北师大版2020九年级数学《三角函数及解直角三角形》知识点总结
【初中要点】北师大版九年级数学三角函数的计算知识点

张小只初中知识库张小只爱学习北师大版初三数学三角函数的计算知识点本文为学生介绍的是初三数学三角函数的计算,主要包括了幂级数、泰勒展开式、实用幂级数、三角函数恒等变形公式、课后习题与解析等内容,具体内容请阅读:三角函数知识点公式定理记忆口诀三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,.....及a都是常数, 这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f’(a)/1!*(x-a)+f’’(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...实用幂级数ex = 1+x+x2/2!+x3/3!+...+xn/n!+...ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|小于1)sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞)cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞)arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|小于1)arccos x = π - (x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... )(|x|小于1)arctan x = x - x /3 + x /5 - ... (x≤1)sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞)。
(完整版)新北师大九年级数学下册知识点总结

新北师大版九年级数学下册知识点总结第一章直角三角形边的关系一•锐角三角函数 1.正切:定义:在Rt △ ABC 中,锐角/A 的对边与邻边的比叫做/A的正切,记作tanA ,① tanA 是一个完整的符号,它表示/A的正切,记号里习惯省去角的符号“/”;② tanA 没有单位,它表示一个比值,即直角三角形中/A 的对边与邻边的比;③ tanA 不表示"tan ”乘以"A ”;④ 初中阶段,我们只学习直角三角形中,/A是锐角的正切;⑤ tanA 的值越大,梯子越陡,ZA 越大;ZA 越大,梯子越陡,tanA 的值越大。
2. 正弦:定义:在Rt △ ABC 中,锐角/A 的对边与斜边的比叫做/A 的正弦,记作sinA ,即sin AA的对边................................... """■ 斜边3. 余弦:定义:在Rt △ ABC 中,锐角/A 的邻边与斜边的比叫做/A 的余弦,记作cosA ,即cosA A的邻边 .............................. ■■■■■斜边之变化三•三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为 仰角2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为 俯角值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大 < sin a< 1, 0< cos a< 1。
4. 坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度i tan Al5. 方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA OB OC 的方位角分别为 45 °、135 °、225 °。
6. 方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角.。
北师大版九年级(下)数学知识点归纳总结

第一章直角三角形的边角关系九年级下册第1节锐角三角函数一、锐角三角函数锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。
如图所示,在Rt△ABC中,∠C=90°【说明】①三角函数表示的是两边的比值,所以它只是一个数值,没有单位。
②当用一个大写字母表示角时,其三角函数中角的符号省略,如sin A,cos B,tan C;当用一个希腊字母表示角时,其三角函数中角的符号省略,如sinα,cosβ,tanθ;当用三个大写字母表示角时,其三角函数中角的符号不能省略,如sin∠ABC,cos∠DEF,tan∠GHI;当用一个阿拉伯数字表示角时,其三角函数中角的符号不能省略,如sin∠1,cos∠2,tan∠3。
③如果要表示三角函数的倍数与乘方,应分别表示为2 sin A,3cos B,4tan C,sin2A,cos3B,tan4C;2 sin30°,3cos30°,4tan30°,sin230°,cos330°,tan430°。
二、坡度1、坡度的概念如图所示,我们把坡面的铅直高度h和水平宽度l的比值叫做坡度(或坡比),通常用字母i表示。
【说明】坡面的坡度实际上就是坡角的正切值,即i=tanα=hl2、三角函数与坡面的陡峭程度(1)tan A的值越大,坡面越陡。
(2)sin A的值越大,坡面越陡。
(3)cos A的值越小,坡面越陡。
三、锐角三角函数的增减性(0°~90°)1、正弦值随着角度的增大(或减小)而增大(或减小);2、余弦值随着角度的增大(或减小)而减小(或增大);3、正切值随着角度的增大(或减小)而增大(或减小)。
四、同角三角函数的关系1、互余关系:sinA =cos(90°-A) cosA =sin(90°-A)2、平方关系:s in 2A +cos 2A =13、弦切关系:tan A =sin cos AA4、倒数关系:tan A ·tan(90°-A)=1第2节 30°,45°,60°角的三角函数值一、探索30°,45°,60°角的三角函数值求30°角的三角函数值,关键根据“直角三角形中30°的锐角所对的直角边等于斜边的一半”,可设30°的锐角的对边为a ,则斜边为2a ,由勾股定理可求得30°3a ,因此可以求出30°的锐角的各个三角函数值:sin30°=2a a =12 cos30°3a3 tan30°3a 33也可以求出60°的锐角的各个三角函数值:sin60°3a =3 cos60°=2a a =12tan60°3a 3求45°角的三角函数值,关键根据“有一个角是45°的直角三角形是等腰直角三角形”,可设一条直角边为a ,则另一条直角边也为a 2a ,因此可以求出45°的锐角的各个三角函数值:sin45°2a 22 cos45°2a 2 tan45°=aa =1二、熟记特殊角的三角函数值第3节三角函数的计算一、用计算器求任意锐角的三角函数值1、求整数度数的锐角的三角函数值首先使计算器的面板上出现DEG,然后再按sin cos tan这三个键之一,再从高位向低位按出表示度数的整数,再按键=,就可以在显示屏上得到答案。
北师大版九年级三角函数

