抑癌作用。
p53基因的编码蛋白质是一种转录因子,它可以调控多种靶基因的表达,进而参与调控细胞的增殖、凋亡和修复等生理过程。
p53基因的结构包括N端的转录活性区域、核心DNA结合区域和C端的调控区域。
p53蛋白质在正常情况下通过蛋白质降解的方式保持低水平表达,当细胞发生DNA损伤等异常情况时,p53蛋白质会迅速积累,引起多种生理反应,包括启动细胞凋亡、抑制细胞增殖和促进DNA 修复等。
p53基因在抑癌中的作用p53基因在抑癌中发挥着多种重要作用。
p53蛋白质可以诱导细胞的凋亡。
当细胞受到严重的DNA损伤时,p53蛋白质会启动凋亡途径,消除受到严重损伤的细胞,阻止癌细胞的发生。
p53蛋白质还可以抑制细胞的增殖。
当细胞发生DNA损伤或异常增殖时,p53蛋白质可以抑制细胞周期的进程,阻止细胞的增殖和分化,从而减少癌细胞的产生。
p53蛋白质还参与细胞的DNA修复。
当细胞发生DNA损伤时,p53蛋白质可以促进DNA修复酶的表达,帮助细胞修复损伤的DNA,维持基因组的稳定性。
p53基因在抑癌中发挥着重要作用,可以通过多种途径来阻止癌细胞的发生和扩散。
除了在抑癌中发挥作用外,p53基因还在其他生理和病理过程中发挥多种功能。
p53基因在细胞老化中发挥作用。
细胞衰老基因集

细胞衰老基因集细胞衰老是一种生物体老化的过程,与细胞内的基因有着密切的关系。
细胞衰老基因集是指一组与细胞衰老过程相关的基因。
以下是一些与细胞衰老相关的基因:1. TP53(p53基因):p53是一种重要的抑癌基因,它在细胞内起到调控细胞周期、DNA修复和细胞凋亡等重要功能。
当细胞受到损伤或DNA缺陷时,p53会激活相关的基因,导致细胞周期停滞或细胞凋亡,从而阻止异常细胞的增殖。
2. PTEN基因:PTEN基因编码了一种蛋白质,该蛋白质是一个肿瘤抑制因子,能够抑制细胞的增殖和促进凋亡。
研究发现,PTEN基因的突变或缺失与肿瘤发生风险增加以及细胞衰老过程的提前有关。
3. p16INK4a基因:p16INK4a是细胞周期调控中的一个关键蛋白质,它能够抑制细胞周期的进行并阻止细胞增殖。
研究表明,p16INK4a基因的活性增加会导致细胞老化和衰老。
4. Telomerase基因:Telomerase是一种酶,它能够延长染色体末端的端粒(telomere),防止端粒的缩短。
端粒的缩短被认为是细胞老化的标志之一。
Telomerase基因的活性与细胞的衰老过程有密切关系。
5. SIRT1基因:SIRT1基因编码的是一种蛋白质,它被称为“长寿基因”。
SIRT1蛋白质能够调控细胞的代谢、应激应答和衰老等过程。
通过调节细胞中多种生物学途径,SIRT1能够抑制细胞衰老的发生。
这些基因在细胞衰老过程中发挥着重要的作用,研究它们的功能和相互关系有助于理解细胞衰老的机制,并提供可能的干预手段来延缓衰老或治疗与衰老相关的疾病。
p53蛋白生物学功能

p53蛋白生物学功能
p53蛋白是调节细胞凋亡、增殖和迁移的关键蛋白,参与细胞生长和发育的调控,它在许多系统的组成中都发挥了重要作用。
1、p53的体内功能
(1)信号转导:P53主要调节细胞的凋亡和增殖过程,它可以通过影响信号转导通路来改变细胞呼吸活性,从而控制细胞的增殖和凋亡,保持细胞健康;
(2)凋亡和增殖调节:p53蛋白可以平衡凋亡和增殖活性,如果细胞发生异常,它能够通过活化凋亡和抑制增殖以防止癌症发生;
(3)DNA修复:P53可以通过识别和修复DNA,抑制细胞的自我破坏,减少细胞的突变,从而保护细胞不受外界环境破坏;
(4)细胞命运调节:P53可以直接调节细胞的命运,对生长抑制,对凋亡的活化,对细胞分化的抑制,以及对细胞增殖的抑制,从而影响细胞的发育和生长。
2、p53外部功能
