钢管桩计算书

钢管桩计算书
钢管桩计算书

钢管桩计算书

边跨现浇直线段支架设计计算

一、计算何载(单幅)

1、直线段梁重:15#、16#、17#混凝土方量分别为22.26、25.18、48m3。端部1.0范围内的重量,直接作用在墩帽上,混凝土方量为:

V=1×[6.25×2.5+2×3×0.15+2×2×0.25/2+2×

225 .0

65

.0 ×1-1.2×1.5]=16.125 m3

作用在支架的荷载:

G1=(22.26+25.18+48-16.125)×22800×10=1957.78 KN

2、底模及侧模重(含翼缘板脚手架):估算G2=130KN

3、内模重:估算G3=58KN

4、施工活载:估算G4=80KN

5、合计重量:G5=1957.78+130+58+80=2226KN

二、支架形式

支架采用Φ800mm(壁厚为10mm)作为竖向支承杆件。纵桥向布置2排,横桥向每排2根,其中靠近10#(13#)墩侧的钢管桩支承在承台上,与墩身中心相距235cm,第二排钢管桩与第一排中心距为550cm,每排2根排的中心距离为585cm。钢管桩顶设置砂筒,砂筒上设纵横向工字钢作为分配梁,再在纵梁上敷设底模方木及模板。钢管桩之间及钢管桩与墩身之间设置较强的钢桁架梁联系,在平面上形成框架结构,以满足钢管桩受载后的稳定性要求,具体详见“直线段支架结构图”。

=65576

2101.23841005.68.956

84

?????? (5-24×5124.02)

=0.1214×(-1.301) =-0.1579cm

通过强度及刚度计算,可见I56a 较富余,为更趋合理,将横梁由2I56a 为2I50a

f C =f D =0.9739×65576/46472=1.37 cm f E =-0.1579×65576/46472= - 0.22 cm

3.纵梁的强度与刚度计算

(1)纵梁上面荷载所生的均布荷载:

q 1=2226÷12.25÷7.8×1.2=27.956kN/m ≈28 kN/m 考虑到腹板下的纵梁受力较大,故乘以不均匀系数1.2

q 1=28×1.2=33.6 kN/m

(2)纵梁的自重

q 2=0.804 kN/m

(3)纵梁上的总均布荷

q= q 1 +q 2 =33.6+0.804=34.4 kN/

(4) 力学简图

支座反力

R=34.4×7.8/2 =134.16 kN 由Q图可得:

Qmax=94.6kN

由M图可得:

Mmax =107.33KN .m

Q 图(KN)

M 图(KN.m)

(5)应力验算

σmax =w M max =9

.143210

733.105

?

=74.9Mpa <[]σ

τmax=

Ib S Q max =15

.1322414

.8361006.94???=213.4kg/cm 2 =21.3Mpa <[]τ (6)刚度验算

λ=m/L=1.15/5.5=0.2091 f C =f D =

32241

101.2245501154.346

3

?????(-1+6×2091.02+3×2091.03

) =0.40505×(-0.7102) =-0.2877cm (向上) f max =

32241

101.23845504.346

4

????(5-24×2091.02

) =0.1211×3.9507=0.4782cm<[]375.1400/1/==l f

通过计算证明选用型钢的安全储备过大,拟将I45a 改为I40a 进行

第二次试算,为简化计算, Q max 、 M max 及q 均沿用改变前的数值。

σmax =7.108510733.105

?=98.86 Mpa <[]σ

τmax =

05

.1217142

.6311006.94???=26.1Mpa <[]τ

f C =f D =-0.2877×32241/21714 =-0.4272cm (向上) f max =0.4782×32241/21714 =0.71 cm < []400/1 四、钢管桩设计与验算

钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I=

64

π(80.04-78.04)=1.936×10-3M 4。依据10#或13#墩身高度和

周边地形,钢管桩最大桩长按30m 考虑。 1、桩的稳定性验算

桩的失稳临界力Pcr 计算 Pcr=

2

2l

EI π=

3

2

8

230

10

936.1101.2-????π

=4458kN >R=586.78 kN 2、桩的强度计算

桩身面积 A=4π(D 2-a 2)

=4

π

(802-782)=248.18cm 2

钢桩自身重量

P=A.L.r=248.18×30×102×7.85 =5844kg=58.44kN

桩身荷载 p=586.78+58.44=645.22 kN

б=p /A=645.22×102/248.18=259.98kg /cm 2=25.998

Mpa

3、桩的入土深度设计

通过上述计算可知,每根钢管桩的支承力近660kN,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为660×2=1320kN,管桩周长U=πD=3.1416×0.8=2.5133m。依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:第一层砂砾土厚度为 3.4m,标贯N=8.1~12.3;估推τ=30~40 Kpa

第二层砂粘土厚度为6~23m,黄褐色、湿、硬塑,标

贯N=23;

τ=75 Kpa

第三层强风化石英片岩厚度为4~6m,黄褐色,标贯

N25~43;τ=75 Kpa N=∑τi u h i

N =30×2.5133×3.4+75×2.5133×6+80×2.5133×h3=1320 kN

=256.36+1086.0+201 h3 =1320 kN`

解得h3=-0.11m

证明钢管桩不需要进入第三层土,即满足设计承载力,此时桩尖标高为:

64.12-3.4-6.0=54.72 m

钢管桩实际入土深度:∑h=3.4+6=9.4 m

4、打桩机选型

拟选用DZ150,查表得知激振动900 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率150kw 。 5、振动沉桩承载力计算

按前苏联b.π塔尔尼科夫,根据所耗机械能量计算桩的容许承载力

[]P =m

1

{

()[]

v

a A f m x 12

231111

βμα+-+Q

}

m —安全系数,临时结构取1.5

m 1—振动体系的质量 m 1=Q/g=90000/981=91.74 Q 1—振动体系重力 N g —重力加速度=981 cm /s 2

A X —振动沉桩机空转时振幅 A X = M/Q=2800×102/

90000=3.11 cm

M —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A x

A n -振动体系开始下沉时振幅 取1.2 cm

f —振动频率 f =n/60=800/60=13.33 转/S

a —振动沉桩机最后一击的实际振幅 取1.0 cm ν—沉桩最后速度 取5 cm/m in α1—土性质系数,查表得α1=20

β1—影响桩入土速度系数, 查表得β1=0.17

[p]=

5

.11{5

17.01111.311.32.133.1374.91202

2

3

1

?+?