北师大版九年级三角函数在我们的数学学习旅程中,九年级的三角函数就像是一座神秘而又充满魅力的山峰,等待着我们去攀登和探索。
三角函数不仅是数学中的重要概念,也是解决实际问题的有力工具。
接下来,让我们一起走进北师大版九年级三角函数的奇妙世界。
一、什么是三角函数三角函数是描述三角形中边与角之间关系的函数。
在一个直角三角形中,我们通常会用到三个主要的三角函数:正弦(sin)、余弦(cos)和正切(tan)。
正弦函数(sin)是指一个锐角的对边与斜边的比值。
比如,在一个直角三角形中,如果一个锐角为 A,它的对边为 a,斜边为 c,那么 sin A = a / c 。
余弦函数(cos)是指一个锐角的邻边与斜边的比值。
仍以上面的三角形为例,角 A 的邻边为 b,那么 cos A = b / c 。
正切函数(tan)则是指一个锐角的对边与邻边的比值,即 tan A =a /b 。
二、三角函数的性质1、周期性正弦函数和余弦函数都具有周期性。
正弦函数 sin x 的周期是2π,余弦函数 cos x 的周期也是2π。
这意味着,每隔2π 的长度,函数的值会重复出现。
2、奇偶性正弦函数是奇函数,即 sin(x) = sin x ;余弦函数是偶函数,即cos(x) = cos x 。
3、值域正弦函数和余弦函数的值域都在-1, 1 之间,而正切函数的值域是全体实数。
三、三角函数的应用三角函数在实际生活中有广泛的应用。
比如,在测量建筑物的高度时,如果我们知道测量点到建筑物底部的距离以及测量点观察建筑物顶部的仰角,就可以通过三角函数来计算建筑物的高度。
在航海中,通过测量船只与灯塔之间的角度以及距离,可以确定船只的位置。
在物理学中,三角函数也经常用于描述周期性的运动,如简谐振动。
四、如何求解三角函数要准确求解三角函数的值,需要掌握一些特殊角度的三角函数值。
比如,30°、45°、60°等常见角度的正弦、余弦和正切值,我们应该牢记于心。
九年级数学下册直角三角形的边角关系知识点总结北师大版

九年级数学下册《直角三角形的边角关系》知识点总结北师大版九年级数学下册《直角三角形的边角关系》知识点总结北师大版一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f (n)(a)/n!*(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
2.直角三角形的三条高交点在一个顶点上。
3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.直角三角形的边角关系单元知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,取得优异的成绩。
九上数学解直角三角形知识点

九上数学解直角三角形知识点
九年级数学解直角三角形知识点主要包括:
1. 锐角三角函数:在直角三角形中,锐角的正弦、余弦和正切值可以通过三角函数的定义直接计算。
例如,在直角三角形ABC中,如果∠C=90°,那么sinA=BC/AB,cosA=AC/AB,tanA=BC/AC。
2. 余角三角函数关系:当两个角互为余角时,它们的三角函数值之间存在一定的关系。
例如,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB。
3. 同角三角函数关系:三角函数之间还存在着一些恒等式,例如
sin2A+cos2A=1,tanA·cotA=1。
4. 函数的增减性:在锐角的条件下,正弦和正切函数随着角度的增大而增大,而余弦和余切函数随着角度的增大而减小。
5. 特殊角的三角函数值:对于一些特殊角度(如0°、30°、45°、60°和90°),其三角函数值是已知的。
这些值需要熟练记忆。
6. 解直角三角形:在直角三角形中,已知一些边的长度或者角度,可以通过三角函数来求解其他未知的边或角度。
以上是九年级数学解直角三角形的主要知识点。
在学习时,除了理解每个知识点的含义和计算方法外,还需要通过大量的练习来加深理解和提高解题能力。
《三角函数及解直角三角形》知识点总结