(1)免疫调节:P53蛋白可以激活免疫细胞发挥免疫抗体的作用,从而有效抵抗外来的病原体或者有害物质的入侵,保护机体;
(2)细胞迁移调节:P53可以调节细胞的迁移,使细胞能够穿过表面,过渡到新的环境中,可以用来促进细胞的转移和修复,在维持机体平
衡中发挥重要作用;
(3)肿瘤抑制:P53可以抑制肿瘤的发展,它可以抑制肿瘤细胞的增殖,抑制细胞凋亡以及影响结构对抗癌症,从而阻止肿瘤细胞的扩增。
总之,p53蛋白是细胞生命周期调控的关键蛋白,它不仅参与内部调控
细胞生长和发育的过程,而且还参与了外因诱导的调节,如免疫调节、迁移调节和肿瘤抑制,发挥着重要的作用。
p53基因参与dna损伤修复途径

p53基因参与dna损伤修复途径英文回答:The p53 gene plays a critical role in the DNA damage response pathway, which is responsible for detecting and repairing DNA damage. When DNA is damaged, the p53 protein is activated and induces a variety of cellular responses, including cell cycle arrest, DNA repair, and apoptosis.p53 is a tumor suppressor gene, and mutations in p53 are commonly found in cancer cells. These mutations can lead to the loss of p53 function, which results in increased genomic instability and an increased risk of cancer development.The p53 protein is a transcription factor, and it regulates the expression of a number of genes involved in the DNA damage response pathway. These genes include those involved in DNA repair, cell cycle regulation, and apoptosis.The p53 protein is also involved in the regulation of cellular metabolism. For example, p53 can induce the expression of genes involved in glycolysis and oxidative phosphorylation. This helps to provide the energy needed for DNA repair and other cellular processes.The p53 protein is a key regulator of the DNA damage response pathway, and it plays a critical role in maintaining genomic stability and preventing cancer development.中文回答:p53基因参与DNA损伤修复途径,该途径负责检测和修复DNA 损伤。
p53基因突变的原因

p53基因突变的原因
p53基因是人类体内最重要的抑癌基因之一,它的主要功能是维持细胞的正常生命周期并促使细胞死亡,避免癌细胞的产生和扩散。