?????-??? ?????+9×104

}

=

5

.11

{

85

.11091219.16

?+9×104

}

=5

.11

×1.123616×106 =749077N=749KN > N=645.22KN

通过上述计算及所选各项参数说明:

1)DZ150型振动打桩机,是完全能够满足本设计单桩承载力的。

2)DZ120型振动打桩机,也是可以满负荷工作,达到本设计要求的。

6、钢管桩加工质量控制

虽是临时结构,但钢管桩是边跨直线段现浇支架的重要受力构件,它的加工制作及安装质量好坏,直接关系到能否顺利沉桩及支架的使用安全,故有必要按有关国家规范和文献资料提及的技术标准,作如下要求:

(1)钢管的材质为Q235,可以是直缝焊接管也可以是螺旋焊缝管,但所用材质的力学性能都应符合国家相关标准。 (2)直焊缝管采用平板卷制加工。加工时两侧边缘须予弯头,以消除平板在卷板机上卷制时,两侧边缘的直线段。 (3)钢管桩的轴线方向应和钢板轧制的方向一致。

(4)钢管接长时,两侧纵向焊缝应有较大的距离,切忌十字焊缝。

(5)需采取有效措施保证并检查焊缝质量。

δ

Δ

D

Δ≯2δ=10±1

3

两壁错台壁 厚

(6)视工地的起吊能力和运输条件,尽可能将管节加长,以减少工地焊接工作量

(7)钢管的接头加工和成品质量按下列图表控制:

钢管制作允许偏差

7、沉桩施工中须注意的问题:

(1)沉桩施工中,桩的垂直度至关重要,在开始沉桩时,往往依靠桩体自身重量及锤体重量缓慢下沉,当不能继续下沉时,桩体已

插入土中一定深度,检查桩身垂直度合格后,再振动下沉。

(2)振动锤和桩帽与桩顶法兰盘应连接牢固。当有射水配合下沉时,可振动射水交替进行,一气呵成,在下沉过程中切忌打“空锤”

(3)振动的持续时间随土质情况和不同机械而异,一般不要超过10mm~15mm,否则锤体部件易损。应经常注意机电的检查与修理。

(4)桩尖在接近设计标高之前(1.0m),就应停止射水,干振。

(5)与桩尖虽未到达标高(已接近标高),下沉速度小于5cm/mm,且振幅

较大(大于15mm)时,如能排涂桩顶的接头松动,即认为合格了。

(6)为保证钢管桩的整体稳定,每隔6m左右,设置一道纵,横向支撑并和墩柱联结,形成平面框架,在墩柱施工时应注意预埋件的

准确预埋。

8、钢管桩沉桩基础评述:

根据本桥10#墩的地勘报告揭示,较好的承力层埋深(河床向下)在3.5m以下。与深基础及换填方案相比较,沉桩方案是较为经济合

理的施工方案。但考虑至沉桩必须有较大型的沉桩设备和专业的施工

队伍且本工程沉桩工作量很少(只有两根桩)故在实施过程中,可能

具有相当难度,而不得不考虑其它的基础方案。

五、明挖扩大基础设计

按地质报告,河床向下0~3.4m,标准贯入为Nmin=8,

容许承载

[R]=0.12 Mpa=12T/m 2 基础面积 A=

[]R N =125.64=5.373m 2 采用 6.0m 2 基础边长 b=

A

=2.45m 采用2.6m

按扩散角45°计算基础厚度

h=(2.6-0.8)/2=0.9m 采用h=1.0m

底层设一层Ф16钢筋网片网格为15.5×15.5cm

六、 支架预压:

13#墩的直线段现浇支架,地基为露头基岩石,做钢管桩基础时,只需将

岩下20~30cm, 修整一个120×120cm 的平面,将厚为10mm 的钢板预埋件埋

入即可,因为13#墩混浇支架座的基础没有沉降,支架本身接头部位的压紧沉降

可以预估,在底模放样时抛高,所以该支架毋庸预压,所需要预压的是10# 墩 的直线段支架。

1、预压荷载:按实际荷载的1.3倍超载预压。

∑G=2226×1.3=2893KN

2、预压方式:加载预压时,工字钢上铺设10×10cm 木方,似

用砂袋作为压重,砂袋用汽车倒运并过磅称量,按施工时荷载实际分布情况摆放,在有条件的情况下也可考虑用浮箱注

水预压

3、预压控制:采用时间和沉降量双控的方式进行预压控制。

(1)时间控制:静压5天以上,稳定状态2天。

(2)沉降控制:在支架的工字钢上分别布设10个测点,用于沉降观测。在加载前、加载完每12小时观测一次,直到24小时的累计沉降量≯2mm卸载,卸载后,按测得的弹性和非弹性沉降量及设计标高,确定立模标高,作为底模放样依据,报验上级及监理批准。

七、边跨合扰段对支架的影响:合扰段的实际施工荷载是平均分担在支架及悬臂端上的,分配在支架上的重量约为230KN。该荷载按支架计算简图,将完全由靠河心的两根钢管桩承受。

但此时,现浇直线段上的侧模,内模及支撑脚手,已经拆涂,对支架钢管起到减载作用,估算每根桩可减载60KN,所以合拢段实际上对每根桩增加荷载50~60KN。在支架预压时,我们超载了30%,钢管桩的承载能力已远超过由于合拢段所增加的份额,故在支架钢管桩设计时,未考虑合拢段的荷载.

八、模板选择,安装及加固:在正文中已阐明,此处不再赘述。

钢栈桥计算书

某工程51米钢栈桥计算书 XXXXXXX公司 2010年6月16日

下承式栈桥验算书 一、验算说明: 栈桥上部结构为51米,桥面为4米,桥面由12.6工字钢和8mm花纹钢板组合组成,采用下承式结构,桥面板纵向分配梁I12.6a工字钢,间距为0.24m。横向分配梁I32a工字钢,最大间距为1.59m,桥墩、台采用钢筋砼。 二、设计依据 1、《公路桥涵设计通用规范》(JTG D60-2004) 2、《公路工程技术标准》JTG B01-2003 3、《钢结构设计规范》( GB 50017-2003) 三、主要参考资料 1、《钢结构设计手册》第三版 2、《路桥施工计算手册》 3、《建筑结构静力计算手册》2004版 四、主要技术标准 设计荷载:80吨散装水泥罐车,考虑安全系数1.4,栈桥设计中选112吨荷载对整个桥梁结构进行验算;

图一 80吨随州散装水泥罐车荷载布置图(图中省略车头部分) 五、结构恒重 (1)钢便桥面层:8mm厚钢板,单位面积重62.8kg/m2,则3.14kN/m。 (2)I12.6单位重14.21kg/m,则0.14kN/m,间距0.25m 。 (3)I32a单位重52.7 kg/m,则0.53kN/m,3.162KN/根,最大间距1.59m。 (4)纵向主梁:321型贝雷梁, 4.44 KN/m。(含附件) 六、上部结构内力计算 6.1桥面板验算 (1)荷载计算 因桥面纵向工字钢的横向间距空隙仅为17.6cm,汽车轮宽度50cm,汽车轮宽远远大于工字钢间距,故此处对花纹板不做单独验收。仅对桥面纵向分配梁I12.6进行计算。 单边车轮作用在跨中时,I12.6a弯矩最大,轮压力为简化计算可作为集中力。荷载分析: 1)均布荷载:0.157kN/m(面板) 2)施工及人群荷载:不考虑与汽车同时作用 3)汽车轮压:车轮接地尺寸为0.5m×0.2m, 最大轴重为224kN,每轴2组车轮,则单组车轮荷载为112kN,每组车轮压在3根I12.6上,则单根I12.6承受的荷载为37.3KN。 则单边车轮布置在跨中时弯距最大计算模型如下(以整个后轴建模按连续梁计算)

