高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版

合集下载

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(答案解析)

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(答案解析)

一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 3.sin 3π=( )A .12B .12-C .2D . 4.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=5.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( ) A .sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 23y x π⎛⎫=+⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+⎪⎝⎭6.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R7.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦8.设1cos 3x =-,则cos2x =( )A .13B .3C .79D .79-9.设129sin 292a =-,b =22tan161tan 16c =+,则有( ) A .a b c >> B .b c a >>C .c a b >>D .c b a >>10.已知1cos 2α=,322παπ<<,则sin(2)πα-=( )A .B .12C .12-D 11.已知函数()()()cos >0,0<<f x x ωθωθπ=+的最小正周期为π,且()()0f x f x -+=,若tan 2α=,则()f α等于( )A .45-B .45C .35D .3512.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .35二、填空题13.角θ的终边经过点(1,3)P -,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 14.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.15.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.16.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .17.已知tan 2α=,则cos2=α__.18.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______. 19.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 20.已知sin θ+cos θ=15,则tan θ+cos sin θθ的值是____________________. 三、解答题21.已知函数()()30,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 22.已知函数()cos f x x =.(1)已知α,β为锐角,()5f αβ+=,4tan 3α=,求cos2α及()tan βα-的值;(2)函数()()321g x f x =+,若关于x 的不等式()()()2133g x a g x a ≥+++有解,求实数a 的最大值.23.已知函数()21()2cos 1sin 2cos 42=-+f x x x x . (1)求()f x 的最小正周期;(2)求()f x 的最大和最小值以及相应的x 的取值;(3)若,2παπ⎛⎫∈⎪⎝⎭,且()4f α=,求α的值. 24.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围.25.已知函数()sin (sin )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间. 26.已知函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤ ⎪⎝⎭的最小正周期为π. (1)求ω的值及()6g f ϕπ⎛⎫= ⎪⎝⎭的值域; (2)若3πϕ=,sin 2cos 0αα-=. 求()fα的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A.根据32()f x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断. 【详解】A. 32()f x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确;B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确; D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误. 故选:D3.C解析:C 【分析】根据特殊角对应的三角函数值,可直接得出结果. 【详解】sin32π=. 故选:C.4.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+ ⎪⎝⎭,再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A5.C解析:C 【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解析式. 【详解】 解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象; 将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .6.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B7.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x x x π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.8.D解析:D 【分析】利用二倍角的余弦公式可得解. 【详解】1cos 3x =-,2212723cos 22cos 11199x x ⎛⎫=-== ⎪⎝⎭∴=----故选:D.9.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 2912n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.10.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】解:因为1cos 2α=,322παπ<<,所以sin α==, 所以sin(2)sin παα-=-=. 故选:D .11.A解析:A 【分析】利用三角函数的周期性和奇偶性得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,进而求出()f α 【详解】 由2ππω=,得2ω=,又()()0f x f x -+=,()()()cos cos 2f x x x ωθθ=+=+为奇函数,()2k k Z πθπ∴=+∈,,又0θπ<<,得2πθ=,()cos 2sin 22f x x x π⎛⎫∴=+=- ⎪⎝⎭,又由tan 2α=,可得()2222sin cos 2tan 4sin 2sin cos tan 15f αααααααα-=-==-=-++ 故选:A 【点睛】关键点睛:解题关键在于通过三角函数性质得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,难度属于基础题12.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C二、填空题13.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】由题意sin 2θ=,1cos 2θ=,所以,1sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-14.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 15.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为:解析:8π 【分析】 先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x 的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+ ⎪⎝⎭的最小正周期为8T π=故答案为:8π16.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.17.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为:解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解. 【详解】由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 18.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.19.【分析】根据三角函数的性质求得的最大值进而可求出结果【详解】因为由可得所以则因为恒成立所以只需故答案为:解析:)+∞【分析】根据三角函数的性质,求得sin cos x x +的最大值,进而可求出结果. 【详解】因为sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,由0,2x π⎛⎫∈ ⎪⎝⎭可得3,444x πππ⎛⎫+∈ ⎪⎝⎭,所以sin 4x π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,则(sin cos 4x x x π⎛⎫+=+∈ ⎪⎝⎭,因为0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,所以只需m ≥故答案为:)+∞.20.【分析】先通过已知求出再化简tanθ+即得解【详解】由sinθ+cosθ=得tanθ+故答案为:【点睛】关键点睛:解答本题的关键是把sinθ+cosθ=两边平方得到 解析:2512-【分析】先通过已知求出12sin cos 25θθ=-,再化简tan θ+cos sin θθ即得解. 【详解】 由sin θ+cos θ=15得1121+2sin cos ,sin cos 2525θθθθ=∴=-. tan θ+cos sin θθsin cos 125cos sin sin cos 12θθθθθθ=+==-.故答案为:2512- 【点睛】关键点睛:解答本题的关键是把sin θ+cos θ=15两边平方得到12sin cos 25θθ=-. 三、解答题21.(1)2ω=,6πϕ=-;(2)max ()f x =min ()f x = 【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()2f x =-. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题. 22.(1)7cos 225α=-,()2tan 11βα-=;(2)a 的最大值为3. 