然而,在许多癌症中,p53基因发生了突变,导致其失去了原有的功能,使得细胞无法正确的进行DNA修复和细胞周期控制,从而增加了细胞癌变和肿瘤的风险。
那么,p53基因突变的原因是什么呢?首先,遗传因素是p53基因突变的主要原因之一。
p53基因突变可以遗传自父母或在生殖细胞中发生,因此,具有家族遗传背景的人群更容易患上与p53相关的癌症。
其次,环境因素也可能导致p53基因突变,例如,长期暴露于紫外线和X射线等辐射物质中,或者吸烟、饮酒等不健康生活习惯,都会增加p53基因突变的风险。
最后,基因突变本身也可能是p53基因突变的原因之一。
由于遗传物质的不稳定性和外界环境的影响,人类体内的基因会发生自然突变,这些突变可能会影响p53基因的结构和功能,导致其失去原有的抑癌效果。
总之,p53基因突变的原因是多方面的,遗传因素、环境因素和基因突变本身都可能导致p53基因突变,因此,我们需要加强对p53突变的预防和治疗,减少癌症的发生。
- 1 -。
p53基因

突变与肿瘤
P53基因与人类50%的肿瘤有关,有肝癌、乳腺癌、膀胱癌、胃癌、结肠癌、前列腺癌、软组织肉瘤、卵巢癌、 脑瘤、淋巴细胞肿瘤、食道癌、肺癌、成骨肉瘤等,人类肿瘤中P53突变主要在高度保守区内,以175、248、249、 273、282位点突变最高,不同种类肿瘤不同,如结肠癌和乳腺癌有相似的流行病学(包括地区分布和危险因素), 但P53突变谱并不一致。结肠癌G:CA:T转换占79%,而且多数CpG,二核苷酸位点,50%以上转换突变发生在第3~ 5结构域的CpGC位于码子175、248、273;在乳腺癌中,只发现13%的转换在CpG位点。此外,G-T颠换在乳腺癌占 1/4,但在结肠癌T分罕见。淋巴瘤和白血病的P53,突变方式与结肠癌相似,即大部分突变为CPG位点的转换, G→T颠换较低,A:T→G:C在A:T位点突变较高。佰基特淋巴瘤与其它B细胞淋巴瘤和T淋巴细胞恶性病变的P53突变 谱相似,但佰基特淋巴瘤的转换突变较高。在非小细胞肺癌中G:C→T:A最普遍,食道癌颠换率很高,与肺癌不同 的是,G:C和A:T位点有相似的突变率。我国启东地区50%为249癌码子的G→C、G→T颠换,而南非肝癌80%为G→T 颠换。骨肉瘤中P53突变率为75%,主要集中在5~9外显子。
细胞凋亡调控相关的基因及酶

细胞凋亡调控相关的基因及酶细胞凋亡(apoptosis)是一种重要的细胞自我调控过程,对于维持生物体内组织结构和功能的平衡至关重要。
在细胞凋亡调控中,许多基因和酶发挥着关键的作用。
本文将介绍几个与细胞凋亡调控相关的基因和酶。
一、p53基因p53基因是一种肿瘤抑制基因,它在细胞凋亡调控中起着重要的作用。
p53蛋白通过调控多个基因的表达,参与了细胞周期的调控、DNA修复以及细胞凋亡等过程。
在DNA损伤时,p53蛋白会被激活,并促使细胞进入细胞凋亡通路,从而防止损伤细胞的异常增殖。
p53基因的突变与多种肿瘤的发生和发展密切相关。
二、Bcl-2家族Bcl-2家族是调控细胞凋亡的关键基因家族,包括抑制凋亡的成员(如Bcl-2和Bcl-xL)和促进凋亡的成员(如Bax和Bad)。
这些成员通过形成复合物或调节线粒体膜电位等方式,参与了线粒体相关的细胞凋亡途径。
Bcl-2和Bcl-xL通过抑制线粒体膜通透性的改变,抑制了线粒体释放细胞色素c和凋亡诱导因子的过程,从而抑制了细胞凋亡。
而Bax和Bad则通过促进线粒体膜通透性的改变,促进了线粒体释放细胞色素c和凋亡诱导因子的过程,从而促进了细胞凋亡。
三、Caspase酶Caspase酶是一类半胱氨酸蛋白酶,是细胞凋亡通路中的关键执行酶。
Caspase酶能够切割多种细胞内的蛋白质,从而调控细胞凋亡的执行过程。