钢管桩支架计算书

钢管桩支架计算书 一.工程概况 1.1 工程简介 A匝道2号大桥是陕西神木至府谷高速公路永兴镇立交互通的匝道桥,全桥长221.5m,跨径组合为:3×35m+46.5m+2×35m,,主梁横截面设计为单箱四室结构,箱梁高2.4m,顶板宽19.5m,底板宽14.5,箱梁自重每延米45.9吨,全桥采用现浇连续施工,其中主跨下面通过主干桥西尔沟2号大桥构成立交体系。 1.2 建设条件 该地区属于山谷地区且常年少雨,气候干燥。高程变化有时较剧烈,施工条件较困难。 1.2.1地形地貌 典型的黄土高原沟壑地形,气候干燥,地下水位较深,地形沿高程方向变化较剧烈。 1.2.2地质情况 Q,多属于分化砂岩和分化泥岩,岩土层大部或全部受到地质情况主要为 4 分化。承载力从中密碎石土的250KPa到风化砂岩的1200KPa不等,摩阻力相应的大体变化为80KPa到100KPa。 1.2.3气候 气候干燥少雨,年均降雨量很小,早晚温差变化较大。 二.施工方案总体布臵和荷载设计值 2.1 支架搭设情况说明 A匝道2号大桥上部结构采用现浇式预应力钢筋混凝土变截面箱梁。根据工程实际情况采用钢管桩支架方案进行现浇施工,砼浇筑分两次浇筑,即第一次浇

筑箱梁底板和腹板,第二次浇筑箱梁顶板和翼缘板。根据大桥结构设计情况及现场施工条件的特点,综合考虑安全性、经济性和适用性,拟采用钢管桩支架作为该现浇体系的临时支承结构。钢管桩采用Φ800mm×8mm-Q235的无缝焊接钢管。方木布臵情况:横桥向放臵截面尺寸为15cm×15cm的方木,间距0.3m。15cm×15cm方木放臵在工10型钢上,工10型钢放臵在贝雷梁上,贝雷梁放臵在钢管桩顶端的沙桶上。 2.2 设计荷载取值 混凝土自重取: 26.5kN/m3 箱梁重: 24.1kN/m2 模板自重: 2.5kN/m2 施工人员和运输工具重量: 2.5kN/m2 振捣混凝土时产生的荷载: 2.5kN/m2 考虑分项系数后的每平米荷载总重:31.6kN/m2 三.贝雷梁设计验算 大桥第四跨跨径为46.5m,其他跨径为35m,在计算中需要对不同的跨径进行验算。其中第一跨采用满堂支架法施工,验算过程参考满堂支架法计算书。 神杨路方向第二、三、五、六跨 神杨路方向第二跨,第三跨,第五跨,第六跨,跨中布臵两排钢管桩,计算采用间距17m进行计算,现场可以根据实际情况减小间距。 采用双排单层加强型贝雷梁,每组贝雷梁间距1m, 全截面使用21组。 混凝土箱梁每平方米荷载: 31.6kN/m2 贝雷梁每片自重: 2×3kN/m 荷载总重: 6kN+31.6kN/m=37.6kN/m 双排单层加强型贝雷梁力学性能: [M] = 3375kN〃m [Q] = 490kN

大型钢栈桥计算书

吉水赣江特大桥水上栈桥安全检算 一、栈桥设计概况 1、栈桥设计 吉水赣江特大桥1-12#墩位于赣江水中,其中1-3#墩搭设钢栈桥;3-4#墩预留航道;4-5#墩搭设钢栈桥;5-12#墩吹沙筑路。栈桥总长度约380m,桥面标高定为+48.62m,栈桥中心线距离桥梁中心线距离为15m。 吉水赣江特大桥栈桥结构采用钢管贝雷栈桥,栈桥设计跨度为12m,3跨1联设置制动墩---采用双排4根钢管桩,其余采用标准墩---单排3根钢管桩。钢管采用φ529*10mm螺旋钢管,钢管上设置横梁---采用工字钢36a双拼;横梁上设置6片3组贝雷片,分配梁采用I28b工字钢,间距75cm;面板采用126*600cm 的组合面板,下部采用5根I14的工字钢,最大间距33.5cm。上铺8mm厚花纹钢板。 二、计算依据 1、钢结构设计规范GB50017-2003 2、铁路桥梁钢结构设计规范-TB10002.2-2005 3、装配式公路钢桥多用途使用手册-人民交通出版社 4、《建筑桩基技术规范》JGJ94-2008 三、设计荷载 1、恒载 梁部恒载包括:横梁、贝雷梁、分配梁、桥面系、栏杆等结构重量。经主要工程材料数量统计采用:G=2t/m。 2、施工荷载 考虑栈桥为临时结构,栈桥搭设及运行主要以通行砼罐车、50t履带吊以及故仅考虑以下二种荷载作为计算荷载。 工况一、9m3砼罐车:总重G=35t 按前轴分配20%即35*0.2=7t,后轴分配80%即35*0.8=28t计算。

7t14t14t 工况二、50t履带吊自重50t,吊重按10t计算;履带与桥面接触长度为4.7m。则q=0.5*(50+10)/4.7=6.4t/m。 四、检算项目 1.面板计算 桥面系为工厂预制模板;模板面采用σ=8mm花纹钢板,规格为1.25*6.0m;纵肋采用工字钢I14,最大间距33.5cm。 面板-纵肋I14工字钢计算 I14工字钢的截面特性:Ix=712cm4 Wx=102cm3 ix=5.79cm Sx=58.4cm3 工况1:砼罐车 ①荷载: 砼罐车轮胎单侧荷载,如下图所示: 3.5t7t7t ①计算模型

18m跨度钢栈桥计算书 11.21

栈桥计算书 一、基本参数 1、水文地质资料 栈桥位于重庆荣昌赵河滩濑溪河,水面宽约68m,平均水深4m,最深处水深6米。 地质水文条件:渡口靠岸边部分平均水深2-3米,河中部分最高水深6米。河底地质为:大部分桩基础所在位置处覆盖层较薄,覆盖淤泥厚度为1.5m左右,其余为强风化砂 岩和中风化砂岩,地基承载力σ 0取值分为500kp a 。 2、荷载形式 (1)60t水泥运输车 通过栈桥车辆荷载按60t水泥运输车考虑,运输车重轴(后轴)单侧为4轮,单轮宽30cm,双轮横向净距10cm,单个车轮着地面积=0.2*0.3 m2。两后轴间距135cm,左侧后双轮与右侧后双轮距190cm。车总宽为250cm。 运输车前轴重P1=120kN,后轴重P2=480kN。 设计通车能力:车辆限重60t,限速5km/h,按通过栈桥车辆为60t水泥运输车满载时考虑,后轴按480kN计算。施工区段前后均有拦水坝,不考虑大型船只和排筏的撞击力,施工及使用时做好安全防护措施。 3、栈桥标高的确定 为满足水中墩、基础、梁部施工设备、材料的运输及施工人员通行施工需要,结合河道通航要求,在河道内施工栈桥。桥位处设计施工水位为296.8m,汛期水位上涨4~6m。结合便桥前后路基情况,确定栈桥桥面标高设计为305.00m。 4、栈桥设计方案 在濑溪河河道内架设全长约96m的施工栈桥。栈桥拟采用六排单层贝雷梁桁架结构为梁体作为主要承重结构,桥面宽设计为4.5m,桥跨为连续结构,最大跨径18m,栈桥共设置6跨。 (1) 栈桥设置要求 栈桥承载力满足:60t水泥运输车行走要求。 (2)栈桥结构 栈桥至下而上依次为: 钢管桩基础:由于河床底岩质硬,无法将钢管桩打入,综合考虑采用钢管桩与混凝土桩相结合的方法,即先施工混凝土桩,入岩深度约1.5m,然后在混凝土桩上安装钢管桩。