【分析】(1)利用二倍角公式,求出cos2α,然后分别求出()cos αβ+,sin()αβ+,进而求出()tan αβ+,最后,利用()()tan tan 2βααβα-=+-求解即可(2)由()()[]3213cos212,4g x f x x =+=+∈-,得关于x 的不等式()()()2133g x a g x a ≥+++有解,化简得,即()()()213g x a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解即可【详解】解:(1)∵4tan 3α=,∴222222cos sin cos 2cos sin cos sin ααααααα-=-=+2222411tan 73251tan 413αα⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,∵α,β为锐角,即α,0,2πβ⎛⎫∈ ⎪⎝⎭, ∴()20,απ∈,()0,αβπ+∈.22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, ∵()cos f x x =,∴()()cos 5f αβαβ+=+=-, ∴()sin αβ+==,∴()()()sin tan 2cos αβαβαβ++==-+, ∴()()()()242tan tan 227tan tan 2241tan tan 211127αβαβααβααβα-++--=+-===+++⨯. 综上,7cos 225α=-,()2tan 11βα-=. (2)()()[]3213cos212,4g x f x x =+=+∈-, 关于x 的不等式()()()2133g x a g x a ≥+++有解,即()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,则[]1,7t ∈,()()231t a t -≥+有解,即916a t t+≤+-有解, max97a t t ⎛⎫+≤+ ⎪⎝⎭,设()9h t t t =+,则()h x 在[)1,3上单调递减,在(]3,7上单调递增,则()(){}max9max 1,710t h h t ⎛⎫+== ⎪⎝⎭, ∴3a ≤,故实数a 的最大值为3. 【点睛】关键点睛:(1)利用二倍角公式,以及正切函数的两角和差公式求解; (2)通过化简,把问题转化为()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解;主要考查学生的转化化归思想以及运算能力,属于中档题 23.(1)2π;(2)函数()f x 的最大值为2,此时+,162k x k Z ππ=∈;函数()fx 的最小值为,此时3+,162k x k Z ππ=-∈;(3)3148πα=或4748π.(1)化简函数解析式为最简形式,利用公式求出周期 (2)根据正弦的性质可求得函数最值和相应的x 的取值; (3)根据限定范围和正弦函数的取值可求得答案. 【详解】(1),因为()()212cos 1sin 2cos 42f x x x x =-+1cos 2sin 2cos 42x x x =+()sin 124cos4x x +=)4x π=+,所以()f x )4x π=+, 所以()f x 的最小正周期为242ππ=,(2)由(1)得()f x )24x π=+,所以当sin(4)14x π+=时,函数()f x 的最大值为2,此时4+2,42x k k Z πππ+=∈,即+,162k x k Z ππ=∈;当sin(4)14x π+=-时,函数()f x 的最小值为2-,此时4+2,42x k k Z πππ+=-∈,即3+,162k x k Z ππ=-∈;所以函数()f x ,此时+,162k x k Z ππ=∈;函数()f x 的最小值为,此时3+,162k x k Z ππ=-∈;(3)因为(,)2παπ∈,所以9174(,)444πππα+∈.因为()4f α=,所以())244f παα=+=,即1sin(4)42πα+=. 所以17446ππα+=或256π,故3148πα=或4748π. 24.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞.(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 2126x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z 再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭ 所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=) 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2ω=,()g ϕ的值域为1,12⎡⎤-⎢⎥⎣⎦;(2)()410f α=+. 【分析】(1)由函数()f x 的最小正周期可求得ω的值,求得()sin 3g πϕϕ⎛⎫=- ⎪⎝⎭,结合ϕ的取值范围可求得()g ϕ的值域;(2)求得tan 2α=,利用二倍角的正、余弦公式以及弦化切思想可求得()f α的值.【详解】(1)由于函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤⎪⎝⎭的最小正周期为π,则22πωπ==,()()sin 2f x x ϕ∴=-,()sin 63g f ππϕϕ⎛⎫⎛⎫∴==- ⎪ ⎪⎝⎭⎝⎭,22ππϕ-≤≤,5636πππϕ∴-≤-≤,所以,()1sin ,132g πϕϕ⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦; (2)sin 2cos 0αα-=,可得tan 2α=,3πϕ=,所以,()()21sin 2sin 22sin cos 2cos 13222f πααααααα⎛⎫=-=-=-- ⎪⎝⎭22222sin cos tan sin cos 2sin cos 2tan 12αααααααααα=-+=+=+++==【点睛】求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤:第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式.第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).。

高一数学(必修一)《第五章 正弦函数、余弦函数的性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 正弦函数、余弦函数的性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 正弦函数、余弦函数的性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()sin 0f x x ωω=>的最小正周期为2π,则ω的值为( ) A .4B .2C .1D .122.设函数()2sin()3f x x π=+,若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1﹣x 2|的最小值是( )A .4πB .2πC .πD .2π 3.下列函数中,既是偶函数又在()0,∞+上单调递增的是( )A .y =B .cos y x =C .3x y =D .ln y x =4.函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数的一个充分条件( )A .6π=ϕ B .6πϕ=-C .3πϕ=D .3πϕ=-5.已知α是第四象限角,且23sin 8cos αα=,则2021cos 2πα⎛⎫+= ⎪⎝⎭( )A .B .13-C D .136.已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是( )A . ,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈ZB . ,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈ZC . 2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z D . ,2k k πππ⎡⎤-⎢⎥⎣⎦()k ∈Z7.已知函数()()()2sin 00πf x x ωϕωϕ=+><<,的部分图象如图所示,点(0A 和π,03B ⎛⎫⎪⎝⎭,则下列说法中错误的是( )A .直线π12x =是图象的一条对称轴 B .()f x 的图象可由()2sin2g x x = 向左平移π3个单位而得到C .的最小正周期为πD .在区间ππ-,312⎛⎫⎪⎝⎭上单调递增8.已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意()(),2x R f x f x ∈=-;③当[]0,1x ∈时,则()32f x x =;若过点()1,0-的直线l 与函数()f x 的图象在[]0,4x ∈上恰有4个交点,则直线l 的斜率k 的取值范围是( ) A .60,11⎛⎫ ⎪⎝⎭B .30,5⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .30,8⎛⎫ ⎪⎝⎭9.已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x 和[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π10.将函数()sin(2)(0)f x x ϕϕπ=+<<的图象向右平移6π个单位长度得到()g x 的图象,若()g x 的图象关于直线3x π=对称,则6g π⎛⎫= ⎪⎝⎭( )A .B .12-C .0D .12二、填空题11.函数321,0,()1211,0,2xx x x f x x x ⎧+->⎪=⎨⎛⎫--+≤⎪ ⎪⎝⎭⎩,则[(2)]f f -=___________. 12.已知函数()f x 是在R 上连续的奇函数,其导函数为()f x '.当x >0时,则()()20xf x f x '+>,且()11f =,则函数()()21g x f x x =-的零点个数为______. 13.()()11sin cos cos sin 22f x x x x x =+--,下列说法错误的是______. ①()f x 的值域是[]1,1-; ②当且仅当222k x k πππ<<+(k Z ∈)时,则()0f x >;③当且仅当24x k ππ=+(k Z ∈)时,则()f x 取得最小值;④()f x 是以π为最小正周期的周期函数.14.设函数(),12,1x x a x f x x -+<⎧=⎨≥⎩的最小值为2,则实数a 的取值范围是______.15.若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是____________.三、解答题16.已知幂函数()f x x α=的图象经过点1(8,)2,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.17.比较下列各组数的大小.(1)cos870,cos890︒︒;(2)37π49πsin ,sin 63⎛⎫- ⎪⎝⎭. 18.已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =和()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.19.已知函数()21cos cos 2f x x x x =⋅-.(1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值. 20.已知函数()1sin 62f x x π⎛⎫=+- ⎪⎝⎭.(1)若函数()f x 在区间[]0,a 上是严格增函数,求实数a 的取值范围; (2)求函数()f x 在区间[]0,2π上的所有零点.21.已知函数()2x f x x =. (1)判断并证明函数()f x 的奇偶性;(2)判断函数()f x 在区间[)0,+∞上的单调性(不用证明),并解不等式()()221f x f x +>-.22.已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件②、条件③这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π; 条件②:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件③:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分. 23.