根据功能和结构的差异,Caspase酶可分为启动Caspase(如Caspase-8和Caspase-9)和执行Caspase(如Caspase-3和Caspase-7)两大类。
启动Caspase通过激活执行Caspase,从而引发一系列的蛋白质切割反应,最终导致细胞凋亡的发生。
四、Fas配体和Fas受体Fas配体(FasL)是一种跨膜蛋白,而Fas受体是其对应的配体。
Fas配体与Fas受体结合后,触发了细胞凋亡通路的启动。
Fas/FasL 通路在免疫细胞介导的细胞凋亡中起着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抑癌基因p53的突变与修护激活031134 潇钦摘要:p53作为一种代表性的抑癌蛋白,是肿瘤分子生物学的研究热点。
然而,野生型的p53通过不同位点的点突变会形成不同类型的突变型p53,突变型p53不仅丧失了野生型p53的抑癌功能,更获得了一些癌症症状起促进作用的新功能。
本文着重介绍野生p53的结构和功能,阐述其突变的方法和类型,罗列突变p53的危害,以及重新激活修护p53的方法。
关键词p53;突变;激活修护野生型p53的介绍人的p53基因位于第17号染色体短臂,分布于大约20Kb的DNA区域中。
它由11个外显子和10个含子组成。
启动子中不含有CAAT、TATA、GC盒等常见启动序列,转录产生2.5kbmRNA,翻译生成由393个氨基酸残基组成的,分子量为53kd的蛋白质。
(1)p53 蛋白包括3个功能调节区域(如图1):图 1(1)N-端的活化:通过与转录因子TFⅡD结合而发挥转录激活功能,序列上又可细分为转录活化域和富含脯氨酸的SH3域;(2) 序列中段DNA结合域:能与特定的DNA 序列结合, 调节靶基因的转录活性,p53 突变多发于此区域;(3)C端功能域:包含核定位信号、出核信号、四聚化结构域及一个调控功能域, 参与p53 细胞定位、四聚化以及对中央DNA 结合域的调控作用。
(2)(3) 正常情况下细胞p53蛋白的含量很低,这主要是由MDM2介导的p53快速降解来调节的。
当应激各种损伤信号时, p53蛋白被磷酸化修饰, 避免了在细胞质中发生的MDM2对p53的降解,从而使核的p53水平迅速升高。
激活的p53通过其DNA 结合区结合靶基因的启动子。
并借助其转录激活区诱导其下游基因的转录表达。
p53活化对细胞有两种潜在影响:一是使细胞停止在G1或G2期,导致损伤的细胞得以修复;二是诱发细胞凋亡,去除变异细胞。
但p53的抑癌功能常因突变而消失,使细胞无限分裂增殖,导致癌症的发生。
(3) (4)但肿瘤细胞中的p53或因突变而失活,或因与宿主或病毒的某种蛋白质的结合而失活。
失活后的p53蛋白便丧失上述功能。
P53的调控机制近年来,对p53抑癌机制研究日趋深入。
在不同的癌症中,其调节网络各有特点。
下面就一个典型的调节通路:MDM2的调控作简要介绍。
癌基因MDM2编码的蛋白质通过与p53 的17-22位氨基酸残基相结合,阻断p53的转录调控通路。
MDM2还可与p53特异的泛素酶共同作用, 促进p53蛋白降解。
MDM2- p53复合物广泛存在于s和G2/M期细胞中。
p53激活MDM2的表达,而生成的MDM2蛋白抑制p53活性,形成MDM2依赖的负反馈调节机制。
研究发现,MDM2在肉瘤, 乳腺癌, 脑瘤, 膀胱癌, 肺癌和白血病中的表达量明显高于正常组织或细胞。
乙酰化是调节p53蛋白活性十分重要的方式:1.乙酰化可封闭p53赖氨酸泛素结合位点,抑制其降解,增强p53稳定性。
2.乙酰化有助于转录调节活性的短暂分离,对下游靶基因的活化起重要作用。
3.乙酰化作用或许诱发p53C端构象变化,破坏C端的回折,提高p53与DNA的结合能力。
4.乙酰化可协调p53在胞质与胞核间的分隔分布。