碗扣钢管楼板模板支架计算书(顶板)

碗扣钢管楼板模板支架计算书 依据规范: 《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-2008 《建筑施工模板安全技术规范》JGJ 162-2008 《建筑结构荷载规范》GB50009-2012 《钢结构设计规范》GB50017-2003 《混凝土结构设计规范》GB50010-2010 《建筑地基基础设计规范》GB50007-2011 《建筑施工木脚手架安全技术规范》JGJ 164-2008 计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 模板支架搭设高度为5.0m, 立杆的纵距 b=0.60m,立杆的横距 l=0.90m,立杆的步距 h=1.20m。 面板厚度18mm,剪切强度1.4N/mm2,抗弯强度15.0N/mm2,弹性模量6000.0N/mm2。木方85×85mm,间距300mm, 木方剪切强度1.3N/mm2,抗弯强度13.0N/mm2,弹性模量9000.0N/mm2。 梁顶托采用[8号槽钢U口水平。 模板自重0.50kN/m2,混凝土钢筋自重25.10kN/m3,施工活荷载4.50kN/m2。 扣件计算折减系数取1.00。

图1 楼板支撑架立面简图 图2 楼板支撑架荷载计算单元 采用的钢管类型为φ48×3.0。 钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。 一、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照三跨连续梁计算。静荷载标准值q1 = 25.100×0.800×0.600+0.500×0.600=12.348kN/m

活荷载标准值q2 = (2.000+2.500)×0.600=2.700kN/m 面板的截面惯性矩I和截面抵抗矩W分别为: 本算例中,截面惯性矩I和截面抵抗矩W分别为: W = 60.00×1.80×1.80/6 = 32.40cm3; I = 60.00×1.80×1.80×1.80/12 = 29.16cm4; (1)抗弯强度计算 f = M / W < [f] 其中 f ——面板的抗弯强度计算值(N/mm2); M ——面板的最大弯距(N.mm); W ——面板的净截面抵抗矩; [f] ——面板的抗弯强度设计值,取15.00N/mm2; M = 0.100ql2 其中 q ——荷载设计值(kN/m); 经计算得到M = 0.100×(1.20×12.348+1.40×2.700)×0.300×0.300=0.167kN.m 经计算得到面板抗弯强度计算值 f = 0.167×1000×1000/32400=5.166N/mm2 面板的抗弯强度验算 f < [f],满足要求! (2)抗剪计算 T = 3Q/2bh < [T] 其中最大剪力Q=0.600×(1.20×12.348+1.4×2.700)×0.300=3.348kN 截面抗剪强度计算值T=3×3348.0/(2×600.000×18.000)=0.465N/mm2 截面抗剪强度设计值 [T]=1.40N/mm2 面板抗剪强度验算 T < [T],满足要求! (3)挠度计算

钢管支架计算书630

钢管支架计算书 天津海河大桥钢箱梁吊装时,需在M19节段吊装过程中搭设钢管移动支架,下面根据支架搭设方案进行计算: 1、荷载计算 M19节段重量为187.08T,整体受力。 2、计算钢管支架的轴力 据提供的数据:P总=1870.8KN,钢管支架自重为450KN,则最下面钢管所承受的最大轴力为:N=2320.8KN,取N=2400KN进行控制计算 3、验算钢管的强度(4Φ720,D=10MM) 钢管支架的强度验算由下式计算:N/A m <[б] б=N/A m =2400/(4×223)=2.69KN/cm2 б=N/A m =2400/(4×194.7)=3.08KN/cm2 而[б]=170Mpa=17 KN/cm2,故安全。 4、整体稳定性验算 钢管支架的整体稳定性由下式计算: N/A m <ψ[б] (1)截面力学特性(如下图) 钢管支架截面力学特性计算图(尺寸单位:cm) 如图所示,立柱由4Φ720,d=10mm的钢管组成,查表有 A m =223cm2,I X /=140579.2cm4 A m =194.7cm2,I X /=93639.59cm4 I X =4×(I X /+A m ×r 2 2)=4×(140579.2+3102×223) =86283516.8cm4 I X =4×(I X /+A m ×r 2 2)=4×(93639.59+3102×194.7) =75217238cm4

(2):计算整体稳定性折减系数 计算构件的长细比λ h : 由《钢结构设计手册》查得格构式压弯杆件的长细比计算公式: λ h =(λ 2+27A d /A q )1/2 λ h =(λ 2+27A d /A q )1/2 λ 0 =L /i=3600/25.1=143.42 λ =L /i=3600/21.93=164.16 26948.5056 51273.76 A d =1218.4cm2 A d =83390.66cm2 35887.76 A q =2×4800=864cm2 A q =71706.72cm2 代入计算有λ h =143.4 代人计算有λ h =164.2 查《钢结构设计手册》附表,得ψ 1=0.339 ψ 1 =0.273 (3)立柱的整体稳定性验算由公式有: N/A m <ψ[б] б=N/A m =2400/(4×223)=2.69KN/cm2 б=N/A m =2400/(4×194.7)=3.08KN/cm2 ψ[б]=0.273×170=46.4Mpa=4.6KN/cm2 而ψ[б]=0.339×170=57.6Mpa=5.6KN/cm2,故安全。 (4)单根立柱的整体稳定性验算 A m =223cm2, I X /=140579.2cm4 回转半径i=(I X / A m )0.5=25.1cm λ =L /I=1500/25.1=39.8(以15m设置一道 横联计算) λ 0 =L /I=800/25.1=31.9 查《钢结构设计手册》附表,得ψ 1=0.883 ψ 1 =0.936 由公式有:N/A m <ψ[б] б=N/A m =2400/4/223=2.69KN/cm2 б=N/A m =2400/4/194.7=3.08KN/cm2 而ψ[б]=0.883×170=150.11Mpa=15KN/cm2,故安全。 ψ[б]=0.936×170=159.12Mpa=15.9KN/cm2,

跨径9米净宽4.5米下承式栈桥计算书

中交三航局合福高铁 18 米栈桥计算书 中交第三航务工程局有限公司 2010年7月16日

下承式栈桥验算书 一、验算说明: 栈桥上部结构为18米,跨径布置为9米+9米,桥面净宽为4.5米,桥面由I14工字钢和12mm钢板组合组成,采用下承式结构,桥面板纵向分配梁I14工字钢,间距为0.25m。横向分配梁I36b工字钢,间距为1.5m,最大间距为1.625米,桥墩、台采用钢筋砼。 二、设计依据 1、《公路桥涵设计通用规范》(JTG D60-2004) 2、《公路工程技术标准》JTG B01-2003 3、《钢结构设计规范》( GB 50017-2003) 三、主要参考资料 1、《钢结构设计手册》第三版 2、《路桥施工计算手册》(周水兴等编著) 3、《建筑结构静力计算手册》2004版 四、主要技术标准 设计荷载:80吨散装水泥罐车,考虑安全系数1.4,栈桥设计中选112吨荷载对整个桥梁结构进行验算;

