多次相遇问题(解析版)

合集下载

专题04《多次相遇问题》(解析)

专题04《多次相遇问题》(解析)

2022-2023学年专题卷小升初数学行程问题精选真题汇编强化训练(提高)专题04多次相遇问题考试时间:100分钟;试卷满分:100分一.选择题(共5小题,满分5分,每小题1分)1.(1分)爸爸和儿子去2km外的公园,爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程.儿子立刻返回,遇到爸爸后又骑向公园,到公园又返回…直到爸爸到达公园.儿子从出发开始一共骑了()A.2km B.4km C.6km【思路点拨】爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程,即相同时间内,爸爸走的路程是儿子的一半,所以爸爸速度是儿子的,当爸爸到达公园时行了2千米,此时儿子一直在运动,根据分数除法的意义,爸爸到达公园时,儿子行了2÷=4千米.【规范解答】解:2÷=4(千米)答:儿子一共骑了4千米.故选:B。

【考点评析】首先根据已知条件求出爸爸速度是儿子的几分之几是完成本题的关键.2.(1分)甲乙两人分别从桥的两端同时出发,往返于桥的两端之间。

甲的速度是70米/分,乙的速度是80米/分,过6分钟两人第二次相遇。

这座桥长()A.150米B.300米C.450米【思路点拨】两人第二次相遇时,两人走的路程和是桥长的3倍。

先利用速度和×相遇时间=路程,可以计算出两人所行的路程和,再用两人所行的路程和除以3,可以计算出这座桥长多少米。

【规范解答】解:(70+80)×6÷3=900÷3=300(米)答:这座桥长300米。

故选:B。

【考点评析】本题是一道有关简单的相遇问题、简单的行程问题的题目。

3.(1分)依依和萍萍沿着400米的环形跑道跑步.她们从同一地点出发,向相反方向跑动,依依的速度是140米/分,萍萍的速度是110米/分.()分钟后她们第二次相遇.A.1.25B.2.5C.3.2D.6.5【思路点拨】根据题意,在环形跑道上相遇两次,即两人所行的路程和是两周,表示为400×2=800米,依依的速度是140米/分,萍萍的速度是110米/分,速度和=140+110=250米/分,则第二次相遇的时间=路程和÷速度和,据此解答.【规范解答】解:根据题意得400×2÷(140+110)=800÷250=3.2(分钟)答:3.2分钟后他们第二次相遇.故选:C。

小学奥数——多次相遇问题专项练习一【含解析】

小学奥数——多次相遇问题专项练习一【含解析】

小学奥数——多次相遇问题专项练习一【含解析】1.甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒跑2米.如果他们同时从他们两端出发,跑了10分钟.那么,在这段时间内,甲、乙两人共迎面相遇了多少次?1.解:10分钟=600秒;两人第一次相遇用时:90÷(2+3)=90÷5,=18(秒);第一次相遇后又相遇:(600﹣18)÷[90×2÷(2+3)]=582÷[180÷5],=582÷36,=16(次)…6秒.共相遇:16+1=17(次).答:甲、乙两人共迎面相遇了17次2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?2.解:设东西两镇间的路程有x米,由题意列方程得=2,=2,x=2,x=2×285×9,x=5130;答:东西两镇间的路程有5130千米3.兄、弟两人往返于A、B两市之间,兄和弟的速度比为4:3,两人同时由A市出发30分钟后,弟以原速的2倍开始跑,兄正好由B 市返回.这两人由A地出发后,经过多少分钟又相遇?3.解:设兄的速度为4,弟的速度为3.(30×4﹣30×3)÷(3×2+4)+30=(120﹣90)÷(6+4)+30,=30÷3+30,=3+30,=33(分钟).答:两人由A地出发后,经过33分钟又相遇4.甲从A地往B地,乙、丙两人从B地往A地,三人同时出发,甲首先在途中与乙相遇,之后15分钟又与丙相遇,甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,问:A、B两地相距多少米?4.解:(70+50)×15÷(60﹣50)×(70+60)=1800÷10×130,=23400(米).答:A、B两地相距23400米5.两地相距1800米,甲乙两人同时从两地相向而行,12分钟相遇(甲速>乙速),如果每人每分钟多走25米,此次相遇地点与上次相遇点相距33米,甲乙两人的速度各是多少?5.解:甲、乙增速后相遇时间为:1800÷(1800÷12+25×2),=1800÷200,=9(分钟);设甲速度为每分钟x米,据题得:12x﹣9(x+25)=33,12x﹣9x﹣225=33,3x﹣225+225=33+2253x=258;x=86,则乙的速度为:1800÷12﹣86=64(米);答:甲的速度是每分钟86米,乙的速度是每分钟64米6.甲、乙两地相距120千米,客车和货车同时从甲地出发驶向乙地,客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇.之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇.已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?6.解:120÷3=40(千米),(120+40)÷2,=160÷2,=80(千米);答:客车的速度是每小时80千米7.甲、乙两人分别从A、B两地相向而行,相遇时离A地350米,两人又继续前进,到达B、A两地后立即返回,第二次相遇离A地150米,求AB两地距离是多少米?7.解:根据题意可得:甲从开始到第二次相遇走的路程是:350×3=1050(米);AB两地飞距离:(1050+150)÷2=600(米).答:AB两地距离是600米8.甲、乙两人同时从A地出发,在直道A、B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A、B两地相距多少米?8.解:80÷2=40(米),40×5=200(米);答:A、B两地相距200米9.甲、乙两车从A、B两地相向而行,将在距A地270千米的C地相遇,如果乙车速度提高20%,则两车在距C地30千米的D地相遇.实际甲车在行驶一段后因事返回,两车仍在D点相遇,问AB两地全程是多少?9.解:270:(270﹣30)=9:8,9﹣8=1,1÷20%=5,8﹣5=3,270÷(),=270,=720(千米);答:A、B两地全程的距离是720千米10.甲、乙两人沿铁路边相对而行,速度一样.一列火车开来,整个列车从甲身边驶过用8秒钟.再过5分钟后又用7钞钟从乙身边驶过.问还要经过多少时间,甲、乙两人才相遇?10.(1)解法一:设车速为每秒x米,人速为每秒y米,车长a米,则有:a=8(x﹣y)=7(x+y),故x=15y.火车5分钟(300秒)的路程为300x,故甲乙相遇时间为:300x÷(y+y)=300×15y÷2y=2250(秒).(2)解法二:设火车速度为a,人的速度为b.。