《三角函数及解直角三角形》知识点总结Ⅰ、本章知识结构框图:1、正弦、余弦、正切、余切的概念在是三角形ABC中,∠C=90°,(1)锐角A的对边与斜边的比叫做∠A的正弦,记作sinA。
即sinA=∠A的对边=a斜边c(2)锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA。
即cosA=∠A的邻边=b】斜边c(3)锐角A的对边与邻边的比叫做∠A的正切,记作tanA。
即tanA=∠A的对边=a∠A的邻边b(4)锐角A的邻边与对边的比叫做∠A的余切,记作cotA。
即cotA=∠A的邻边=b∠A的对边a锐角A的正弦、余弦、正切、余切都叫做∠A的三角函数。
注意:(1)正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;@(2)sinA不是sin与A的乘积,是三角形函数记号,是一个整体。
“sinA”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。
2、同角的三角函数之间的关系(1)平方关系:sin²α+cos²α=1α为锐角,即同一锐角的正弦和余弦的平方和等于1;(2)倒数关系:tanα·cotα=1α为锐角,即同一锐角的正切与余切的积为1,互为倒数;(3)商的关系:tanα=,cotα=,;α为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切。
注意:(1)这些关系式都是恒等式,正反均可运用,同时还要注意它们的变形,如:︳sinA︳=1-︳cos²A︳,︳cosA︳=1-sin²A;(2)sin²α是(sinα)²的简写,读作“sinα”的平方;不能将sin²α写成sinα²,前者是α的正弦值的平方,后者表示α²的正弦值。
特殊角有0°、30°、45°、60°、90°,它们的三角函数值如下表:注意:记忆特殊角的三角函数值,可用下述方法:0°、30°、45°、60°、90°的正弦值分别是它们的余弦值分别是¥30°、45°、60°的正切值分别是它们的余切值分别是若∠A+∠B=90°则sinA=cos(90°-A)=cosB任意锐角的正弦值等于它的余角的余弦值cosA=sin(90°-A)=sinB任意锐角的余弦值等于它的余角的正弦值tanA=cot(90°-A)=cotB任意锐角的正切值等于它的余角的余切值cotA=tan(90°-A)=tanB任意锐角的余切值等于它的余角的正切值用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角是必须掌握的。
解直角三角形 北师大版数学九年级下册