图一80吨随州散装水泥罐车荷载布置图(图中省略车头部分)五、结构恒重 (1)钢便桥面层:12mm厚钢板,单位面积重106.8kg/m2。 (2)I14单位重16.9kg/m,则0.17kN/m,间距0.25m 。 (3)I36b单位重65.66kg/m,则0.66kN/m,4.29KN/根,最大间距1.59m。 (4)纵向主梁:321型贝雷梁, 4.67 KN/m。(含附件) 六、上部结构内力计算 6.1、桥面板验算 (1)荷载计算

因桥面纵向工字钢的横向间距空隙仅为17cm,汽车轮宽度50cm,汽车轮宽远远大于工字钢间距,故此处对钢板不做单独验收。仅对桥面纵向分配梁I14进行计算。 单边车轮作用在跨中时,I14弯矩最大,轮压力为简化计算可作为集中力。荷载分析: 1)均布荷载:0.267kN/m(面板) 2)施工及人群荷载:不考虑与汽车同时作用 3)汽车轮压:车轮接地尺寸为0.5m×0.2m, 最大轴重为224kN,每轴2组车轮,则单组车轮荷载为112kN,每组车轮压在3根I14上,则单根I14承受的荷载为37.3KN。 则单边车轮布置在跨中时弯距最大计算模型如下(以整个后轴建模按连续梁计算) 钢分配梁I36b纵向工钢I14 37.3KN 37.3KN37.3KN q=0.27KN q=0.27KN 6.1.1 受力模型(KN.m) 经MIDAS/CIVIL软件计算得如下: 6.1.2 反力图(KN)

模板钢管计算手册

精心整理 模板(扣件式钢管支架)计算书 一、工程概况 二、参数信息 1?脚手架参数 立杆横距(m): 1.1 ; 立杆纵距(m): 1.1; 横杆步距(m): 1.8; 支模架类型:水平钢管; 板底支撑材料:方木; 板底支撑间距(mm): 40; 模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度(m):1 ; 精心整理 面板厚度(mm): 15; 面板弹性模量E(N/mm2): 9500; 面板抗弯强度设计值f m(N/mm2): 13; 木材品种:松木; 木材弹性模量E(N/mm2): 10000; 木材抗弯强度设计值f m(N/mm2): 17; 木材抗剪强度设计值f v(N/mm2): 1.7; 三、板模板面板的验算 面板为受弯结构,需要验算其抗弯强度和刚度。强度验算要考虑混凝土、钢筋、模板的自重及施工均布荷载;挠度验算只考虑混凝土、钢筋、模板的自重荷载。计算的原则是按照均布荷载作用下的三跨连续梁计算。 面板计算简图 1?抗弯验算 公式:(=M/W

公式:W=bh2/6 b:面板截面宽度,h:面板截面厚度 计算式:W=1100X 15/6=41250mm3; [f]--面板的抗弯强度设计值(N/mm2); 按以下公式计算面板跨中弯矩: 公式:M=0.1 XX2 q --作用在模板上的压力线,包括: (1)钢筋混凝土板自重(kN/m): q1=(24+1) X 1.1 X83102kN/m; (2)模板的自重线荷载(kN/m): q2=0.35 X 1.10.38kN/m; (3)活荷载为施工荷载标准值(kN): q3=2X 1.1=2.2kN/m q=1.2 Xq1+q2)+1.4 X=1.2 X (3.02+0.38)+1.4 ?X2l.2kN/m 计算跨度(板底支撑间距):l=40mm; 精心整理 面板的最大弯距 M=0.1 X 7.17 W40147.52N.mm; 经计算得到,面板的受弯应力计算值:0=1147.52/41250" 0.03N/mm2; 面板的抗弯强度设计值:[f]=13N/mm2; 结论:面板的受弯应力计算值0 =0.03N/mm2小于面板的抗弯强度设计值[f]=13N/mm2,满足要求! 2.挠度验算 最大挠度按以下公式计算: 公式:3=0.677 XX4/。。。XX) q --作用在模板上的侧压力线荷载标准值: q=q 什q2=3.02+0.38=3.41kN/m; l --计算跨度(板底支撑间距):l=40 mm; E --面板材质的弹性模量:E=9500N/mm2; I --面板的截面惯性矩: 公式:I=bh3/12 计算式:I=40X 15/12=11250 mm4; 面板的最大挠度计算值:

双排钢管脚手架施工方案(详细计算书)-免费

某工程双排扣件式钢管落地脚手架 施工方案 广西建工集团第二建筑工程有限责任公司

目录 1 编制依据 (1) 2 工程概况 (1) 3 施工部署 (1) 3.1 组织机构 (1) 3.2 设计总体思路 (1) 3.3 劳动力准备 (2) 3.4 材料准备 (2) 3.5 机具准备 (3) 3.6 技术准备 (4) 4 脚手架构造要求 (4) 4.1 总的设计尺寸 (4) 4.2 纵向水平杆 (4) 4.3 横向水平杆 (5) 4.4 脚手板 (5) 4.5 立杆 (5) 4.6 连墙件 (6) 4.7 门洞 (6) 4.8 剪刀撑 (6) 4.9 扣件 (7) 4.10 基础 (7)

4.11 上人斜道 (7) 5 脚手架的搭设和拆除施工工艺 (7) 5.1 落地脚手架搭设施工工艺 (7) 5.2 脚手架的拆除施工工艺 (8) 6 目标和验收标准 (9) 7 安全文明施工保证措施 (9) 7.1 材质及其使用的安全技术措施 (9) 7.2 脚手架搭设的安全技术措施 (9) 7.3 脚手架上施工作业的安全技术措施 (10) 7.4 脚手架拆除的安全技术措施 (10) 7.5 文明施工要求 (11) 7.6 应执行的强制性条文 (13) 8 设计计算 (15) 8.1 荷载传递路线 (15) 8.2 横向水平杆强度计算 (15) 8.3 纵向水平杆强度计算 (16) 8.4 连接扣件抗滑承载力计算 (17) 8.5 立杆稳定性计算 (17) 8.6 连墙件验算 (21) 8.7 立杆地基承载力计算 (22) 9 附图

附图-1 外架平面布置图 附图-2 外架剖面图和立面图 附图-3 基础、门洞和连墙件做法

栈桥计算书(75t履带吊)

目录 1、编制依据及规范标准 (4) 1.1、编制依据 (4) 1.2、规范标准 (4) 2、主要技术标准及设计说明 (4) 2.1、主要技术标准 (4) 2.2、设计说明 (5) 2.2.1、桥面板 (5) 2.2.2、工字钢纵梁 (5) 2.2.3、工字钢横梁 (5) 2.2.4、贝雷梁 (5) 2.2.5、桩顶分配梁 (5) 2.2.6、基础 (5) 2.2.7、附属结构 (6) 3、主要工程数量 (6) 4、荷载计算 (7) 4.1、活载计算 (7) 4.2、恒载计算 (7) 4.3、荷载组合 (8) 5、结构计算 (8) 5.1、桥面板计算 (9) 5.1.1、荷载计算 (9) 5.1.2、材料力学性能参数及指标 (9)