已知某海滨浴场的海浪高度是时间t (h )(024t ≤≤)的函数,记作()y f t =.下表是某日各时的浪高数据.经长期观测,()y f t =的曲线可近似地看成是函数cos y A t b ω=+.(1)根据以上数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?四、双空题24.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,,且2222b c a a +=+,则A = _______,△ABC 的面积的取值范围是 _________ .参考答案与解析1.A【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】由2T πω=∴2242Tππωπ===. 故选:A. 2.C【解析】首先得出f (x 1)是最小值,f (x 2)是最大值,可得|x 1﹣x 2|的最小值为函数的半个周期,根据周期公式可得答案.【详解】函数()2sin()3f x x π=+ ∵对任意x ∈R 都有f (x 1)≤f (x )≤f (x 2) ∴f (x 1)是最小值,f (x 2)是最大值; ∴|x 1﹣x 2|的最小值为函数的半个周期 ∵T =2π∴|x 1﹣x 2|的最小值为π 故选:C. 3.D【分析】根据基本初等函数的奇偶性与单调性判断即可.【详解】解:对于A :y =[)0,∞+,函数为非奇非偶函数,故A 错误; 对于B :cos y x =为偶函数,但是函数在()0,∞+上不具有单调性,故B 错误;对于C :3x y =为非奇非偶函数,故C 错误;对于D :()ln y f x x ==定义域为{}|0x x ≠,又()()ln ln f x x x f x -=-==故ln y x =为偶函数,又当()0,x ∈+∞时ln y x =,函数在()0,∞+上单调递增,故D 正确; 故选:D 4.A【分析】根据函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数,由,Z 32k k ππϕπ+=+∈求解.【详解】解:若函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数所以,Z32k k ππϕπ+=+∈则,Z6k k πϕπ=+∈故选:A 5.C【分析】利用三角函数的基本关系式与条件可求得sin α的值,再利用诱导公式化简2021cos 2πα⎛⎫+ ⎪⎝⎭即可求得结果.【详解】因为23sin 8cos αα=,所以429sin 64cos αα=又因为22sin cos 1αα+=,所以2264sin 64cos 64αα+=,即2464sin 9sin 64αα+= 整理得429sin 64sin 640αα+-= 解得28sin 9α=或2sin 8α=- (舍去)又因为α是第四象限角,所以sin 0α<,故sin α=所以2021cos cos 101022ππααπ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭cos sin 2παα⎛⎫=+=- ⎪⎝⎭. 故选:C. 6.B【分析】根据题意可得6f π⎛⎫⎪⎝⎭为函数()f x 的最大值,进而结合()0,2πϕ∈可得π6ϕ=,从而有()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,再求解其单调递增区间即可.【详解】()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则6f π⎛⎫⎪⎝⎭为函数()f x 的最大值,即()π22πZ 62k k πϕ⨯+=+∈,则()π2πZ 6k k ϕ=+∈,又()0,2πϕ∈,所以π6ϕ=,所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭. 令()πππ22π,2πZ 622x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦,则()πππ,πZ 36x k k k ⎡⎤∈-+∈⎢⎥⎣⎦.故选:B. 7.B【分析】根据五点作图法可得,然后利用正弦函数的性质,代入逐一进行检验即可.【详解】由函数()()2sin (0,0π)f x x ωϕωϕ=+><<部分图象,点(A ,π,03B ⎛⎫ ⎪⎝⎭,故sin ϕ=,由于点A 在单调递增的区间上,π3ϕ=或2π3ϕ= (舍去),再根据五点法作图可得 ππ+=π33ω⋅,求得2ω=,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭ .对于A,令π12x =,求得()2f x =,为最大值,故直线π=12x 是()f x 图象的一条对称轴,故A 正确; 对于B,把()2sin2g x x =向左平移π3个单位,可得2π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,故B 错误;对于C,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为2π=π2,故C 正确; 对于D ,ππ-,312x ⎛⎫∈ ⎪⎝⎭和πππ2-,332x ⎛⎫+∈ ⎪⎝⎭ ,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭单调递增,故D 对.故选:B 8.D【分析】根据条件可知()f x 是周期为2的函数,作出函数图像,数形结合即可得解.【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-,又因为对于任意()(),2x R f x f x ∈=-,所以()()()2f x f x f x =-=-从而()()2f x f x =+,即()f x 是周期为2的函数 结合当[]0,1x ∈时,则()32f x x =,可作出()f x 在[]0,4的图像以及直线l 的图像,如下图所示:当3x =时,则易知()32f x =,则直线MA 的斜率()3032318MA k -==-- 过点()1,0-的直线l 与函数()f x 的图象在[]0,4上恰有4个交点,则只需直线l 斜率k 的取值范围是30,8⎛⎫⎪⎝⎭.故选:D. 9.C【分析】根据函数图象求得()12sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据图象变换可得()g x 的解析式,结合()()129g x g x =,1x ,[]20,4x π∈,求得21,x x 的值,可得答案.【详解】设()f x 的最小正周期为T ,则由图可知372433T ππ⎛⎫=-- ⎪⎝⎭,得4T π=,则212T πω==,所以()1sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭又由题图可知()f x 图象的一个对称中心为点2,03π⎛⎫-⎪⎝⎭故1223k πϕπ⎛⎫⨯-+= ⎪⎝⎭,Z k ∈故3k πϕπ=+,Z k ∈ 因为0ϕπ<<,所以3πϕ=,所以()1sin 23f x A x π⎛⎫=+ ⎪⎝⎭.又因为1323f π⎛⎫= ⎪⎝⎭故131135sin sin sin 2323322f A A A A πππππ⎛⎫⎛⎫=⨯+==== ⎪ ⎪⎝⎭⎝⎭ 所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭;将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象;因为()()129g x g x =,所以12,x x 同时令()g x 取得最大值3由()2sin 2133g x x π⎛⎫=++= ⎪⎝⎭,可得()11212k x π+=Z k ∈又[]12,0,4x x π∈,要求21x x -的最大值,故令0k =,得112x π=;令3k =,得23712x π=,所以21x x -的最大值为3731212πππ-=故选:C. 10.D【分析】由平移变换写出()g x 的表达式,由()g x 的对称性求得ϕ,然后计算函数值. 【详解】由已知()sin[2()]sin(2)63g x x x ππϕϕ=-+=-+()g x 的图象关于直线3x π=对称,则2,Z 332k k πππϕπ⨯-+=+∈,又0ϕπ<<,所以6π=ϕ 所以()sin(2)6g x x π=-,所以1()sin(2)6662g πππ=⨯-=.故选:D . 11.11【分析】根据函数解析式,先求得(2)f -再求解. 【详解】因为函数321,0,()1211,0,2xx x x f x x x ⎧+->⎪=⎨⎛⎫--+≤⎪ ⎪⎝⎭⎩所以21(2)|2(2)1|122f -⎛⎫-=⨯---+= ⎪⎝⎭ 32(2)22111f =+-=故答案为:11 12.1【分析】函数()()21g x f x x=-的零点就是方程()21x f x =的根, 设()()2h x x f x =,对()h x 求导,结合题意知()h x 为()0,∞+上的增函数,由()()111h f ==,即可得出答案.【详解】()()()22211x f x g x f x x x -=-=则函数()()21g x f x x=-的零点就是方程()21x f x =的根. 设()()2h x x f x =由题意得()()()()()22h x x f x x f x h x -=--=-=-因为()h x 的定义域为R ,所以()h x 为R 上连续的奇函数.易得()()()()()222h x xf x x f x x xf x f x '''=+=+⎡⎤⎣⎦由题知,当x >0时,则()()20xf x f x '+>,则()0h x '> 即函数()h x 为()0,∞+上的增函数又因为()h x 为R 上连续的奇函数,所以()h x 为R 上的增函数.由()11f =,得()()111h f ==,则方程()21x f x =只有一个根故函数()()21g x f x x =-只有1个零点. 故答案为:1. 13.①③④【解析】将函数解析式化简并用分段函数表示出来,画出函数图象,数形结合即可判断. 【详解】解:()()()()sin ,cos sin 11sin cos cos sin cos ,cos sin 22x x x f x x x x x x x x ⎧>⎪=+--=⎨≤⎪⎩则画出函数图象如下:观察函数图象可得:函数的值域为⎡-⎢⎣⎦,故①错误;当且仅当222k x k πππ<<+(k Z ∈)时,则()0f x >,故②正确; 当22x k ππ=-或2x k ππ=+(k Z ∈)时,则()f x 取得最小值,故③错误;函数()f x 是以2π为最小正周期的周期函数,故④错误;故错误的有:①③④故答案为:①③④【点睛】本题主要考查三角函数的性质和三角函数图象的应用,属于中档题.14.[)3,+∞【解析】分别求1≥x 和1x <时函数的值域,再根据题意比较两部分的最小值,求a 的取值范围.【详解】当1≥x 时,则()22x f x =≥,当1x <时,则()1f x a >-由题意知,12a -≥ 3a ∴≥.故答案为:[)3,+∞【点睛】本题考查根据分段函数的最值求参数的取值范围,属于基础题型.15.[]1,2【分析】根据偶函数的性质得到11x -≤≤时()0f x ≥,即可将不等式化为21331x x -≤-+≤,解得即可.【详解】解:因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤ 所以原不等式的解集为[]1,2.故答案为:[]1,216.答案见解析.【分析】根据给定条件求出α值,判断奇偶性,写出单调区间及单调性,画出()f x 的草图作答.【详解】因幂函数()f x x α=的图象经过点1(8,)2,则182α=,即3122α-=,31α=-解得13α=- 所以函数()f x 的解析式为13()f x x -=,其定义域是(,0)(0,)-∞+∞()f x =()()f x f x -===-,()f x 是奇函数函数()f x 在(0,)+∞上单调递减,在(,0)-∞上单调递减函数()f x 的大致图象如图17.