磷酸化可增强p53与乙酰化酶的相互作用,促进p53 C端乙酰化,建立p53磷酸化-乙酰化级联反应,p53在细胞聚集并向核转位。
修饰后的p53形成有生物学活性的四聚体,与靶基因的p53反应元件结合,控制着下游靶基因的表达,从而引起细胞生长阻滞、凋亡。
研究发现MDM2的酸性结构域是抑制p300 介导的p53乙酰化的必要因素,该结构域还介导p53去乙酰化作用,进而影响p53的功能和活性。
研究发现p14ARF 不但可使MDM2失活,还可促进p53蛋白的稳定表达。
检查点激酶1和检查点激酶2可诱导p53磷酸化,削弱MDM2与p53的结合,从而提高p53稳定性。
(3)p53的突变类型TP53 突变在肿瘤发生中是非常常见的, 不同位点的点突变产生了多种形式的突变P53蛋白(1)。
P53突变的类型包括基因片段缺失、插入, 点突变引起的错义突变, 以及杂合性缺失。
但是在所有p53 突变形式中, 占主导地位的还是因点突变引起的错义突变, 其比例约占总体的80%。
而在这些p53错义突变中, 发生在DBD区的点突变比例高达97%。
实际上,p53的DBD 区每一个氨基酸都可发生点突变而形成相应的突变体,。
但是以下6个位点的突变在癌症中高频率出现,与癌症进程紧密关联,被称为热点突变。
它们分别是: R175、G245、R248、R249、R273、R282(标注如图1)。
p53的突变可以分为三类:1.DNA 结合缺陷突变体:是指那些负责与特定DNA序列结合的氨基酸残基发生点突变,致使p53与DNA结合能力减弱。
例如R273H(小鼠中为R270H)。
2.构象突变体:是指那些发生点突变后改变了原来野生型p53的整体构象。
例如R175H(小鼠中为R172H)。
3.以上突变都改变了p53 的三维结构, 而R273H 突变失去DNA结合能力是因为273位突变后的精氨酸残基支链过长,空间效应抑制了和DNA的结合。
从功能上来说,突变型p53在丧失了抑癌基因功能后,还可以通过显性负效应抑制野生型p53的活性。
显性负效应是指一个等位基因上发生的突变损害了另一个等位基因的正常功能,使其产生没有活性的蛋白。
在癌症发生过程中,通常是p53,的一个等位基因发生突变,另一个保持野生型p53活性。
这时在细胞同时存在突变型p53和野生型p53两种蛋白单体,突变型p53与野生型53 通过彼此C端四聚化结构域形成寡聚蛋白时,突变型p53抑制野生型p53活性,占据主导地位。
最终,在癌症的发展过程中,野生型53 等位基因丢失。
(2)后果1.突变型p53能够形成更稳定的四聚体:以往的研究证明p53 在正常细胞含量很低,野生型p53是通过修饰避免了水解从而得到激活。
而突变p53是怎样避免水解的呢?研究发现, MDM2作为p53最主要的负调控因子,它的转录表达处于p53的控制之下。
突变p53不能有效激活MDM2表达,使p53失去了MDM2 的负调控, 从而导致了突变p53在肿瘤细胞的核积累。
这一发现提示突变p53形成的四聚体可能具有与野生型p53 不同的转录激活功能。
(4)2.“功能缺失”与“功能获得”:功能缺失:一般来说,p53发生突变后, 会丧失野生型p53所具有的细胞周期阻滞、诱导凋亡发生、介导细胞衰老、维护基因组稳定、错配DNA 碱基修复等抑癌基因功能。
功能获得:突变型p53 获得了一系列类似癌基因特性的功能, 例如转录一系列靶基因加速癌症进程、增强癌细胞化学耐药性、阻止癌细胞凋亡的发生、抑制p63、p73活性等, 这一过程被称为突变型p53的“功能获得”。
新近研究表明, 突变型p53 还抑制了MRN-ATM 通路活性。
(2)3.改变转移能力:已有数据表明, p53+/−、p53−/−小鼠高度肿瘤易感,具有在早期自发成瘤的表型。