六年级上册数学讲义-小升初培优:第03讲 复杂行程问题(三)多次相遇问题(解析版)全国通用

六年级上册数学讲义-小升初培优:第03讲 复杂行程问题(三)多次相遇问题(解析版)全国通用

第三讲复杂行程问题(三)多次相遇问题1、掌握涉及基本数量关系的多次相遇行程问题,理解较复杂数量关系的多次相遇行程问题;2、培养学员的读题能力,理清题中相向、相背运动时的等量关系;3、通过行程中相遇问题的学习,培养学生学以致用的思想。

多次相遇与全程的关系1、两地相向出发:第 1 次相遇,共走 1 个全程;第 2 次相遇,共走 3 个全程;第 3 次相遇,共走 5 个全程;……,……;第 N 次相遇,共走 2N-1 个全程。

注意:除了第 1 次,剩下的次与次之间都是 2 个全程。

即甲第 1 次如果走了 N 米,以后每次都走 2N 米。

2、同地同向出发:第 1 次相遇,共走 2 个全程;第 2 次相遇,共走 4 个全程;第 3 次相遇,共走 6 个全程;……,……;第 N 次相遇,共走 2N 个全程。

3、多人多次相遇追及的解题关键:多次相遇追及的解题关键:几个全程。

多人相遇追及的解题关键:路程差。

甲、乙两车同时从A 、B 两地相向而行,在距A 地80千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60千米处相遇。

A 、B 两地相距多少千米?【解析】甲、乙两车同时从A 、B 两地相向而行,在距A 地80千米处相遇,即相遇时,甲行了80千米,即每共行一个全程,甲就行80千米,第二次相遇时,甲乙共行3个全程,则此时甲行了80×3=240千米,第二次在距B 地60千米处相遇,则甲乙两地相距240-60=180千米。

80×3-60=240-60=180(千米)。

解答:A 、B 两地相距180千米。

兄妹二人在周长30米的圆形水池边玩,他们从同一地点同时出发,背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,照这样计算,当他们第十次相遇时,妹妹还需走多少米才能回到出发点?【解析】本题重点在于计算第十次相遇时他们所走过的路程。

每两次相遇之间,兄妹两人一共走了一圈30米,因此第十次相遇时二人共走了:30×10=300(米),两人所用时间为:300÷(1.3+1.2)=120(秒),妹妹走了:1.2×120=144(米),由于30米一圈。

行测备考辅导:多次相遇问题

行测备考辅导:多次相遇问题

⾏测备考辅导:多次相遇问题 ⾏测中多次相遇问题还是⽐较难的,⼩编为⼤家提供⾏测备考辅导:多次相遇问题,希望⼤家能耐⼼研究例题,总结好这类题型的特点! ⾏测备考辅导:多次相遇问题 ⾏测考试中的数量关系是⼤多数考⽣头疼的部分甚⾄是放弃的专项,尤其是⾏程问题,这⼀题型的考点较多,过程复杂,难上加难的是碰到多次相遇问题。

但是相信⼤家也都知晓不管是在事业单位还是在国省考中,⾏程问题⼀定是必考题型,甚⾄在2017年的浙江省省考考试中出现4道题,可想⽽知这⼀问题的重要性啦。

但是也别害怕,⾏程问题也是有章可循的。

今天⼩编就来攻破下多次相遇这个硬⾻头。

在正式做题前,我们要知道做多次相遇问题要记牢两个结论,今天我们主要学习其中⼀个:从出发点到第N次相遇,甲⾛的路程,⼄⾛的路程,甲⼄⾛的路程和以及所⽤的时间均是第⼀次相遇的(2N-1)倍。

接下⾥我们通过题⺫来看下这个结论如何运⽤: 例1、在⼀次航海模型展⽰活动中,甲⼄两款模型在⻓100⽶的⽔池两边同时开始相向匀速航⾏,甲款模型航⾏100⽶要72秒,⼄款模型航⾏100⽶要60秒,若调头转⾝时间忽略不计,在12分钟内甲⼄两款模型相遇次数是:A.9次B.10次C.11次D.12次 ⾸先通过题⺫的阅读我们不难发现这是在考察多次相遇这个考点,可能很多⼩伙伴对于2-3次的相遇问题还能忍⼀忍、画下⾏程图什么的来算⼀算,这是这道题⼀看就是10次左右的相遇,难免会头⼤甚⾄在考场直接跳过放弃。

但是当我们知晓上⾯的那个结论,对于此类问题也就迎刃⽽解啦。

通过典型例题的讲解,不难发现即便我们没有画⾏程图,但是知道多次相遇的结论,很多问题都可以有⽅法可循,不过在解题的时候要注意:1.单位的统⼀(时间或路程单位)2.核⼼要了解第n次相遇和第⼀次相遇的关系,求出第⼀次相遇所使⽤的的时间t,甲所⾛的路程,⼄所⾛的路程,以及甲⼄所⾛的路程和。

现在,让我们带着这个结论再来⼩试⽜⼑。

例2:甲⼄两⻋同时从A、B两地相向⽽⾏,在距B地54千⽶处相遇,他们各⾃到达对⽅⻋站后⽴即返回,在距A地42千⽶处第⼆次相遇。

多次相遇问题(解析版)

多次相遇问题(解析版)