5.1.3、力学模型 (10) 5.1.3、承载力检算 (10) 5.2、工字钢纵梁计算 (10) 5.2.1、荷载计算 (10) 5.2.2、材料力学性能参数及指标 (11) 5.2.3、力学模型 (11) 5.2.4、承载力检算 (12) 5.3、工字钢横梁计算 (13) 5.3.1、荷载计算 (13) 5.3.2、材料力学性能参数及指标 (13) 5.3.3、力学模型 (14) 5.3.4、承载力检算 (14) 5.4、贝雷梁计算 (15) 5.4.1、荷载计算 (15) 5.4.2、材料力学性能参数及指标 (16) 5.4.3、力学模型 (16) 5.4.4、承载力检算 (16) 5.5、钢管桩顶分配梁计算 (17) 5.5.1、荷载计算 (17) 5.5.3、力学模型 (18) 5.5.4、承载力检算 (18) 5.6、钢管桩基础计算 (19) 5.6.1、荷载计算 (19) 5.6.2、桩长计算 (19)

120厚板模板(扣件钢管架)计算书

120厚板模板(扣件钢管架)计算书 模板支架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 一、参数信息: 1.模板支架参数 横向间距或排距(m):1.00;纵距(m):1.00;步距(m):1.50; 立杆上端伸出至模板支撑点长度(m):0.10;模板支架搭设高度(m):2.48; 采用的钢管(mm):Φ48×3.0 ;板底支撑连接方式:方木支撑; 立杆承重连接方式:双扣件,取扣件抗滑承载力系数:0.80; 2.荷载参数 模板与木板自重(kN/m2):0.350;混凝土与钢筋自重(kN/m3):25.000; 施工均布荷载标准值(kN/m2):1.000; 3.楼板参数 钢筋级别:二级钢HRB 335(20MnSi);楼板混凝土强度等级:C30; 每层标准施工天数:10;每平米楼板截面的钢筋面积(mm2):654.500; 楼板的计算长度(m):4.50;施工平均温度(℃):25.000; 楼板的计算宽度(m):4.00; 楼板的计算厚度(mm):120.00; 4.材料参数 面板采用胶合面板,厚度为18mm;板底支撑采用方木; 面板弹性模量E(N/mm2):9500;面板抗弯强度设计值(N/mm2):13; 木方弹性模量E(N/mm2):9500.000;木方抗弯强度设计值(N/mm2):13.000; 木方抗剪强度设计值(N/mm2):1.400;木方的间隔距离(mm):300.000; 木方的截面宽度(mm):60.00;木方的截面高度(mm):80.00;

脚手架计算书(DOC)

满堂扣件式钢管脚手架计算书 依据规范: 《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 《建筑施工模板安全技术规范》JGJ 162-2008 《建筑结构荷载规范》GB50009-2012 《钢结构设计规范》GB50017-2003 《混凝土结构设计规范》GB50010-2010 《建筑地基基础设计规范》GB50007-2011 《建筑施工木脚手架安全技术规范》JGJ 164-2008 计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 模板支架搭设高度为24.5m, 立杆的纵距 b=1.20m,立杆的横距 l=1.50m,立杆的步距 h=1.30m。 脚手板自重0.30kN/m2,栏杆自重0.15kN/m,材料最大堆放荷载 2.00kN/m2,施工活荷载5.00kN/m2。 图落地平台支撑架立面简图

图落地平台支撑架立杆稳定性荷载计算单元 采用的钢管类型为φ48×3.2。 钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。 一、基本计算参数[同上] 二、纵向支撑钢管的计算 纵向钢管按照均布荷载下连续梁计算,截面力学参数为 截面抵抗矩 W = 4.73cm3; 截面惯性矩 I = 11.35cm4; 纵向钢管计算简图 1.荷载的计算: (1)脚手板与栏杆自重线荷载(kN/m): q1=0.000+0.300×0.300=0.090kN/m (2)堆放材料的自重线荷载(kN/m): q21= 2.000×0.300=0.600kN/m (3)施工荷载标准值(kN/m):

q22= 5.000×0.300=1.500kN/m 经计算得到,活荷载标准值 q2 = 1.500+0.600=2.100kN/m 2.抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩。 最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下: 最大弯矩计算公式如下: 最大支座力计算公式如下: 静荷载 q1 = 1.20×0.090=0.108kN/m 活荷载q2 = 1.40×1.500+1.40×0.600=2.940kN/m 最大弯矩 M max=(0.10×0.108+0.117×2.940)×1.2002=0.511kN.m 最大支座力N = (1.1×0.108+1.2×2.94)×1.20=4.376kN 抗弯计算强度f=0.511×106/4729.0=108.03N/mm2 纵向钢管的抗弯计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为三跨连续梁均布荷载作用下的挠度 计算公式如下:

钢栈桥计算书

1编制依据 (1) 2工程概况 (1) 3钢栈桥及钢平台设计方案 (2) 3.1钢栈桥布置图 (2) 3.2钢平台布置图 (3) 4栈桥检算 (3) 4.1设计方法 (3) 4.2桥面板承载力验算 (4) 4.3 120a工字钢分配梁承载力验算 (5) 4.4贝雷片纵梁承载力验算 (6) 4. 5 I45b工字钢横梁承载力验算 (9) 4.6桥面护栏受力验算 (10) 5桩基检算 (13) 5.1钢管桩承载力验算 (13) ?5. 2桩基入土深度计算 (13) ?5. 3钢管桩自身稳定性验算 (14) 5.4钢管桩抗倾覆性验算 (14) ?5. 5钢管桩水平位移验算 (14) 6钻孔平台 (15)

*********钢栈桥计算书 1编制依据 1、现场踏勘所获得的工程地质、水文地质、当地资源、交通状况及施工环境等调查资料; 2、国家及地方关于安全生产及坏境保护等方面的法律法规; 3、《钢结构设计规范》GB-50017-2011; 4、《公路桥涵设计通用规范》JTG D60-2015 5、《公路桥涵地基与基础设计规范》JTG D63-2007 6、《公路工程施工安全技术规范》(JTG F90-2015) 7、《路桥施工计算手册》(人民交通出版社) 8、*********设计图纸。 2工程概况 *********位于顺昌县水南镇焕仔坑附近,跨越富屯溪。本项目起点桩号 K7+1-54,终点桩号K7+498. 5,桥梁全长344.5m。 *********场区属于剥蚀丘陵夹冲洪积地貌,桥址区地形较起伏,起点台较坡度约15。-20°,终点台较坡度约5。-10° o桥梁跨越富屯溪,勘查期间水深约3-9m,溪宽约180-190m o *********桩基施工是本工程的控制工期工程,我项目部经过对富屯溪水文、地质及其现场情况的详细调査,为保证工期,加快施工进度,跨富屯溪水中主墩计划采用钢栈桥+钢平台施工方案。 *********河中墩共7组,距河岸边最近的8#墩距岸边约20m,根据富屯溪历年