九下第一章 直角三角形的边角关 系
1.4 解直角三角形
问题引入
问题1.在直角三角形中,除直角外还有几个元素?
问题2:如图,在Rt△ABC 中∠C=90°, a、b、c、
∠A、∠B 这五个元素间有哪些等量关系呢?
B
c a
AbC
总结梳理
在Rt △ ABC中,共有六个元素,分别是__三__ 条边, 三个角,其中∠C=90°,
(1) 三边之间的关系: a2+b2=__c_2 __;
B
c
(2) 锐角之间的关系: ∠A+∠B=_9_0_°;
a
(3) 边角之间的关系:锐角三角函数 A b C
sinA=__ac__,cosA=__b_c _,tanA=__ba__.
由直角三角形中 的元素, 出所有
元素的过程,叫做解直角三角形.
思考探究
斜边和一锐角
数学思想: 分类讨论
知识点一:已知两边解直角三角形
情况一:已知两直角边,求其他未知的元素
A
?
b?
AB a2 b2
tan A a b
A可求
情况C二:已a 知?一B 直角B边和90斜边,A求其他未知的元素
A
?
?c
AC c2 a2
sin A a c
A可求
C
a ? B B 90 A
A
b
20
C
a
B
随堂练习
1. 如图,在Rt△ABC中,∠C=90°,
AC=6, ∠BAC 的平分4线3AD=
,解这个直角
三角形.
A
解:
∵AD 平分∠BAC,
6 43
C
D
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【文库独家】
复习《三角函数及解直角三角形》
在是三角形ABC中,∠C=90°,
锐角A的对边与斜边的比叫做∠A的正弦,记作sinA。
(2)锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA。
(3)锐角A的对边与邻边的比叫做∠A的正切,记作tanA。
(4)锐角A的邻边与对边的比叫做∠A的余切,记作cotA。
锐角A的正弦、余弦、正切、余切都叫做∠A的三角函数。
注意:(1)正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;
(2)sinA不是sin与A的乘积,是三角形函数记号,是一个整体。
“sinA”表示一个比值,其他三个三角函数记号也是一样的;
(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。
(1)平方关系:sin²α+cos²α=1α为锐角,即同一锐角的正弦和余弦的平方和等于1;
(2)倒数关系:tanα·cotα=1α为锐角,即同一锐角的正切与余切的积为1,互为倒数;
(3)商的关系:tanα=,
cotα=,
α为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切。
注意:(1)这些关系式都是恒等式,正反均可运用,同时还要注意它们的变形,
如:︳sinA︳=1-︳cos²A︳,︳cosA︳=1-sin²A;
(2)sin²α是(sinα)²的简写,读作“sinα”的平方;不能将sin²α写成sinα²,前者是α的正弦值的平方,后者表示α²的正弦值。
特殊角有0°、30°、45°、60°、90°,它们的三角函数值如下表:
注意:
记忆特殊角的三角函数值,可用下述方法:
0°、30°、45°、60°、90°的正弦值分别是
它们的余弦值分别是
30°、45°、60°的正切值分别是
它们的余切值分别是
若∠A+∠B=90°则
sinA=cos(90°-A)=cosB任意锐角的正弦值等于它的余角的余弦值cosA=sin(90°-A)=sinB任意锐角的余弦值等于它的余角的正弦值tanA=cot(90°-A)=cotB任意锐角的正切值等于它的余角的余切值cotA=tan(90°-A)=tanB任意锐角的余切值等于它的余角的正切值
用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角是必须掌握的。
(1)当0°<α<90°时,
sinα、tanα随着α的增大(或减小)而增大(或减小),
cosα、cotα随着α的增大(或减小)而减小(或增大);
(2)当0°≤α≤90°时,0≤sinα≤1,0≤cosα≤1。
(1)三边之间的关系:a²+b²=c²(勾股定理);
(2)锐角之间的关系:∠A+∠B=90°;
(3)边角之间的关系:sinA=,cosA=,tanA=,cotA=。
(1)概念:在直角三角形中,用除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
注意:在直角三角形中,除直角外,一共有5个元素,即3条边和2个锐角。
(2)解直角三角形的两种基本类型————①已知两边长;
②已知一锐角和一边。
注意:已知两锐角不能解直角三角形。
“有斜(斜边)用弦(正弦、余弦),无斜用切(正切、余切,宁乘毋除,取原避中),”这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦,无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可以由已知数据又可由中间数据求解时,则用已知数据,尽量避免用中间数据。
对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是:
(1)作垂线构成直角三角形;
(2)利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。
(1)审题
①分析题意,理解实际问题的意义,看懂题目给出的示意图或自己画出的示意图,找出要解的直角三角形;
②把实际问题中的数量关系,转移到直角三角形的各元素上,找出已知元素和未知元素;
③根据已知元素和未知元素之间的关系,选择合适的三角函数关系式。
(2)解题————注意精确度
(3)答——————注意答的完整及注明单位
数形结合思想:此部分内容经常用到数形结合思想,对于每一个题都可结合图形分析,会更清楚简捷。
数与形相结合,是问题清晰,思路简捷有条理,是几何知识中最常用的思想方法之一,
也是最应该坚持实施的方法。
从特殊到一般的归纳总结法:锐角三角函数中包含了特殊角的三角函数值,对于三角函数之间的关系
和转化,都可从特殊角开始。
转化思想:把直角三角形的线段比,转化为三角函数值或面积的比。
数学的建模思想:解直角三角形的实际应用,即将实际问题“数学化”,构建直角三角形来解决问题。