多次相遇问题(解析版)多次相遇问题 (解析版)多次相遇问题是指在一定的时间和空间条件下,两个或多个独立运动的物体在某些时刻相互相遇的问题。

这个问题在数学和物理中经常被研究和讨论,被广泛应用于交通流、传感器网络等领域。

本文将对多次相遇问题进行解析,并探讨相应的应用。

一、多次相遇问题的基础理论多次相遇问题可以通过数学建模来解决。

首先,需要确定每个物体的初始位置、速度和运动规律。

然后,通过解方程组或求解微分方程,来确定物体在给定时间段内的位置和速度。

最后,根据求解得到的结果,分析得出是否存在相遇的情况。

在具体的问题中,我们可以遇到不同类型的多次相遇问题。

例如,已知两个运动物体的初速度和相对速度,求它们相遇的时间和位置;或者已知多个物体的初始位置和初始速度,求它们在何时相互相遇。

针对不同的问题类型,我们可以选择不同的数学方法和技巧来解决。

这些方法包括线性方程组的求解、微分方程的求解、向量运算等。

二、多次相遇问题的解析方法解决多次相遇问题的方法主要分为数学建模和计算机模拟两种。

数学建模主要是通过建立数学方程或微分方程来描述物体的运动轨迹,然后通过解方程或求解微分方程来分析相遇情况。

这种方法的优点是解析性强,能够得到精确的结果。

但是,对于复杂的问题,数学建模可能会非常困难甚至不可行。

相比之下,计算机模拟方法则更加灵活和实用。

通过使用计算机程序,可以模拟物体的运动轨迹,并通过分析模拟结果来判断相遇情况。

计算机模拟方法的优点是适用范围广,可以模拟各种复杂的运动情况。

然而,计算机模拟方法也存在一定的局限性,例如计算量大、模型参数选择等问题。

三、多次相遇问题的实际应用多次相遇问题在实际应用中具有广泛的应用价值。

其中一个典型的应用领域是交通流的模拟和优化。

通过对车流或行人流的多次相遇进行建模和分析,可以得到交通流的密度、流量、速度等指标,进而帮助交通管理部门设计更优的交通方案,提高路网的运行效率。

另一个应用领域是传感器网络的部署和调度。

小升初数学复习行程问题—专题04《多次相遇问题》(解析版)

小升初数学复习行程问题—专题04《多次相遇问题》(解析版)