钢栈桥计算书

蒿子港澧水河钢栈桥设计计算书 一. 工程概况 岳常高速TJ-22合同段为独立特大桥标段,合同工程为蒿子港澧水特大桥。蒿子港澧水特大桥是岳阳至常德高速公路跨越澧水的一座特大桥,大桥总长2712.08m。具体桥型布置自岳阳至常德岸为14×25m预应力先简支后连续小箱梁+43+66+40m预应力悬浇连续箱梁+37×40m预应力先简支后连续小箱梁+66+3×106+66m预应力悬浇连续箱梁+11×25m预应力先简支后连续小箱梁。 为方便施工,经项目经理部研究决定,在66+106×3+66m预应力悬浇连续箱梁段修建一座施工栈桥。 二. 结构设计 钢栈桥采用型钢组合的结构形式,标准跨径9m。钢栈桥采用630×8mm钢管桩作为基础,钢栈桥横桥向中心间距281cm,在钢管桩上面设置双肢I36a型钢作为承重梁,并设置牛腿与钢管桩连接。承重梁上面设置I45a型钢作为第一层分配梁,上面铺设[20a型钢作为第二层分配梁,中心距为25cm,形成栈桥。栈桥两侧设置φ48mm钢管作为防护栏。 三. 计算过程中采用的部分参数 1. Q2353钢材的允许应力[σ]=180Mpa 2. Q2353钢材的允许剪应[τ]=110 Mpa 3. 16MN钢材的允许应力[σ]=237 Mpa 4. 16MN钢材的允许剪应力[τ]=104 Mpa 5. 16MN钢材的弹性模量E=2.1×105Mpa 四. 设计技术参数及相关荷载大小选定 1. 根据实际施工情况,栈桥通过最重车辆为10m3砼罐车和50T履带吊,则计算荷载为50T履带吊及砼罐车。取最大荷载50T履带吊,自重约为50T,其计算工况为最重荷载在栈桥上行驶时对栈桥的影响,考虑可能出现的履带吊停留在栈桥上吊装作业时的情况,吊重按20T考虑,则考虑1.15的冲击系数最后取80.5T进行验算。

钢管计算书

钢管计算书 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

模板(扣件式钢管支架)计算书 一、工程概况 二、参数信息 1.脚手架参数 立杆横距(m): 1.1; 立杆纵距(m): 1.1; 横杆步距(m): 1.8; 支模架类型:水平钢管; 板底支撑材料:方木; 板底支撑间距(mm) : 40; 模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度(m):1;模板支架计算高度(m): 4.27; 采用的钢管(mm):Ф48×3; 扣件抗滑力系数: 6; 2.荷载参数 模板自重(kN/m2): 0.35; 钢筋自重(kN/m3) : 1; 混凝土自重(kN/m3): 24; 施工均布荷载标准值(kN/m2): 2; 3.楼板参数 钢筋级别:三级钢HRB 400(20MnSiV,20MnSiNb,20MnTi); 楼板混凝土强度等级: C30; 每层标准施工天数: 8; 每平米楼板截面的钢筋面积(mm2):1440.000; 楼板的计算宽度(m): 5.4;

楼板的计算跨度(m): 4; 楼板的计算厚度(mm): 110; 施工平均温度(℃): 15; 4.材料参数 面板类型:胶合面板; 面板厚度(mm):15; 面板弹性模量E(N/mm2):9500; 面板抗弯强度设计值f m(N/mm2):13; 木材品种:松木; 木材弹性模量E(N/mm2):10000; 木材抗弯强度设计值f m(N/mm2):17; 木材抗剪强度设计值f v(N/mm2):1.7; 三、板模板面板的验算 面板为受弯结构,需要验算其抗弯强度和刚度。强度验算要考虑混凝土、钢筋、模板的自重及施工均布荷载;挠度验算只考虑混凝土、钢筋、模板的自重荷载。计算的原则是按照均布荷载作用下的三跨连续梁计算。 面板计算简图 1.抗弯验算 公式:σ = M/W < f σ--面板的弯曲应力计算值(N/mm2); M --面板的最大弯距(N.mm); W--面板的净截面抵抗矩, 公式:W=bh2/6 b:面板截面宽度,h:面板截面厚度 计算式:W= 1100×152/6=41250 mm3;

钢管支架的计算书

路基边坡防护施工钢管支架工程专项安全方案 设计计算书 一、计算目的 路基边坡坡面防护施工是在斜坡上进行,特别是对于锚杆锚索施工,需要专门 的操作平台来进行锚孔的钻进,所以需搭设钢管支架作为操作平台。对于钢管支架 结合实际地质情况,管架的受力是否合理,有必要对其进行受力计算,掌握支架的 受力情况,实现合理搭设,既经济又保证安全。 支架布置见附件详图。 为了确保安全,为了确保支架结构的受力合理、安全可靠、稳定,满足施工荷 载的需要,确保施工安全,特进行支架的设计及受力计算。 二、支架的设计 (1)材料选择 钢管:支架纵、横向水平杆、立杆均选用直径φ=48mm、壁厚t=3.5mm的钢管,长度分 别为2m、3m、6m;钢管截面面积A=489mm 2,截面惯性矩I=1.215×105mm4,抵抗矩 W=5.078×103 mm3,回转半径15.78 mm,每延米理论重量为3.84㎏。 铸铁扣件:基本形式有三种,即直角扣件、回转扣件、对接扣件。 竹跳板:规格3 m×0.2m;用于铺设出渣通道。 安全网:规格4.5 m×1.2 m。 (2)支架的布置 (a)立杆 立杆垂直于地面,是把脚手架上所有荷载传递给基础的受力杆件。立杆纵向间距 1.2m, 横向间距1m。 (b)纵、横向水平杆 纵、横向水平杆是承受并传递荷载给立杆的受力杆件。纵向水平杆在纵向水平连接 各立杆,横向水平杆在横向水平连接内、外排立杆。间距见附件详图。 (c)剪刀撑 设置剪刀撑或斜撑,可增强脚手架的纵、横向刚度。剪刀撑是设在脚手架内、外侧

面的十 字交叉斜杆,而斜撑是单独的斜杆。 (d)纵、横向水平扫地杆 纵向扫地杆连接立杆下端距底座下方10c m~20cm处的纵向水平杆,起约束立杆底端在纵向发生位移的作用;水平扫地杆设置在位于纵向水平扫地杆上方处的横向水平杆,起约束立杆底端在横向发生位移的作用。 (e)扣件 直角扣件用于两根垂直相交钢管的连接,依靠扣件与钢管表面间的摩擦力来传递荷载;回转扣件用于两根任意角度相交钢管的连接;对接扣件用于两根钢管对接接长的连接。支架各部分具体尺寸、钢管间距以及支架搭设详细要求等详见附图和施工方案。 1. 图1.小横杆受力计算图示 2.荷载 作用在支架小横杆上的荷载主要是施工荷载,主要是工人和钻孔机械的自重;根据