(1)cos870cos890︒>︒,(2)37π49πsin sin 63⎛⎫-< ⎪⎝⎭【分析】(1)先利用诱导公式化简,然后利用余弦函数的单调性比较大小(2)先利用诱导公式化简,然后利用正弦函数的单调性比较大小.【详解】(1)cos870cos(2360150)cos150︒=⨯︒+︒=︒cos890cos(2360170)cos170︒=⨯︒+︒=︒∵余弦函数cos y x =在[]0,π上是减函数∴cos150cos170︒>︒,即cos870cos890︒>︒.(2)37πππ49πππsin()sin(6π)sin(),sin sin(16π)sin ,666333-=--=-=+= ∵正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上是增函数 ∴ππsin sin 63⎛⎫-< ⎪⎝⎭,即37π49πsin sin 63⎛⎫-< ⎪⎝⎭. 18.(1),32ππ⎡⎤⎢⎥⎣⎦(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)根据数量积的坐标表示及三角恒等变换公式将函数化简,再结合余弦函数的性质计算可得; (2)根据三角函数变换规则得到()g x 的解析式,再根据x 的取值范围求出46x π+的取值范围,再根据余弦函数的性质及图象计算可得;(1) 解:因为2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =且()f x m n =⋅所以()22sin 22sin 6f x m n x x π⎛⎫=⋅=-+- ⎪⎝⎭()122cos 21cos 22x x x ⎫=-+--⎪⎪⎝⎭1cos 221cos 2123x x x π⎛⎫=+=++ ⎪⎝⎭ 即()cos 213f x x π⎛⎫=++ ⎪⎝⎭ 令2223k x k ππππ-≤+≤ k Z ∈ 解得236k x k ππππ-≤≤- k Z ∈ 又因为0,2x π⎡⎤∈⎢⎥⎣⎦所以函数()f x 的单调增区间为:,32ππ⎡⎤⎢⎥⎣⎦(2)解:因为()cos 213f x x π⎛⎫=++ ⎪⎝⎭所以将函数()f x 的图象所有的点向右平移12π个单位得到cos 21cos 21121236f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦将所得图象上各点横坐标缩短为原来的 12(纵坐标不变)再向下平移1个单位得到()cos 46g x x π⎛⎫=+ ⎪⎝⎭ 又因为5,824x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,63t x πππ⎡⎤=+∈-⎢⎥⎣⎦ 令4036x ππ-≤+≤,解得824x ππ-≤≤- 令046x ππ≤+≤,解得52424x ππ-≤≤ 即函数()g x 在,824ππ⎡⎤--⎢⎥⎣⎦上单调递增,在5,2424ππ⎡⎤-⎢⎥⎣⎦上单调递减,且1cos 832g ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭ 作出cos 3y t t ππ⎛⎫=- ⎪⎝⎭≤≤图像可得:所以m 的取值范围1,12⎡⎫⎪⎢⎣⎭. 19.(1),36k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ) (2)最大值为1,最小值为-12.【分析】(1)由三角函数降幂公式与二倍角公式,根据辅助角公式,化简函数为单角三角函数,根据正弦函数的单调性,可得答案;(2)利用整体思想,根据正弦函数的图象性质,可得答案.(1)()f x =1cos211cos2sin 22226x x x x x π+⎛⎫-=+=+ ⎪⎝⎭. 因为y =sin x 的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ) 令22,2622x k k πππππ⎡⎤+∈-+⎢⎥⎣⎦(k ∈Z ),得,36x k k ππππ⎡⎤∈-+⎢⎥⎣⎦(k ∈Z ). 所以()f x 的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). (2)因为x ∈[0,2π],所以2x +7,666πππ⎡⎤∈⎢⎥⎣⎦. 当2x +6π=2π,即x =6π时,则()f x 最大值为1 当2x +6π=76π,即x =2π时,则()f x 最小值为-12.20.(1)0,3π⎛⎤ ⎥⎝⎦;(2)所有零点是0,23π和2π. 【分析】(1)先求得函数()f x 的在y 轴右侧的包含0的单调递增区间,进而得到实数a 的取值范围; (2)利用正弦函数的性质,利用整体代换法求得函数()f x 的所有零点,进而得到在[]0,2π上的所有零点.【详解】(1)由πππ2π2π262k x k -+++,得2ππ2π2π33k x k -++ k ∈Z 取0k =,可得2ππ33x - ∵函数()π1sin 62f x x ⎛⎫=+- ⎪⎝⎭在区间[]0,a 上是严格增函数 ∴实数a 的取值范围是π0,3⎛⎤ ⎥⎝⎦.【点睛】关键要注意求函数的零点时不要丢根.1πsin 2π+26x x k =⇔=或()5π2π+6x k k Z =∈. 21.(1)()f x 为偶函数,证明见解析 (2)()f x 在[)0,+∞上单调递增,不等式解集为1,33⎛⎫- ⎪⎝⎭【分析】(1)先判断函数定义域是否关于原点对称,然后再检查(),()f x f x -之间的关系;(2)先将函数作简单变型,分析出单调性,再根据单调性来解不等式.(1)()f x 为偶函数.证明如下:依题意,函数()f x 的定义域为R .对于任意x ∈R ,都有()()22x x f x x x f x --=-==,所以函数()f x 是R 上的偶函数.(2)函数())22x x f x x x ==-2x =[)0,+∞上单调递增.因为函数()f x 是R 上的偶函数,所以()()221f x f x +>-等价于()()221f x f x +>-.因为函数()f x 在[)0,+∞上单调递增,所以221x x +>-,即23830x x --<,解得133x -<<,所以不等式()()221f x f x +>-的解集为1,33⎛⎫- ⎪⎝⎭. 22.(1)选择①②:π()sin(2)6f x x =+,()f x 的最小值为1-;选择①③:π1()sin(2)62f x x =++, ()f x 的最小值为12-; (2)选择①②:t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭;选择①③:t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭. 【分析】(1)首先利用三角恒等变换公式以及辅助角公式化简()f x ,然后根据条件①②或①③求其解析式即可,若选择②③,m 的取值有两个,舍去;(2)根据零点即是函数图像与x 轴的交点横坐标,令()0f x =求出横坐标,即可判断t 的取值范围.(1)由题可知2()cos cos ωωω=+f x x x x m112cos222ωω+++x x m π1sin(2)62ω=+++x m . 选择①②: 因为2ππ2T ω==,所以1ω=. 又因为1(0)12f m =+=,所以12m =-. 所以π()sin(2)6f x x =+. 当ππ22π62x k +=-,k Z ∈即ππ3x k =-,k Z ∈时,则()1f x =-. 所以函数()f x 的最小值为1-.选择①③: 因为2ππ2T ω==,所以1ω=. 又因为函数()f x 的最大值为3322m +=所以0m =. 所以π1()sin(2)62f x x =++. 当ππ22π62x k +=-,k Z ∈即ππ3x k =-,k Z ∈时 πsin(2)16x +=- 所以函数()f x 的最小值为11122. 选择②③: 因为1(0)12f m =+=,所以12m =- 因为函数()f x 的最大值为3322m +=,所以0m =m 的取值不可能有两个,∴无法求出解析式,舍去. (2)选择①②:令πsin(2)06x +=则π2π6x k += k Z ∈ 所以ππ212k x =- k Z ∈ 当1,2k =时,则函数()f x 的零点为5π11π,1212 由于函数()f x 在区间[0,]t 上有且仅有1个零点所以5π11π1212t ≤<. 所以t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭. 选择①③:令π1sin(2)062++=x 则π722π+π66+=x k k Z ∈ 或π1122π+π66+=x k k Z ∈ 所以ππ+2=x k k Z ∈ 或5π+π6=x k k Z ∈.当0k =时,则函数()f x 的零点分别为π5π,26由于函数()f x 在区间[0,]t 上有且仅有1个零点所以π5π26t ≤<. 所以t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭. 23.(1)T =12,A =0.5 1cos 126y t π=+; (2)一共有6个小时.【分析】(1)根据给定的数表直接求出周期T ,振幅A ,进而求出函数表达式.(2)根据给定条件解不等式1cos 1126t π+>即可计算作答. (1)依题意,观察数表得:最小正周期12T =,最高浪高为1.5米,最低浪高为0.5米 则 1.50.5122A -== 1.50.512b +== 22126T πππω====6π 所以函数解析式为:1cos 126y t π=+ (2)由(1)知,令1cos 1126t π+>,得:22(Z)262k t k k πππππ-<<+∈ 123123Z ()k t k k -<<+∈而820t <<,则1k = 915t <<所以从9点到15点适合对冲浪爱好者开放,一共有6个小时.24. 3π【分析】由2222b c a a +=+结合余弦定理可得cos a bc A =,由△ABC ,可是1sin 2bc A ==,两式结合可求得tan A =A ;利用正弦定理,余弦定理,三角函数等变换的应用可得311sin(2)2264B a π=-+,可求出范围52(,)666B πππ-∈,利用正弦函数的性质可求解a 的范围,进而可求得△ABC 的面积的取值范围【详解】解:因为2222b c a a +=+,所以2222b c a a +-= 所以由余弦定理得2222cos 22b c a a a A bc bc bc+-===,所以cos a bc A =因为△ABC所以1sin 2bc A ===所以1sin cos 2bc A A ==所以tan A 因为(0,)A π∈,所以3A π=因为1cos 2a bc A bc ==所以1sin 2ABC Sbc A ==因为由正弦定理可得b B =,2)3c B π=-和2a bc = 所以2422sin sin()33a a B B π=- 所以311sin(2)2264B a π=-+ 因为△ABC 为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<< 所以52(,)666B πππ-∈ 所以31113sin(2)(,]226424B a π=-+∈ 所以[2,3)a ∈,所以1sin 2ABC Sbc A ==∈ 故答案为:3π。