行程问题—专题04《多次相遇问题》一.选择题1.(2012•中山校级模拟)一条环形跑道的长是40米,小东和小明在跑道上同一点沿相反方向同时出发,小东每秒跑6米,小明每秒跑4米,那么,除第一次出发以外,两人在中途相遇了()次后又相遇在原出发点.A.2 B.3 C.4 D.5【分析】根据题意,两人又相遇在原出发点,说明小东比小明多跑了一圈,即40米;由题意求出他们每次的需要时间,即40(64)4⨯-=米,用多跑的一圈÷+=秒,那么每次相遇时,小东比小明多跑了4(64)8除以多跑的距离,就是他们一共相遇了4085÷=次再原点相遇,然后再减去原点相遇的一次就是要求的答案.【解答】解:他们每次的相遇时间是:40(64)4÷+=(秒);每次相遇时,小东比小明多跑了4(64)8⨯-=(米);又相遇在原出发点时的相遇次数是:4085÷=(次);中途相遇的次数是:514-=(次).答:人在中途相遇了4次后又相遇在原出发点故选:C.二.填空题2.(2017•兴义市)甲、乙两人同时从相距40千米的两地出发,相向而行.甲每小时走4.5千米,乙每小时走3.5千米.与甲同时、同地、同向出发的一只狗,每小时跑5千米,狗碰到乙之后就回头向甲跑去,碰到甲以后又向乙跑去⋯⋯.这只狗就这样往返于甲乙两人之间直到二人相遇为止.由甲乙相遇时这只狗共跑了25千米.【分析】根据题意,在甲乙从出发到相遇的过程中,小狗一直在以每小时5千米的速度跑,所以,小狗和二人所用时间一样.求甲乙相遇时这只狗共跑了多远,只需求出二人相遇所用时间,再用时间乘小狗的速度即可.【解答】解:甲乙相遇时所用的时间:÷+40(4.5 3.5)=÷4085=(小时)⨯=(千米)狗共跑的路程为:5525答:甲乙相遇时这只狗共跑了25千米.故答案为:25.3.甲和乙两人同时从一条路的两端出发,相对而行(甲从A地出发,乙从B地出发).两人第一次在距A地60千米处相遇,相遇后继续以原速行走,分别到达对方出发地后立即原路返回,第二次在距B地55千米相遇.两次相遇点之间的距离是125千米.【分析】根据“在距A地60千米处相遇”可知,第一次相遇时甲车走了60千米,而到这次相遇时,两车共走了1个全程,由于甲、乙两车速度不变,所以在每个全程中甲车都走了60千米.根据第二次相遇,可知两车一共走了3个全程.就可以推出甲车一共走了3个60千米.再根据此时距B地55千米处相遇⨯-=(千米)就是1个全程,也就是A、B两地间可知:甲车走了1个全程加55千米,那么36055125的路程.⨯-【解答】解:36055=-8055=(千米)125答:A、B两地间的路程是125千米.故答案为:125.4.甲乙丙三人在圆形的跑道上跑步,甲跑完一周要用时3分,乙跑完一周要用时4分,丙跑完一周要用时6分.如果他们同时从同一地点同向起跑,那么他们第二次相遇要经过24分钟.【分析】根据题意,他们第二次同时在同一地点会合需要的时间是3、4、和6的公倍数,据此解答即可.=⨯【解答】解:422623=⨯⨯⨯=3、4、和6的最小公倍数是:2231212224⨯=(分钟)答:他们第二次相遇要经过24分钟.故答案为:24.5.平静的景观湖两岸有A、B两个码头.甲乙两只游船船从A、B两地同时相向出发.在距A地700米处第一次相遇,随后两船继续航行,到达对岸后立即返航,在返航途中,两船距乙地400米处,第二次相遇,则AB两地距离1700米.【分析】根据题意画图如下:在第一次相遇中甲行了700米,也就是说两船共行一个两地距离,那么甲就行了700米,甲、乙两船两次相遇,共行了3个两地距离,则甲就行了70032100⨯=米,正好是一个两地距离再加400米,所以A、B两地相距:21004001700-=(米).【解答】解:7003400⨯-2100400=-1700=(米)答:A、B两地相距1700米.故答案为:1700.6.(2019•深圳)甲乙两人在A、B两地之间往返跑步,甲从A地出发,乙从B地出发,同时出发,相向而行,甲和乙的速度比为5:3,他们第一次相遇和第二次相遇的地点相距50m,则A、B两地相距100m.【分析】根据甲和乙的速度比为5:3;第一次相遇时,知道两人一共行了AB两地的距离,其中甲行了全程的553+,相遇地点离A地的距离为AB两地距离的553+;第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的5353⨯+,相遇地点离A地的距离为AB两地距离的5(23)53-⨯+,再根据两人两次相遇地点之间相距50米,可以求出两地的距离.【解答】解:55 50(23)5353÷-⨯-++1502=÷100=(米)答:A、B两地相距100米.故答案为:100.7.(2019春•济南月考)如图,甲、乙两动点分别从正方形ABCD的顶点A、C点同时沿正方形的边开始移动,甲点顺时针方向环行,乙点逆时针方向环行.若乙的速度是甲的速度的4倍,则它们第2014次相遇在边BC上.【分析】乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周长的1125⨯;从第2次相遇起,每次甲走了正方形周长的15,从第2次相遇起,5次一个循环,据此求出2014次相遇的位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周长的1125⨯;从第2次相遇起,每次甲走了正方形周长的15,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC ,点C ,CB ,BA ,AD ;依次循环. 故它们第2014次相遇位置与第四次相同,在边BC 上. 故答案为:BC .8.(2019•广州模拟)甲、乙两车分别从A 、B 两地同时出发,相向而行.甲车每小时行45千米,乙车每小时行36千米.相遇以后继续以原来的速度前进,各自到达目的地后又立即返回,这样不断地往返行驶.已知途中第二次相遇地点与第三次相遇地点相距60千米.则A 、B 两地相距 135 千米. 【分析】将AB 两地的距离当做单位“1”,由甲乙两车的速度可以推知:在相同时间内甲乙两车所行路程的比为45:365:4=,从而可知,甲乙所行路程分别占它们共行路程的55459=+、49.由此可知:(如图)第二次两车相遇于C 点,此时两车共行三个全程,则甲行了共行路程的523193⨯=,乙行了共行路程的413193⨯=,此时AC 为全程的13;第三次相遇时相遇于D 点,两车共行了5个全程,甲行了全程的575299⨯=,乙行了全程的425299⨯=,则BD 为全程的29,所以CD 就为全程的1241399--=,已知途中第二次相遇地点与第三次相遇地点相距60千米即60CD =千米,所以全程为4601359÷=千米.【解答】解:45:365:4=,即在相同时间内甲乙所行路程分别占它们共行路程的55459=+、54199-=.如图:第二次两车相遇于C 点,甲行了共行路程的523193⨯=,乙行了共行路程的413193⨯=,此时AC 为全程的13;第三次相遇时相遇于D点,甲行了全程的575299⨯=,乙行了全程的425299⨯=,则BD为全程的29;所以CD就为全程的1241399--=,所以全程为4601359÷=(千米).答:AB两地相距135千米.故答案为:135.9.(2017•长沙)甲、乙两人同时从A、B两地相向而行,第一次在离A地40千米处相遇,之后两人仍以原速度前进,各自到达目的地后,立即返回,又在离A地20千米处相遇,则AB两地距离为70千米.【分析】当两人第二次相遇时,两人一共行驶了3个两地间的距离,第一次相遇时甲应该行了40千米,即甲共行了403120⨯=千米,然后再加上20千米,就是2个两地间的距离,再除以2就是AB两地距离.【解答】解:(40320)2⨯+÷1402=÷70=(米)答:AB两地相距70米.故答案为:70.10.(2015春•无锡期末)平平和涛涛分别从一座桥的两端同时出发,往返于桥的两端之间.平平行走的速度是70米/分,涛涛行走的速度是74米/分,经过3分钟两人第一次相遇,这座桥全长432米.当两人第二次相遇时,两人一共行走了1296米.【分析】(1)运用加法求出两人的速度和,再根据“路程=速度和⨯相遇时间”,求出两人的路程和,即为这座桥长度;(2)当两人第二次相遇时两人一共行走了三个桥长,据此解答即可.【解答】解:(1)(7074)3+⨯1443=⨯432=(米),答:这座桥全长432米.(2)43231296⨯=(米),答:当两人第二次相遇时,两人一共行走了1296米.故答案为:432,1296.11.(2013•北京模拟)甲,乙两车同时从A、B两地相对开出,两车第一次在距A地32千米处相遇,相遇后两车继续行驶,各自到达B、A两地后,立即沿原路返回,第二次在距A地64千米处相遇,则A、B 两地间的距离是80千米.【分析】据题意可知,第一次相遇时甲车行了32千米,第二次相遇时两车共行了3个全程,由于每行一个⨯=(千米),又因为此时距A地64千米,全程甲车就行了32千米,所以第二次相遇时甲车共行了32396由此可以求得A、B两地间的距离.