模板工程计算书

板模板(盘扣式)计算书 计算依据: 1、《建筑施工承插型盘扣式钢管支架安全技术规程》JGJ231-2010 2、《建筑施工模板安全技术规范》JGJ162-2008 3、《混凝土结构设计规范》GB 50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 二、荷载设计

风荷载作用方向沿模板支架横向作用 抗倾覆计算中风荷载作用位置距离支架底的距离h2(m) 3.9 三、模板体系设计 模板支架高度(m) 4.5 主梁布置方向平行立柱纵向方向立柱纵向间距l a(mm) 1200 立柱横向间距l b(mm) 1200 水平拉杆步距h(mm) 1800 顶层水平杆步距hˊ(mm)1000 450 小梁间距l(mm) 300 支架可调托座支撑点至顶层水平杆中 心线的距离a(mm) 小梁最大悬挑长度l1(mm) 100 主梁最大悬挑长度l2(mm) 150 设计简图如下: 模板设计平面图

纵向剖面图

横向剖面图 四、面板验算 面板类型覆面木胶合板面板厚度t(mm) 12 面板抗弯强度设计值[f](N/mm2) 16.83 面板抗剪强度设计值[τ](N/mm2) 1.4 面板弹性模量E(N/mm2) 9350 面板计算方式三等跨连续梁按三等跨连续梁,取1m单位宽度计算。 W=bh2/6=1000×12×12/6=24000mm3,I=bh3/12=1000×12×12×12/12=144000m m4 承载能力极限状态 q1=[1.2×(G1k +(G2k+G3k)×h)+1.4×Q1k]×b=[1.2×(0.1+(24+1.1)×0.15)+1.4×3]×1=8.838kN/m q1静=[γG(G1k +(G2k+G3k)h)b] = [1.2×(0.1+(24+1.1)×0.15)×1]=4.638kN/m

悬挑式扣件钢管脚手架计算书(范本)

悬挑式扣件钢管脚手架计算书(范本) 依据规范: 《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 《建筑结构荷载规范》GB50009-2012 《钢结构设计规范》GB50017-2003 《混凝土结构设计规范》GB50010-2010 更多建筑工程技术资料请加群(303362541) 计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度20.0米,立杆采用单立管。 立杆的纵距1.20米,立杆的横距1.05米,内排架距离结构0.50米,立杆的步距1.20米。 采用的钢管类型为φ48.3×3.6, 连墙件采用2步2跨,竖向间距2.40米,水平间距2.40米。 施工活荷载为2.0kN/m2,同时考虑2层施工。 脚手板采用竹笆片,荷载为0.10kN/m2,按照铺设4层计算。 栏杆采用冲压钢板,荷载为0.16kN/m,安全网荷载取0.0100kN/m2。 脚手板下大横杆在小横杆上面,且主结点间增加一根大横杆。 基本风压0.30kN/m2,高度变化系数1.2500,体型系数0.6000。 悬挑水平钢梁采用[5号槽钢U口水平,建筑物外悬挑段长度2.50米,建筑物内锚固段长度1.50米。 悬挑水平钢梁采用悬臂式结构,没有钢丝绳或支杆与建筑物拉结。 钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。 一、大横杆的计算 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。 按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算

大横杆的自重标准值 P1=0.040kN/m 脚手板的荷载标准值 P2=0.100×1.050/2=0.052kN/m 活荷载标准值Q=2.000×1.050/2=1.050kN/m 静荷载的计算值 q1=1.2×0.040+1.2×0.052=0.111kN/m 活荷载的计算值 q2=1.4×1.050=1.470kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度) 大横杆计算荷载组合简图(支座最大弯矩) 2.抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为 M1=(0.08×0.111+0.10×1.470)×1.2002=0.224kN.m 支座最大弯矩计算公式如下: 支座最大弯矩为 M2=-(0.10×0.111+0.117×1.470)×1.2002=-0.264kN.m 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: σ=0.264×106/5260.0=50.114N/mm2 大横杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算

4排单层贝雷桁架栈桥设计及验算书(钢管桩基础)

拟建栈桥计算书 1概述 1.1设计说明 本工程项目拟建栈桥结构形式为4排单层贝雷桁架,使用900型标准贝雷花架进行横向联结,栈桥纵向标准设计跨径为12m,桥面系为桥面板;横向分配梁为122,间距为 0.75m;在横向分配梁纵向铺设112.6工字钢,间距为0.24米,112.6工字钢要花焊在125 横向分配梁上;桥面板采用S =8mm钢板,与I12.6工字钢进行焊接;基础采用? 630X 10mm钢管桩,按柱桩设计,为加强基础的整体稳定性,每排钢管桩间均采用[12号槽钢连接成整体,桩长9米,外包1.0米厚C251凝土;墩顶横梁采用2工25e。栈桥布置结构形式如下图1。 图1、栈桥一般构造图(单位:cm) 栈桥桥墩按线路前进方向编号为1#?16#墩,从功能上分两种,分别为单排桩一 般桩、双排桩制动桩,两种桥墩结构形式及功能说明如下:

单排桩一般桩:单排、每排3根桩,桩中心间距2.2m桩顶标高m,桩间设置横向

连接系,桩顶设置双排125辽字钢支撑贝雷架主梁,与贝雷架主梁间不连接,不传递 纵向水平力。 双排桩制动桩:在1#、8#、9#和16#墩设置,共4处。双排(中心排距3m ),每排3 根桩,桩中心间距为2.2m,桩顶标高m ,桩间设置横向连接系,桩顶设置双排125a 工 字钢支撑贝雷架主梁,设置纵向拉杆固定贝雷架主梁以纵向水平力。 栈桥行车道两侧设置方木路缘,桥面两边设置钢管护栏,栏杆高度为 1.1m ,采用 / 75X 75X 8角钢焊接在横向分配梁125a 工字钢上,每根分配梁上焊一根,主要电缆和通 水管等设施搁置在上面 ,减少对栈桥交通的影响。 1.2 设计依据 1) 《公路桥涵设计通用规范》 2) 《公路桥涵地基与基础设计规范》 3) 《公路桥涵钢结构及木结构设计规范》 4)《公路桥涵施工技术规范》 1.3 技术标准 1) 设计顶标高; 2) 设计控制荷载: 栈桥运营期间:施工重车荷载主要表现在 9m 3混凝土罐车,砼罐车自重20T+砼重 22.5T ,考虑1.4的动力系数,按照60T 荷载对栈桥桥面分配梁122a 进行验算; 考虑本栈桥桥位实际地理条件,其施工工艺利用 50T 履带吊车采用“钓鱼法”施 工,50T 履带吊自重50T+吊重25T ,考虑车辆自重及1.3的车辆冲击系数,栈桥设计中 选择100吨履带吊车荷载进行贝雷梁及承重梁的验算; 3) 设计行车速度 10km/h 。 2、按截面一设计的栈桥检算 2.1 上部结构恒重( 6米宽计算) 1) 8mm 厚钢板,单位面积重62.8kg 则0.628kN/m 2; 2) 面板分配梁工12.6单位重14.21kg/m ,则0.14kN/m ,间距0.24m ; JTG D60-2004) JTJ024-85) JTJ025-86) JTJ041—2000)

相关文档
最新文档