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .5-B .19-C .5 D .193.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1524.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43- C .53- D .45-5.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425- B .725 C .2425D .725-6.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .3B .12-C .32D .127.2cos 232cos()4θθθ=-,则sin 2θ=( )A .13B .23C .23-D .13-8.设31cos 29sin 2922a =-,1cos662b -=、22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>9.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若2sin 3α=,则()cos αβ-=( ) A .19B .459C .19-D .459-10.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 14.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______.15.角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 16.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号).17.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.18.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________. 19.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.23.若函数223sin cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合. 24.已知()()3sin f x x a ωϕ=++0,2πωϕ⎛⎫>< ⎪⎝⎭的图象过点,12a π⎛⎫⎪⎝⎭,且图象的相邻两条对称轴的距离为2π. (1)求函数()f x 的单调区间; (2)若()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为3,求实数a 的值. 25.已知函数()sin (sin 3cos )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.26.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=- ⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 3.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠=∴30PE DE PD CD ==== ∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .4.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .5.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.6.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒2=. 故选:C.7.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin2cos()cos cos sin sin444θθθπππθθθ-=-+()cos sin cos sin2cos sinθθθθθθ+-==-,()2cos sin2θθθ∴-=,两边平方得()241sin23sin2θθ-=,解得sin22θ=-(舍去)或2sin23θ=.故选:B.【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin2θθθ-=,再平方求解.8.B解析:B【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,ab c,然后由正弦函数的单调性得出结论.【详解】129si sin(6029)si3n29122na =︒-︒=︒=-,b=sin33==︒,2222sin162tan16cos162sin16sin161tan161ccos16sin32os16c===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b<<.故选:B.【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.9.C解析:C【分析】由对称写出两角的关系,然后利用诱导公式和二倍角公式计算. 【详解】由题意2,k k Z αβππ+=+∈,即2k βππα=+-,2221cos()cos(22)cos(2)cos 22sin 12139k αβαπππααα⎛⎫-=--=-=-=-=⨯-=-⎪⎝⎭.故选:C .10.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 14.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1215.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】 由题意3sin 2θ=-,1cos 2θ=,所以,31sin sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-16.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.17.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 18.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值.【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 19.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:120.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦;②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣.【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1)37π;(2)14π. 【分析】(1)题意说明周期6T π≥,4x π=是最小值点,由最小值点得ω表达式,由6T π≥得ω的范围,从而得ω的值;(2)()()122f x g x -=∣∣说明()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π,由此可得. 【详解】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤.又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min314x x πϕ-+=. 即314714πππϕ=-=.【点睛】关键点点睛:本题考查三角函数的周期,解题关键是由足()()122f x g x -=得出12,x x 是函数的最值点,一个是最大值点,一个是最小值点,由此分析其其差的最小值与周期结合可得结论. 23.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 24.(1)单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)34. 【分析】(1)根据图象上相邻两条对称轴的距离为2π可知周期为π,可确定2ω=,然后将点,12a π⎛⎫⎪⎝⎭代入求解出ϕ的值,利用整体法求解原函数的单调区间即可. (2)由(1)中的结果可知()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上的单调性,确定出()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上,得到关于a 的方程求解即可. 【详解】(1)由函数()f x 图象的相邻两条对称轴间的距离为2π, 得函数()f x 的最小正周期T π=, ∴22πωπ==.又函数()f x 的图象过点,12a π⎛⎫⎪⎝⎭,∴21212f a a ππϕ⎛⎫⎛⎫=⨯++=⎪ ⎪⎝⎭⎝⎭, ∴sin 2012πϕ⎛⎫⨯+= ⎪⎝⎭,6k πϕπ+=.∵||2ϕπ<,∴6πϕ=-,则()26f x x a π⎛⎫=-+ ⎪⎝⎭.令222262k x k πππππ-≤-≤+,解得63x k πππ-≤≤+,()k ∈Z ,3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,()k ∈Z ∴函数()f x 的单调递增区间为,()63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,单调递减区间为5,(k )36k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)由(1)知,函数()f x 在,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在,32ππ⎛⎤⎥⎝⎦上单调递减,又3122f a π⎛⎫-=-+ ⎪⎝⎭,3f a π⎛⎫= ⎪⎝⎭,22f a π⎛⎫=+ ⎪⎝⎭,∴()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为32a a -++=∴34a =. 【点睛】本题考查三角函数图象性质的综合应用,解答时只要方法如下:(1)求解三角函数单调区间时一般采用整体代换法,将自变量部分的代数式当做一个整体,利用正弦函数、余弦函数的单调性列出不等式求解即可;(2)求解三角函数在某固定区间上的最值或值域时,关键是分析清楚原函数在所给区间上的单调性,利用单调性确定取得最大值或最小值的点,确定最值;也可以采用换元法,将函数()sin y A ωx φ=+的最值转化为求sin y A t =的最值问题,只需根据格据正弦函数的图像性质确定即可. 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2+(千米);(2). 【分析】(1)根据P 位于弧BC 的中点,则P 位于BAC ∠的角平分线上,然后分别在,,Rt APQ Rt APR 正AQR 中求解.(2)设PAB θ∠=,060θ<<︒,然后分别在,Rt APQ Rt APR 表示 PQ ,PR ,在AQR 中由余弦定理表RQ ,再由300200400W PQ PR RQ =⨯+⨯+⨯求解.【详解】(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上, 则1||||||sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,||cos 2AQ PA PAB =∠== 由60BAC ∠=︒,且AQ AR =,∴QAR 为等边三角形,则||RQ AQ ==三条街道的总长||||||112l PQ PR RQ =++=++ ; (2)设PAB θ∠=,060θ︒<<︒, 则sin 2sin PQ AP θθ==,PR AP =()()sin 602sin 603cos sin θθθθ-=-=-, cos 2cos AQ AP θθ==,||||cos(60)2cos(60)cos AR AP θθθθ=-=-=+,由余弦定理可知:2222cos60RQ AQ AR AQ AR =+-,22(2cos )(cos )22cos (cos )cos 603θθθθθθ=+-⨯+=,则|RQ =设三条街道每年能产生的经济总效益W ,300200400W PQ PR RQ =⨯+⨯+⨯,3002sin sin )200θθθ=⨯+-⨯+,400sin θθ=++200(2sin )θθ=++)θϕ=++tan ϕ=,当()sin 1θϕ+=时,W 取最大值,最大值为 【点睛】方法点睛:解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.。

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