⨯+÷【解答】解:(32364)2=÷,1602=(千米);80答:A、B两地间的距离是80千米.故答案为:80.三.应用题12.甲、乙两车同时从A、B两城相向而行,在距离A城32千米处相遇,都到达对方城市后立即以原来速度原路返回,又在距离B城44千米处相遇.那么两城相距多少千米?【分析】第一次相遇时,从A城出发的甲行驶了32千米,到第二次相遇时,两人一共行驶了3个两城间的距离,那么从A城出发的甲就应该行驶了32396⨯=千米,此时甲行驶了两城路程多44千米,就行驶-=千米的距离,也就是两城间的距离,依据除法意义即可解答.964452【解答】解:32344⨯-=-9644=(千米)52答:原来两城相距52千米13.一条马路长400m,小明和他的小狗分别以均匀的速度同时从马路的起点出发.当小明走到这条马路一半的时候,小狗已经到达马路的终点.然后小狗返回与小明相向而行,遇到小明以后再跑向终点,到达终点以后再与小明相向而行⋯⋯直到小明到达终点.小狗从出发开始,一共跑了多少米?【分析】根据题意知:当小明走到这条马路一半的时候,小狗已经到达马路的终点,所以小狗的速度是小明速度的2倍.因为在此过程中,小明和小狗都在以各自的速度行走,所以相同的时间,路程与速度成正比例关系.所以小狗行的路程应是小明的2倍. 【解答】解:4002800⨯=(米) 答:小狗共跑了800米.14.甲、乙两车分别同时从A 、B 两地相对开出.第一次在离A 地95千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25千米处相遇.求A 、B 两地间的距离是多少千米?【分析】第一次相遇时,两车共行了A 、B 两城的距离,其中A 城出发的甲行了95千米;即每行一个A 、B 两城的距离,A 城出发的甲车就行95千米,第二次相遇时,两车共行了A 、B 两城距离的3倍,则A 城出发的甲车行了953285⨯=千米;所以,A 、B 两城相距28525260-=千米. 【解答】解:95325⨯- 28525=- 260=(千米).答:A 、B 两地间的距离是260千米.15.A 、B 两地相距236千米.两辆汽车同时从两地出发,相向而行.分别到达A 、B 两地后又立即返回,经过6小时后两辆汽车第二次在途中相遇.已知甲每小时行56千米.乙车每小时行多少千米? 【分析】由于它们相向而行,各自达到目的地后又立即返回,他们应是在乙车返回A 地后又在去B 地的路上和返回A 地的甲车相遇,所以相遇时他们行了3个全程,即2363708⨯=(千米),已知行驶时间为6小时,用总路程除以6小时,求出两车的速度和,再减去甲车的速度,即可求出乙车每小时行多少千米. 【解答】解:23636⨯÷ 7086=÷ 118=(千米) 1185662-=(千米)答:乙车每小时行62千米.16.(2019•郑州)有甲乙两车从A、B两地相向而行,甲乙的速度比是7:9,两车相遇后又继续前进,甲到达B地,乙到达A地后又返回,甲车在离B地80千米的地方与乙车相遇,求A、B两地的距离.【分析】甲乙的速度比是7:9,那么相遇时甲乙行驶的路程比也是7:9;所以当第二次相遇时,两车共行了3个A、B两地间的距离;此时甲车行了A、B两地距离的7379⨯+;那么80千米就相当于A、B两地距离的7(31)79⨯-+,然后根据分数除法的意义即可求出A、B两地的距离.【解答】解:780(31)79÷⨯-+58016=÷256=(千米)答:A、B两地的距离是256千米.17.(2019春•北京月考)A、B两地之间有条公路,小王步行从A地去B地,小张骑摩托车从B地出发不停地往返于A,B两地之间.若他们同时出发,前后速度保持不变,60分钟后两人第一次相遇,70分钟后小张第一次超过小王.当小王到达B地时,小张和小王迎面相遇过几次?【分析】我们通过“走相同的路程”所用的时间比表示出小张和小王的速度的比,小张和小王所需时间比:(6070):(7060)130:1013:1+-==所以,小张和小王的速度比为(7060):(6070)10:1301:13-+==,即,小王走一个全程,小张走13个全程;小王行完一个全程,小张行13个全程,第一次是相遇,第二次是追上,所以,共相遇7次,追上6次;据此解答即可.【解答】解:由题意可知:走相同的路程,小张和小王所需时间比:(6070):(7060)130:1013:1+-==所以,小张和小王的速度比为(7060):(6070)10:1301:13-+==即,小王走一个全程,小张走13个全程.小王行完一个全程,小张行13个全程,第一次是相遇,第二次是追上⋯,所以,共相遇7次,追上6次.答:小张和小王迎面相遇过7次.18.(2019春•浦东新区月考)两辆汽车同时从A,B两地相向而行,第一次相遇在距A地180千米的地方,相遇后继续前进,各自到达B,A两地后按原路返回,第二次相遇在距A地260千米的地方,A,B两地相距多少千米?【分析】根据题意,第一次相遇,他们共行一个全程,甲行180千米;第二次相遇,他们共行3个全程,⨯米.这时离A地还有260千米.就是说它再加上260千米就是2个全程.所以,全程长:甲应行1803⨯+÷=(千米).(1803260)2400⨯+÷【解答】解:(1803260)2(540260)2=+÷=÷8002400=(千米)答:A,B两地相距400千米.19.(2018春•简阳市期中)小强和小华两家相距1400米,小强带着一只小狗和小华同时从家中出发,相向而行.小狗一共跑了多少米?÷+=【分析】根据题意,狗跑的时间就是两人相遇的时间,因此先求出两人相遇的时间,即1400(6080)10⨯=(米).解决问题.(分钟),那么小狗一共跑了120101200⨯÷+【解答】解:120[1400(6080)]=⨯÷120[1400140]=⨯12010=(米)1200答:小狗一共跑了1200米.20.(2018•长沙)乙两辆汽车分别从A、B两地同时相对开出,甲、乙两车速度的比是9:7.第一次相遇后车继续向前行驶,甲车到达B地、乙车到达A地后立即掉头向回行驶,两车第二次相遇点和第一次相遇点之间相距32千米,求A、B两地之间的距离.【分析】我们知道像题目中的行程问题,甲乙第一次相遇时,两车共行了一个全程(A、B间的距离),以后每次相遇都要行两个全程.所以,我们根据甲、乙两车的速度比9:7,结合行程问题可以把甲、乙两车第一次相遇时,甲走了9份路程,乙走了7份路程,共行7916+=份的路程;第二次相遇时,甲走了9218⨯=份路程,即在返回的路上走了18711-=份路程,1174-=份的路程就是两次相遇点之间的距离,至此即可求出全程的千米数.【解答】解:92711⨯-=(份) 32(117)(79)÷-⨯+ 32416=÷⨯ 816=⨯ 128=(千米)答:A 、B 两地之间的距离为128千米.21.(2017•长沙)甲、乙、丙三人,甲每分钟走20米,乙每分钟走22米,丙每分钟走25米,甲、乙从东镇,丙从西镇,同时相对出发,丙遇到乙后,十分钟再遇到甲,求两镇的距离是多少米?【分析】丙遇到乙后再过10分钟又遇到甲,则从丙遇到乙后,再和甲相遇的这10分钟里,甲丙共行了(2025)10450+⨯=米,即乙丙相遇时,乙比甲多行了450米,甲、乙两人的速度差为22202-=米/分钟,则乙丙相遇时,甲、乙共行的时间4502225÷=分钟,所以东、西两镇的距离为:(2225)225+⨯千米. 【解答】解:(2025)10(2220)(2225)+⨯÷-⨯+ 450247=÷⨯ 22547=⨯ 10575=(米)答:两镇相距10575米.22.A ,B 两地相距540千米.甲、乙两车往返行驶于A ,B 两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地.那么到两车第三次相遇为止,乙车共走了多少千米?【分析】根据题意,甲乙两车每次相遇都共行了2个A 、B 之间的全程,画图如下:(黄色路线是甲走的,红色路线是乙走的);由图可知:第一次相遇时甲走了AP ,乙走了2AP BP +;第二次相遇时,甲走了2BP ,即2AP BP =;这样即可求出2AP BP +与AP 的数量关系,那么就可以每次相遇两车行驶的路程比,继而可以求出每次相遇乙车行驶的路程,然后再进一步解答.【解答】解:根据题意可画出下图(黄色路线是甲走的,红色路线是乙走的)由图可知:第一次相遇,甲走了AP 的路程;第二次相遇甲走了PB BP +,则2AP BP =,那么3AB BP =;第一次相遇:甲车路程:乙车路程:()2:41:2AP AB BP BP BP =+==;第一次相遇乙车行驶了:540(12)2360÷+⨯=(千米);每次相遇,乙车都行驶了360千米;所以,第三次相遇乙车共行了3个360千米,即36031080⨯=(千米).答:到两车第三次相遇为止,乙车共走了1080千米.23.(2019•石家庄)在300米环形跑道甲乙并头起跑,甲的平均速度是每秒5米,乙的平均速度是每秒4.4米,按平均速度计算,两人第二次相遇在起跑线前面多少米?