在其所生肿瘤中, 淋巴瘤和肉瘤占主体,但是在人类Li-Fraumeni 综合征中较常见的上皮组织来源的瘤却很少。
而基因型为p53mutant/+、p53mutant/−小鼠的肿瘤谱结构发生了较大改变, 上皮组织来源的瘤比例大幅提高,并伴有较高的肿瘤转移率,能更好地模拟人类Li-Fraumeni 综合征。
可见,mutp53 在肿瘤发生和转移中发挥了重要作用。
(2)突变型p53获得癌基因特性的机制研究者们认为至少存在着两种机制(图2):1.突变型p53可以作为具有癌基因活性的转录因子, 调控下游一系列靶基因的表达, 加速肿瘤的发生发展。
这其中又包括两种情况, mutp53独立启动的转录和与其他蛋白因子协同启动的转录;2.突变型p53可以与p53家族的另外两个重要抑癌基因— p63、p73相互作用, 抑制了p63、p73的活性。
图 2肿瘤治疗新策略:肿瘤细胞重新激活p53小分子和多肽再激活p53绝大多数的P53突变是错义突变, 这些突变位点多发生在p53的DNA结合结构域, 导致突变的p53 不能与DNA 正常结合, 失去了转录激活能力,进而失去了肿瘤抑制的能力。
后来科学研究发现,引入小分子或多肽与突变p53结合可以恢复其与DNA的结合功能。
1.引入多肽实验证明,通过引入针对突变p53 R273H、R273C、R248Q、R282W 的C末端设计的多肽,通过其与突变蛋白的相互作用改变其构象能恢复突变p53对特定序列的DNA结合能力,进而产生生长抑制或诱导凋亡。
这一结果可能是因为该多肽稳定了p53的核心折叠构象, 加强了与DNA的结合能力。
p53核心结构域(DNA 结合区)对p53发挥其抑癌作用起关键作用, 因此可以设想如果能稳定野生型p53的核心结构域和校正突变p53的核心结构域就能使其发挥抑癌作用。
这一策略的构想是找到一种配基, 能正确与突变p53核心结构域结合,并且能通过与突变p53的结合改变突变p53的核心结构域,使它的折叠构象向正确方向转变。
p53 蛋白的稳定还与细胞的分子伴侣有关,研究发现p5 能与Hsp40、Hsp70和Hsp90结合。
未折叠的突变p53与Hsp70有高亲和力,远超过野生型p53,这一发现提示我们,Hsp蛋白可能稳定了突变p53的未折叠构象,因此阻止Hsp蛋白与突变p53的结合有可能使突变p53恢复折叠构象。
(4)2.引入小分子相比多肽来说, 小分子治疗拥有更多优势,如不易引起免疫排斥反应,使用方便, 可静脉注射或口服等, 因此寻找有效的小分子就显得尤为重要。
(5)对作用于突变p53的小分子的寻找有两个主要途径:蛋白分子水平分析和细胞水平效应分析。
前一种方法可以确认突变p53蛋白与小分子作用后的蛋白变化和了解相应的机制,但不能确定该小分子是否能进入细胞及是否有细胞毒性等;而后一种方法可以观察到小分子作用后细胞的变化,是否能诱导细胞凋亡等,但却不容易解释详细的分子机制。
通过以上两种方法,目前找到了一些作用于突变p53的小分子化合物,如CP-31398、PRIMA-1、MIRA-1 等。
CP-31398是在热变性条件下,从大量,小分子中筛选出的能保护p53核心结构域的小分子,而PRIMA-1、MIRA-1 这两个小分子则是通过筛选能引起表达突变p53的肿瘤细胞凋亡的小分子发现的。
在体外, 这些小分子能激活p53的正常功能,诱导p53目的基因如p21、MDM2和PUMA 等的表达,而且CP-31398、PRIMA-1 还能在小鼠体抑制肿瘤生长。
重组的腺病毒在肿瘤细胞中表达野生p53通过重组包含p53cDNA的腺病毒Advexin,在肿瘤细胞中表达野生p53进而激活p53途径,抑制和清除肿瘤。
选用Advexin载体是因为它能够转染多种细胞,包括分化和未分化的细胞,并且不会整合到宿主基因组上,同时它能够大批量生产,并且它的安全性已经得到证实。