一、选择题1.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π2.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .123.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定4.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 6.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.sin15cos15+=( ) A .12B .22C .3 D .6 8.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .49.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-10.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知2cos 432θπ⎛⎫=⎪⎝⎭-,则sin θ=( )A .79B .19C .-19D .-79二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 15.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________. 16.方程2sin 2cos 20x x ++=的解集为________.17.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 18.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________. 19.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________. 三、解答题21.已知函数()sin 31f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.22.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式; (2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 23.已知()()sin23cos2f x x x x R =∈(1)求56f π⎛⎫⎪⎝⎭的值; (2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 24.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间; (2)若323f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值. 26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B2.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.8.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.9.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.10.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒2321622-=⨯-⨯=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒2321622+=⨯+⨯=, 31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 603h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos1550623h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3515.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=, 则1cos sin 3ϕθ=±=±, 故答案为:13±16.【分析】原方程化为关于的一元二次方程求得即可求解【详解】由得即解得或(舍去)所以故答案为: 解析:{}2,x x k k Z ππ=+∈【分析】原方程化为关于cos x 的一元二次方程,求得cos 1x =-,即可求解. 【详解】由2sin 2cos 20x x ++= 得21cos 2cos 20x x -++=, 即2cos 2cos 30x x --=,解得cos 1x =-或cos 3x =(舍去), 所以2,x k k Z ππ=+∈故答案为:{}2,x x k k Z ππ=+∈17.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解. 【详解】tan tan1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭,故答案为:13-18.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-+=-=- ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 44444422ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭,得)22cos +sin cos sin 2αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =αα-或cos +sin 0αα=,当cos sin αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12; 当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤, ∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭ 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 23.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果; (2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 063322f πππ⎛⎫==-+=⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭,当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.24.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫-⎪⎝⎭的值;【详解】(1)1()cos2cos 2cos2cos22322f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)由已知得23f απα⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 3πα⎤⎛⎫=-+= ⎪⎥⎝⎭⎦.【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角. 26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-,又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。

新人教版高中数学必修第一册第五单元《三角函数》测试(有答案解析)

新人教版高中数学必修第一册第五单元《三角函数》测试(有答案解析)

一、选择题1.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 2.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦3.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2πB .πC .2πD .4π4.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=5.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( )A .362k -,k ∈N B .362k +,k ∈N C .32D .36.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-7.已知角θ终边经过点)2,P a ,若6πθ=-,则a =( )A 6B 6C .6D .6-8.cos75cos15sin75sin15︒⋅︒+︒⋅︒的值是( ) A .0B .12C .32D .19.设31cos 29sin 2922a =-,1cos662b -=22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>10.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A 25B 25C 2525D .2511.若函数sin 3y x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后与函数cos y x ω=的图象重合,则ω的值可能为( ) A .1- B .2-C .1D .212.已知,2παπ⎛⎫∈ ⎪⎝⎭且1sin 23πα⎛⎫+=- ⎪⎝⎭,则()tan απ+=( )A .22-B .2C .24-D .24二、填空题13.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______. 14.已知角θ的终边经过点(,3)P x (0x <)且10cos 10x θ=,则x =___________. 15.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()f x =______.16.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________. 17.已知1tan()3πα+=-,则sin 2cos 5cos sin αααα+=-______. 18.在①a 2,②S =2ccos B ,③C =3π这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,3b cos A =a cos C +c cos A ,b =1,____________,求c 的值.注:如果选择多个条件分别解答,按第一个解答计分.19.已知函数()cos 2f x x =,若12,x x 满足12|()()|2f x f x -=,则12||x x -的一个取值为________.20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________.三、解答题21.已知函数()2sin 24cos cos 644f x x x x πππ⎛⎫⎛⎫⎛⎫=-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的单调区间; (2)当,612x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域.22.已知0,2πα⎛⎫∈ ⎪⎝⎭,3cos 5α=. (1)求sin 6απ⎛⎫+⎪⎝⎭的值; (2)求cos 23πα⎛⎫+ ⎪⎝⎭的值. 23.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭求sin()αβ+,cos()αβ-,tan2α的值. 24.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围. 25.已知α∈(0,)2π,tan α=12,求tan 2α和sin ()4πα-的值. 26.