【分析】甲每秒跑5米,乙每秒跑4.4米,则甲每秒比乙多跑5 4.40.6-=米,又甲、乙二人同时同地同向跑步,所以两人起跑后的第二次相遇时,甲正好比乙多跑2周即3002600⨯=米,所以两人相遇所用时间是600(5 4.4)÷-秒,此时乙跑了600(5 4.4) 4.4÷-⨯米,除以环形跑道的长度,余数即可得两人起跑后的第二次相遇点在起跑线前多少米.【解答】解:3002(5 4.4) 4.4⨯÷-⨯6000.6 4.4=÷⨯4400=(米)440030014÷=(圈)200⋯(米)答:两人第二次相遇在起跑线前面200米.24.(2019•长沙)甲、乙两地是电车发车站,每隔一定时间两地同时发出一辆车,每辆电车都是每隔4分钟遇到迎面开来的一辆电车,小张和小王分别骑车从甲、乙两地同时出发,相向而行,小张每隔5分钟遇到迎面开来的一辆电车,小王每隔6分钟遇到一辆迎面开来的电车,如果电车行驶全程需要56分钟,那么小王与小张在途中相遇时,他们已经出发了多少分?【分析】把同向行驶的相邻两辆车之间的距离看作单位“1”,两辆电车每分钟一共行14,则每辆电车每分钟行11248÷=;如果电车行驶全程需要56分钟,同甲乙两地之间的距离为15678⨯=;小张和电车每分钟一共行全程的15,小王和电车每分钟一共行全程的16,那么两人的速度和是111()564+-,再用总路程7除以速度和,即可求出两人相遇时已经行了:1117()60564÷+-=(分钟);据此解答即可.【解答】解:11248÷=15678⨯=1117()564÷+-6077=÷60=(分钟)答:他们已经出发了60分钟.25.(2018•徐州)甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇,小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?【分析】两人第一次相遇,共行一个全程,用时为40分钟,第二次相遇,共行三个全程,所用时间为:403120⨯=分钟2=小时相遇时,小王行了两个个全程加减去2千米,其速度为:[6(40360)2]25⨯⨯÷-÷=(千米/小时),小王行了一个全程多2千米速度为:(62)24+÷=(千米/每小时).【解答】解:小张的速度为:[6(40360)2]2⨯⨯÷-÷[622]2=⨯-÷,5=(千米/小时);小王的速度为:(62)2+÷82=÷,4=(千米/每小时).故答案为:5,4.四.解答题26.(2014•海安县模拟)甲、乙两人同时从A 、B 两地出发相向而行,而甲速快于乙速,两人第一次相遇在距B 点240米的地方,两人分别到达B 、A 后又立即以原速返回,第二次相遇在距A 地120米的地方,求A 、B 两地相距多少米?【分析】甲和乙第一次相遇时,两个合走一个全程,第二次相遇时,两人合走三个全程,两人合走一个全程时,甲走了240米,合走三个全程时,甲应该走2403720⨯=米,又因为第二次相遇时,距B 地120米,那么减去这120米,就正好是1个全程了.据此解答.【解答】解:2403120⨯-720120=-600=(米)答:A 、B 两地相距600米.27.甲、乙两车同时从A 、B 两地出发相向而行,两车在距B 地64千米处第一次相遇,相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A 地48千米处第二次相遇,问两次相遇点相距多少千米?【分析】第二次相遇说明共行了三个总路程,根据两车在距B 地64千米处第一次相遇,可知甲乙每行一个总路程,乙就行64千米,则第二次相遇时乙就行了:643192⨯=(千米),然后减去48就是A 、B 两地间的距离;再减去64与48的和可得两次相遇点的距离.据此解答.【解答】解:643192⨯=(千米)(19248)(4864)--+144112=-32=(千米)答:两次相遇点相距32千米.28.甲乙两车分别从A 、B 两地同时相对开出,第一次在距离A 地75千米处相遇,相遇后继续前进,分别到达B 地、A 地后,又立即返回.第二次距离B 地55千米处相遇,求A 、B 两地间的距离.【分析】第一次相遇时,两车共行了AB 两城的距离,其中A 城出发的甲行了75千米;即每行一个AB 两城的距离,A 城出发的甲车就行75千米,第二次相遇时,两车共行了AB 两地距离的3倍,则A 城出发的甲车行了753225⨯=千米;所以,AB 两城相距22555-千米.【解答】解:75355⨯-22555=-170=(千米)答:A、B两地间的距离是170千米.29.甲、乙从东镇,丙从西镇同时相向出发,甲每小时行4km,乙每小时行5km,丙每小时行6km,丙遇到乙后12分钟再遇到甲,求两镇相距多少千米.=小时,当丙遇到乙后再经过12分钟遇到甲,这时丙和甲这12分钟走的路程,就是丙【分析】12分钟0.2和乙相遇时,乙比甲多走的路程,根据追及问题,可求出丙和乙相人相遇时用的时间,再用丙和乙两人的速度和,乘时间进行解答.=小时【解答】解:12分钟0.2+⨯(46)0.2=⨯100.2=(千米)22(54)÷-=÷21=(小时)2(56)2+⨯=⨯112=(千米)22答:两镇相距22千米.30.甲乙两人在400米环形跑道上跑步,甲每分钟300米,乙每分钟200米,如果两人在同一起点同时反向出发,(1)几分钟后,两人第一次相遇?(2)几分钟后,两人第一次相遇后又相距100米?【分析】(1)由于是环形跑道,两人同时反向出发第一次相遇时,两人共行了一周即400米,两人的速度+=米,根据路程除以速度和等于相遇时间,所以两人第一次相遇时共行了和为300200500÷+分钟;400(300200)+=米,根据路程除以速度和等(2)同理,两人第一次相遇后又相距100米,说明两人共行了400100500÷+分钟;据此解答即可.于时间,所以共同行驶的时间是500(300200)【解答】解:(1)400(300200)÷+400500=÷0.8=(分钟)答:0.8分钟后,两人第一次相遇.(2)(400100)(300200)+÷+500500=÷1=(分钟)答:1分钟后,两人第一次相遇后又相距100米.31.小平和小利同时从A .B 两地相向而行,经过30分钟两人在途中相遇,两人相遇后又以原来速度行进,两人分别到达对方的出发地后立即返回.小利从A 地出发到第二次与小平相遇,用了25分钟,问小利从B 地到A 地需多少分钟?【分析】平和小利同时从A .B 两地相向而行,经过30分钟两人在途中相遇,即两人每共行一个全程就用30分开钟,两人相遇后又以原来速度行进,两人分别到达对方的出发地后立即返回.小利从A 地出发到第二次与小平相遇,第二次相遇时,两人共行了三个全程,所以此时小利行了3030⨯分钟,又小利从A 地出发到第二次与小平相遇,用了25分钟,所以小利从B 地到A 地需30325⨯-分钟.【解答】解:30325⨯-9025=-,65=(分钟).答:利从B 地到A 地需65分钟.32.甲乙两人在一个长400米的环形跑道上从一点同时反向而行,甲每分钟走45米,乙每分钟走35米,多少分钟后两人第二次相遇?【分析】由于是环形跑道,两人第二次相遇时,两人共行了两周即4002⨯米,两人的速度和为4535+米,所以两人第二次相遇时共行了4002(4535)⨯÷+分钟.【解答】解:4002(4535)⨯÷+80080=÷,10=(分钟).答:10分钟后,两人第二次相遇.33.(2019•上街区)如图,A 、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发,相向行走,他们在距A 点80米处的C 点第一次相遇,接着又在距B 点60米处的D 点第二次相遇.求这个圆的周长.【分析】两人第一次相遇时,共行了半个周长,此时小张行了80米,即每共行半个圆,小张就走80米,离开C 点,第二次相遇时,两共行了3个半圆,则此时小张A 从C 点到D 点行了803240⨯=米,又B 点距D 点为60米,则A 到B 点长24060180-=米,所以周长是1802360⨯=米.【解答】解:(80360)2⨯-⨯(24060)2=-⨯1802=⨯360=(米)答:这个圆的周长是360米.34.(2017秋•海安县期末)小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,同向而行,小明每秒跑3.5米,小华每秒跑5.5米.经过多少秒,两人第三次相遇?【分析】由于两人同向而行,则第三次相遇时,小华比小明正好多跑3圈,又两人速度差是每秒5.5 3.52-=米,则用3圈的长度÷两人的速度差,依此即可求解.【解答】解:4003(5.5 3.5)⨯÷-12002=÷600=(秒). 答:经过600秒,两人第三次相遇.35.(2017•长沙)甲、乙二人分别从A 、B 两地同时相向而行,乙的速度是甲的23,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距多少千米?。