已知3cos cos 5αβ+=,4sin sin 5αβ+=,求()cos αβ-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确; B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确; D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误. 故选:D2.A解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】 由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.3.B解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B4.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+ ⎪⎝⎭,再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A5.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】 由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.6.D解析:D首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+ ⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D7.C解析:C 【分析】根据三角函数的定义,列出方程,即可求解. 【详解】由题意,角θ终边经过点)P a ,可得OP =,又由6πθ=-,根据三角函数的定义,可得cos()6π-=且0a <,解得3a =-. 故选:C.8.B解析:B 【分析】由两角和的余弦公式化简计算. 【详解】原式=1cos(7515)cos 602︒-︒=︒=.9.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 29122n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++, 显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.10.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==, coscos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-=. 故选:B .11.A解析:A先求解出sin 3y x πω⎛⎫=+ ⎪⎝⎭右移6π个单位后的函数解析式,然后根据诱导公式求解出ω的可取值. 【详解】 因为sin 3y x πω⎛⎫=+⎪⎝⎭右移6π个单位后得到sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭, 又因为sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭与cos sin 2y x x πωω⎛⎫==+ ⎪⎝⎭的图象重合,所以令2,632k k Z ωππππ-+=+∈,所以121,k k Z ω=--∈,所以ω可取1-,此时0k =, 故选:A. 【点睛】思路点睛:根据三角函数的图象重合求解参数ω或ϕ的思路: (1)先根据诱导公式将函数名统一; (2)然后分析三角函数初相之间的关系;(3)对k 进行取值(有时注意结合所给范围),确定出满足条件的ω或ϕ的值.12.A解析:A 【分析】由条件可得1cos 3α=-,然后可得sin 3α=,然后()sin tan tan cos ααπαα+==,即可算出答案. 【详解】因为1sin cos 23παα⎛⎫+==- ⎪⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 3α=所以()sin tan tan cos ααπαα+===-故选:A二、填空题13.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1214.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos 10x θ==,解出即可. 【详解】由余弦函数的定义可得cos 10x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.15.【分析】由图可得利用周期求出又函数过点解得进而得出函数的解析式【详解】由图可得:解得又函数过点则解得故答案为:解析:sin 23x π⎛⎫+ ⎪⎝⎭【分析】由图可得A ,利用周期求出ω,又函数过点7,112π⎛⎫- ⎪⎝⎭,解得3πϕ=,进而得出函数的解析式. 【详解】由图可得:1A =,37341264T πππ⎛⎫=--= ⎪⎝⎭,解得,2T πω==,()()sin 2f x x ϕ=+ 又函数过点7,112π⎛⎫-⎪⎝⎭,则732122ππϕ⨯+=,解得3πϕ=,()sin 23f x x π⎛⎫=+ ⎪⎝⎭故答案为:sin 23x π⎛⎫+⎪⎝⎭16.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称,故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈; 函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.17.【分析】由已知条件求出再根据同角公式弦化切可解得结果【详解】故答案为:【点睛】关键点点睛:弦化切求解是解题关键 解析:516【分析】由已知条件求出1tan 3α=-,再根据同角公式弦化切可解得结果. 【详解】1tan()3πα+=-,1tan 3α∴=-,sin 2cos tan 25cos sin 5tan αααααα++∴=--123153-+=⎛⎫-- ⎪⎝⎭516=. 故答案为:516【点睛】关键点点睛:弦化切求解是解题关键.18.答案见解析【分析】利用正弦定理进行边化角得到然后利用余弦定理以及正弦函数的两角和与差公式进行选择①②或③进行求解即可【详解】在中因为所以根据正弦定理得所以因为所以选择①由余弦定理得解得选择②所以所以解析:答案见解析. 【分析】利用正弦定理进行边化角,得到cos 3A =,然后利用余弦定理以及正弦函数的两角和与差公式进行选择①,②或③,进行求解即可 【详解】在ABCcos cos cos A a C c A =+,cos sin cos sin cos B A A C C A =+cos sin B A B =,因为sin 0B ≠,所以cos 3A = 选择①,由余弦定理2222cos a b c bc A =+-得210c -=,解得c =选择②,1cos sin 22c S B bc A ==,所以cos sin cos()2B A A π==-所以2B A π=-,即2C π=,解得c =选择③,3C π=,因为sin sin()sin cos cos sin 333B A A A πππ=+=+ 所以由sin sin c b C B=得sin 4sin b Cc B == 【点睛】关键点睛:解题关键在于由正弦定理进行边化角,得到cos A =相关公式进行求解,难度属于中档题19.(答案不唯一)【分析】根据的值域为可知若满足则必有的值分别为再根据三角函数的性质分析即可【详解】因为的值域为故若满足则必有的值分别为故的最小值当且仅当为相邻的两个最值点取得此时为的半个周期即故答案为解析:π2(答案不唯一) 【分析】根据()cos2f x x =的值域为[]1,1-可知若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,再根据三角函数的性质分析即可.【详解】因为()cos2f x x =的值域为[]1,1-,故若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,故12x x -的最小值当且仅当12,x x 为()cos2f x x =相邻的两个最值点取得.此时12x x -为()cos2f x x =的半个周期,即12222ππ⨯=. 故答案为:2π【点睛】关键点点睛:相邻的两个最值点的横坐标的距离为半个周期是解题的突破点.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭)22cos +sin cos sin αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =2αα-或cos +sin 0αα=,当cos sin αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12;当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(1)单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;单调递减区间为:2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈;(2)⎡-⎣. 【分析】(1)利用三角函数恒等变换化简函数解析式可得()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,进而根据正弦函数的单调性即可求解. (2)由题意可求范围2,663x πππ⎡⎤+∈-⎢⎥⎣⎦,利用正弦函数的性质即可求解其值域. 【详解】解:(1)()2sin 24cos cos 644f x x x x πππ⎛⎫⎛⎫⎛⎫=-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭122cos 24(cos sin )(cos sin )222x x x x x x ⎫=-+⨯-⨯+⎪⎪⎝⎭2cos 22cos 2x x x =-+2cos2x x =+2sin 26x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k Z ∈,解得36k x k ππππ-≤≤+,k Z ∈,令3222262k x k πππππ+≤+≤+,k Z ∈,解得263k x k ππππ+≤≤+,k Z ∈,故函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,单调递减区间为:2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)当,612x ππ⎡⎤∈-⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈-⎢⎥⎣⎦,可得1sin 226x π⎛⎫-≤+≤⎪⎝⎭,可得12sin 26x π⎛⎫-≤+≤ ⎪⎝⎭()f x 的值域为⎡-⎣.22.(1)310+;(2)750+-. 【分析】(1)由cos α求出sin α,利用两角和与差的正弦公式求解即可; (2)利用二倍角公式和两角和与差公式计算出结果. 【详解】 (1)0,2πα⎛⎫∈ ⎪⎝⎭,3cos 5α=,4sin 5α∴==,1sin cos 622πααα⎛⎫∴+=+ ⎪⎝⎭134255=⨯+=(2)由(1)可得:24sin 22sin cos 25ααα==22cos 2cos sin =-ααα223455⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭725=-,1cos 2cos 22322πααα⎛⎫∴+=- ⎪⎝⎭1724225225⎛⎫=⨯--⨯ ⎪⎝⎭=. 23.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解.【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos 5α===-,因为3,2πβπ⎛⎫∈ ⎪⎝⎭,12cos 13,所以5sin 13β===-, 所以3124516sin()sin cos cos sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为sin 3tan cos 4ααα==-,所以22322tan 244tan 21tan 7314ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭, 综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan 27α=-. 