奥数题及答案:典型多次相遇追击问题解析_题型归纳

奥数题及答案:典型多次相遇追击问题解析_题型归纳

奥数题及答案:典型多次相遇追击问题解析_题型归纳
甲、乙两车分别从A、B两地同时出发,相向而行。

甲车每小时行45千米,乙车每小时行36干米。

相遇以后继续以原来的速度前进,各自到达目的地后又立即返回,这样不断地往返行驶。

已知途中第二次相遇地点与第三次相遇地点相距40千米。

A、B两地相距多远?
【分析】我们同样还是画出示意图37-2(图37-2中P、M、N分别为第一次、第二次、第三次相遇地点):
设AB两地的距离为“1”。

由甲、乙两车的速度可以推知:在相同时
通过演示我们还可以知道,第二次相遇时,甲、乙两车一共行完了3个全程(AB+BM+BA+AM);第三次相遇时,它们一共行完了5个全程(AB+BA+AN+BA+AB+BN)。

下面,我们只要找出与“40千米”相对应的分率(也就是MN占全程的几分之几)。

【解】。

小学数学四年级 两人多次的迎面相遇问题 PPT+作业+详细答案

小学数学四年级 两人多次的迎面相遇问题 PPT+作业+详细答案
解析:第一次相遇合走两个全程
第二次相遇合走四个全程
第三次相遇合走六个全程
每相邻两次相遇之间的时间间隔是一样的,每一次的相遇需要 300 × 2 ÷(4 + 2)= 100(秒),也就是每 100 秒旭旭和曼曼两人相遇一次,所以 10 分钟 也就是 600 秒内旭旭和曼曼两人可以相遇 600 ÷100 = (6次)。
解析:(1)第一次相遇合走一个全程 :1000 ÷(120 + 80)= (5小时 ) (2)第二次相遇合走三个全程 :路程为 1000×3=3000 (千米) 相遇时间为 3000 ÷(120 + 80)= 15(小时) (3)第四次相遇合走七个全程 :路程和为1000 ×7 = 7000(千米) 相遇时间7000 ÷(120 + 80)= 35(小时)
解析:甲车的路程: 50 × 3 = 150(千米) AB 两站之间的距离:150 − 30 = 120(千米)
例题3
甲乙两车同时从A地出发,在相距100千米的A、B两地之间不断地往返 行驶,甲车的速度是每小时60千米,乙车的速度是每小时40千米。请问: 12小时内(包括12小时)甲乙两车能相遇多少次?
解析:同地同时出发: 第 1 次相遇,共走 2 个全程;
第 2 次相遇,共走 4 个全程;
第 3 次相遇,共走 6 个全程;
例题1
旭旭和曼曼两人分别从一段长为 60 米的马路两端同时相向出发,在这段马路上做 往返运动,旭旭的速度是 3 米/ 秒,曼曼的速度是 2 米/ 秒。请问: (1)从两人出发开始算起,经过多长时间两人第一次迎面相遇? (2)从两人出发开始算起,经过多长时间两人第二次迎面相遇? (3)从两人出发开始算起,经过多长时间两人第五次迎面相遇?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多次相遇问题(解析版)一、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差【例 1】 小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?【解析】 第一次相遇时,两人共跑完了一个全程,所用时间为:1006410÷+=()(秒).此后,两人每相遇一次,就要合跑2倍的跑道长,也就是每20秒相遇一次,除去第一次的10秒,两人共跑了126010710⨯-=(秒).求出710秒内两人相遇的次数再加上第一次相遇,就是相遇的总次数.列式计算为:1006410÷+=()(秒),1260101023510⨯-÷⨯=()(),共相遇35136+=(次)。

注:解决问题的关键是弄清他们首次相遇以及以后每次相遇两人合跑的路程长.【例 2】 A 、B 两地间有条公路,甲从A 地出发,步行到B 地,乙骑摩托车从B 地出发,不停地往返于A 、B 两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B 地时,乙追上甲几次?【解析】第一次追上第一次相遇乙甲F E B由上图容易看出:在第一次相遇与第一次追上之间,乙在1008020-=(分钟)内所走的路程恰等于线段FA 的长度再加上线段AE 的长度,即等于甲在(80100+)分钟内所走的路程,因此,乙的速度是甲的9倍(18020=÷),则BF 的长为AF 的9倍,所以,甲从A 到B ,共需走80(19)800⨯+=(分钟)乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB 全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB 全程,因此,追及时间也变为200分钟(1002=⨯),知识精讲所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.【例 3】(难度等级3)甲、乙两人分别从A、B两地同时出发相向而行,乙的速度是甲的23,二人相遇后继续行进,甲到B地、乙到A地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,A、B两地相距千米.【解析】由于甲、乙的速度比是2:3,所以在相同的时间内,两人所走的路程之比也是2:3.第一次相遇时,两人共走了一个AB的长,所以可以把AB的长看作5份,甲、乙分别走了2份和3份;第二次相遇时,甲、乙共走了三个AB,乙走了236⨯=份;第三次相遇时,甲、乙共走了五个AB,乙走了2510⨯=份.乙第二次和第三次相距10-6=4(份)所以一份距离为:100÷4=25(千米),那么A、B两地距离为:5×25=125(千米)【巩固】(难度等级※※※)小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为千米.【解析】由于两人同时出发相向而行,所以第一次相遇一定是迎面相遇;由于本题中追上也算相遇,所以两人第二次相遇可能为迎面相遇,也可能为同向追及.①如果第二次相遇为迎面相遇,如下图所示,两人第一次在A处相遇,第二次在B处相遇.由于第一次相遇时两人合走1个全程,小王走了3千米;从第一次相遇到第二次相遇,两人合走2个全程,所以这期间小王走了326⨯=千米,由于A、B之间的距离也是3千米,所以B与乙地的距离为(63)2 1.5-÷=千米,甲、乙两地的距离为6 1.57.5+=千米;李王乙甲甲王李乙②如果第二次相遇为同向追及,如上图,两人第一次在A处相遇,相遇后小王继续向前走,小李走到甲地后返回,在B处追上小王.在这个过程中,小王走了633-=千米,小李走了639+=千米,两人的速度比为3:91:3=.所以第一次相遇时小李也走了9千米,甲、乙两地的距离为9312+=千米.所以甲、乙两地的距离为7.5千米或12千米.【巩固】(难度级别3)A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P 地。

那么到两车第三次相遇为止,乙车共走了多少千米?【解析】第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

【例 4】(难度级别※※※)小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?【解析】画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.二、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 5】(难度级别※※※)每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【巩固】(难度级别3)一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?【解析】先让学生用分析间隔的方式来解答:骑车人一共看到12辆车,他出发时看到的是15分钟前发的车,此时第4辆车正从甲发出.骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是5840⨯=(分钟).再引导学生用柳卡的运行图的方式来分析:第一步:在平面上画两条平行线分别表示甲站与乙站.由于每隔5分钟有一辆电车从甲站出发,所以把表示甲站与乙站的直线等距离划分,每一小段表示5分钟.第二步:因为电车走完全程要15分钟,所以连接图中的1号点与P点(注意:这两点在水平方向上正好有3个间隔,这表示从甲站到乙站的电车走完全程要15分钟),然后再分别过等分点作一簇与它平行的平行线表示从甲站开往乙站的电车.第三步:从图中可以看出,要想使乙站出发的骑车人在途中遇到十辆迎面开来的电车,那么从P 点引出的粗线必须和10条平行线相交,这正好是图中从2号点至12号点引出的平行线.从图中可以看出,骑车人正好经历了从P点到Q点这段时间,因此自行车从乙站到甲站用了⨯=(分钟).5840对比前一种解法可以看出,采用运行图来分析要直观得多!【例 6】(难度级别3)甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 7】 (难度等级 3) (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.NM如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.【例 8】 (难度等级 3)A 、 B 两地相距1000 米,甲从 A 地、乙从 B 地同时出发,在 A 、 B 两地间往返锻炼.乙跑步每分钟行150米,甲步行每分钟行 60米.在 30分钟内,甲、乙两人第几次相遇时距 B 地最近(从后面追上也算作相遇)?最近距离是多少?一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,而第3次是追及相遇.【解析】甲、乙的运行图如上,图中实现表示甲,虚线表示乙,两条线的交点表示两人相遇.在30 分钟内,两人共行了(150 60) 30 6300=⨯+米,相当于6 个全程又300 米,由图可知,第3次相遇时距离A地最近,此时两人共走了 3 个全程,即1000 ×3 =3000千米,用时3000÷(150+60)=100/7分钟,甲行了60×100/7=6000/7米,相遇地点距离B 地1000-6000/7≈ 143米.【巩固】(难度等级3)A、 B 两地相距950 米.甲、乙两人同时由A地出发往返锻炼半小时.甲步行,每分钟走40 米;乙跑步,每分钟行150 米.则甲、乙二人第几次迎面相遇时距 B 地最近?【解析】半小时内,两人一共行走(40+150)× 30 =5700 米,相当于6 个全程,两人每合走 2 个全程就会有一次相遇,所以两人共有 3 次相遇,而两人的速度比为40 :150= 4 :15,所以相同时间内两人的行程比为4 :15,那么第一次相遇甲走了全程的48215419⨯=+,距离B 地11/19个全程;第二次相遇甲走了16/19个全程,距离B 地3/19个全程;第三次相遇甲走了24/19个全程,距离B 地5/19个全程,所以甲、乙两人第二次迎面相遇时距离B 地最近.【巩固】A、B两地相距950m,甲、乙两人同时从A地出发,往返A、B两地跑步90分钟.甲跑步的速度是每分钟40m;乙跑步的速度是每分钟150m.在这段时间内他们面对面相遇了数次,请问在第几次相遇时他们离B点的距离最近?【解析】950150405÷+=()(分钟).甲、乙两人合走一个全程需要5分钟,每合走2个全程相遇一次,所以总共相遇90(52)9÷⨯=次.而甲每10分钟走4010400⨯=(m)并且与乙相遇一次,因为9503400750⨯-⨯=(m)也就是当甲、乙两人第7次相遇时甲离B地50m为最小,在第7次相遇时他们离B点距离最近.【巩固】(难度等级3)A、 B 两地相距2400 米,甲从A地、乙从 B 地同时出发,在A、B 两地间往返锻炼.甲每分钟跑300 米,乙每分钟跑240 米,在30 分钟后停止运动.甲、乙两人第几次相遇时距A地最近?最近距离是多少?【解析】第二次,800米。

相关文档
最新文档