24.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞. 【分析】(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 2126x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭ 所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=) 25.an 2α=43,sin ()4πα-=. 【分析】 先由tan α=12可得tan 2α=43,再由sin cos αα=12,结合角的范围可得sin α和cos α的值,再由in ()4πα-的展开求解即可.【详解】∵tan α=12,∴tan 2α=22tan 1tan a a -=122114⨯-=43. 且sin cos αα=12,即cos α=2sin α. 又sin 2α+cos 2α=1,∴5sin 2α=1.而α∈(0,)2π,∴sin α,cos α.∴sin ()4πα-=sin αcos4π-cos αsin 4π×2×2=-10. 26.12-【分析】根据3cos cos 5αβ+=,4sin sin 5αβ+=,分别平方两式相加,利用两角差的余弦公式求解. 【详解】因为3cos cos 5αβ+=,4sin sin 5αβ+=, 所以()2229cos cos cos 2cos cos cos 25αβααββ+=+⋅+=, ()22216sin sin sin 2sin sin sin 25αβααββ+=+⋅+=, 两式相加得:()22cos 1αβ+-=, 所以()1cos 2αβ-=- 故答案为:12-。

人教A版高中数学必修第一册《第五章三角函数》复习参考题及答案

人教A版高中数学必修第一册《第五章三角函数》复习参考题及答案

人教A版高中数学必修第一册《第五章三角函数》复习参考题及答案复习巩固1. 写出与下列各角终边相同的角的集合S,并且把S中适合不等式−2π≤β<4π的元素β写出来:(1) π4; (2) −23π1(3) 125π; (4) 0 .2. 一个扇形的弧长与面积的数值都是5, 求这个扇形中心角的度数(精确到1 %).3. (1) 已知cosφ=14,求sinφ,tanφ.(2) 已知sinx=2cosx,求角x的三个三角函数值.4. 已知tanα=−13,计算:(1) sinα+2cosα5cosα−sinα; (2) 12sinαcosα+cos2α4(3) sinαcosα; (4) (sinα+cosα)2.5. 计算(可用计算工具, 第(2)(3)题精确到0.0001 ):(1) sin256π+cos253π+tan(−254π);(2) sin2+cos3+tan4;(3) cos(sin2).6. 设π<x<2π,填表:7. 求下列函数的最大值、最小值,并求使函数取得最大、最小值的x的集合:(1) y=√2+sinxπ; (2) y=3−2cosx.8. 画出下列函数在长度为一个周期的闭区间上的简图,并指出分别由函数y=sinx,x∈ℝ的图象经过怎样的变换得到:(1) y=12sin(3x−π3); (2) y=−2sin(x+π4);(3) y=1−sin(2x−π5); (4) y=3sin(π6−x3).9. (1) 用描点法画出函数y=sinx,x∈[0,π2]的图象.(2) 如何根据第(1) 小题并运用正弦函数的性质,得到函数y=sinx,x∈[0,2π]的图象?(3) 如何根据第(2) 小题并通过平行移动坐标轴,得到函数y=sin(x+φ)+k,x∈[0,2π] ( φ,k都是常数)的图象?10. 不通过画图, 写出下列函数的振幅、周期、初相, 并说明如何由正弦曲线得到它们的图象:(1) y=sin(5x+π6); (2) y=2sin16x.11. (I) 已知α⋅β都是锐角, sinα=45,cos(α+β)=513,求sinβ的值;(2) 已知cos(π4−a)=35,sin(5π4+β)=−1213,α∈(π4,3π4),β∈(0,π4),求sin(α+β)的值;(3) 已知α,β都是锐角, tanα=17,sinβ=√1010. 求tan(α+2β)的值.12. (1) 证明tanα+tanβ=tan(α+β)−tanαtanβtan(α+β);(2) 求tan20∘+tan40∘+√3tan20∘tan40∘的值;(3) 若α+β=3π4,求(1−tanα)(1−tanβ)的值;(4) 求tan20∘+tan40∘+tan120∘tan20∘tan40∘的值.13. 化简:(1) 1sin10∘−√3cos10∘; (2) sin40∘(tan10∘−√3)1(3) tan70∘cos10∘(√3tan20∘−1); (4) sin50∘(1+√3tan10∘).14. (1) 已知cosθ=−35,π<θ<3π2,求(sinθ2−cosθ2)2的值;(2) 已知sinα2−cosα2=15,求sinα的值;(3) 已知sin4θ+cos4θ=59,求sin2θ的值;(4) 已知cos2θ=35,求sin4θ+cos4θ的值.15. (1) 已知cos(α+β)=15,cos(α−β)=35,求tanαtanβ的值;(2) 已知cosα+cosβ=12,sinα+sinβ=13,求cos(α−β)的值.综合运用16. 证明:(1) cos4α+4cos2α+3=8cos4α; (2) 1+sin2α2cos2α+sin2α=12tanα+12;(3) sin(2α+β)sinα−2cos(α+β)=sinβsinα; (4) 3−4cos2A+cos4A3+4cos2A+cos4A=tan4A.17. 已知sinα−cosα=15,0≤α≤π,求sin(2α−π4)的值.18. 已知cos(π4+x)=35,17π12<x<7π4,求sin2x+2sin2x1−tanx的值.19. 已知sinθ+cosθ=2sinα,sinθcosθ=sin2β,求证4cos22α=cos22β.20. 已知函数f(x)=cos4x−2sinxcosx−sin4x,(1) 求f(x)的最小正周期;(2) 当x∈[0,π2]时,求f(x)的最小值以及取得最小值时x的集合.21. 已知函数f(x)=sin(x+π6)+sin(x−π6)+cosx+a的最大值为1,(1) 求常数a的值;(2) 求函数f(x)的单调递减区间;(3) 求使f(x)≥0成立的x的取值集合.22. 已知函数f(x)=√3sin2x+2cos2x+m在区间[0,π2]上的最大值为6 ,(第23 题)(1) 求常数m的值;(2) 当x∈R时,求函数f(x)的最小值,以及相应x的集合.23. 如图,正方形ABCD的边长为1,P,Q分别为边AB,DA上的点. 当△APQ的周长为2 时,求∠PCQ的大小.拓广探索24. 已知sinβ+cosβ=15,β∈(0,π),(1) 求tanβ的值;(2)你能根据所给的条件, 自己构造出一些求值问题吗?25. 如图,已知直线l1//l2,A是l1,l2之间的一定点,并且点A到l1,l2的距离分别为ℎ1,ℎ2. B是直线l2上一动点,作AC⊥AB,且使AC与直线l1交于点C. 设∠ABD=α.(第25 题)(1) 写出△ABC面积S关于角α的函数解析式S(α);(2) 画出上述函数的图象:(3) 由(2) 中的图象求S(α)的最小值.26. 英国数学家泰勒发现了如下公式:sinx=x−x33!+x55!−x77!+⋯,cosx=1−x22!+x44!−x66!+⋯,其中n!=1×2×3×4×⋯×n.这些公式被编入计算工具, 计算工具计算足够多的项就可以确保显示值的精确性. 比如、用前三项计算 cos0.3 . 就得到 cos0.3≈1−0.322!+0.344!=0.9553375 .试用你的计算工具计算 cos0.3 ,并与上述结果比较.27. 在地球公转过程中, 太阳直射点的纬度随时间周而复始不断变化.(第 27 题)(1) 如图,设地球表面某地正午太阳高度角为 0,δ 为此时太阳直射点的纬度, φ 为当地的纬度值,那么这三个量满足 θ=90∘−|φ−δ| .某科技小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间) 为初始时间, 统计了连续 400 天太阳直射点的纬度平均值 (太阳直射北半球时取正值, 太阳直射南半球时取负值). 下面是该科技小组的三处观测站成员在春分后第 45 天测得的当地太阳高度角数据:请根据数据完成上面的表格 (计算结果精确到 0.0001);(2) 设第x天时太阳直射点的纬度平均值为y. 该科技小组通过对数据的整理和分析,推断y与x近似满足函数y=Asinwx,其中A为北回归线的纬度值,约为23.4392911,试利用(1) 中的数据,估计w的值(精确到10−8);(3) 定义从某年春分到次年春分所经历的时间为一个回归年, 求一个回归年对应的天数(精确到0.0001 );(4) 利用(3) 的结果, 估计每400 年中, 应设定多少个闰年, 可使这400 年与400 个回归年所含的天数最为接近(精确到1).答案:1. (1) {β∣β=π4+2kπ,k∈Z},−7π4,π4,9π4.(2) {β∣β=−23π+2kπ,k∈Z},−23π,43π,103π.(3) {β∣β=125π+2kπ,k∈Z},−85π,25π,125π.(4) {β∣β=2kπ,k∈Z},−2π,0,2π.2. 约143∘.3. (1) 当φ为第一象限角时, sinφ=√154,tanφ=√15;当φ为第四象限角时, sinφ=−√154,tanφ=−√15.(2) 当x为第一象限角时, tanx=2,cosx=√55,sinx=2√55;当x为第三象限角时, tanx=2,cosx=−√55,sinx=−2√55.4. (1) 516. (2) 103. (3) −310. (4) 25.5. (1) 0 . (2) 1.077 1 . (3) 0.6143 .6.7. (1) 最大值为√2+1π,此时x的集合为{x| x=π2+2kπ,k∈Z};最小值为√2−1π,此时x的集合为{x∣x=−π2+2kπ,k∈Z}.(2) 最大值为5,此时x的集合为{x∣x=(2k+1)π,k∈Z}; 最小值为1,此时x的集合为{x∣x=2kπ,k∈Z}.8. 表及图象变换略, 图象如图所示:(第8 题)9. (1) 列表:描点画图如下:(第9 (1) 题)(2) 由sin(π−x)=sinx,可知函数y=sinx,x∈[0,π]的图象关于直线x=π2对称,据此可得函数y=sinx,x∈[π2,π]的图象; 又由sin(2π−x)=−sinx,可知函数y=sinx, x∈[0,2π]的图象关于点(π,0)对称,据此可得到函数y=sinx,x∈[π,2π]的图象. (3) 先把y轴向右(当φ>0时) 或向左(当φ<0时) 平行移动|φ|个单位长度,再把x轴向下(当k>0时) 或向上(当k<0时) 平行移动|k|个单位长度,将图象向左或向右延伸,并擦去[0,2π]之外的部分,便得到函数y=sin(x+φ)+k,x∈[0,2π]的图象.10. (1) 振幅是1,周期是2π5,初相是π6.把正弦曲线向左平行移动π6个单位长度,可以得函数y=sin(x+π6),x∈R的图象; 再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数y=sin(5x+π6), x∈R的图象.(2) 振幅是2,周期是12π,初相是0 .把正弦曲线上所有点的横坐标伸长到原来的 6 倍(纵坐标不变),得到函数y=sin16x,x∈R的图象; 再把所得图象上所有点的纵坐标伸长到原来的2 倍(横坐标不变),就可得到函数y=2sin16x,x∈R的图象.11. (1) 1665. (2) 5665. (3) 1 .12. (1) 提示: 利用公式tan(α+β)=tanα+tanβ1−tanαtanβ(2) √3. (3) 2 . (4) −√3.13. (1) 原式=cos10∘−√3sin10∘sin10∘cos10∘=4sin(30∘−10∘)sin20∘=4.(2) 原式=sin40∘(sin10∘cos10∘−√3)=sin40∘⋅sin10∘−√3cos10∘cos10∘=−sin80∘cos10∘=−1;(3) 原式=tan70∘cos10∘(√3sin20∘cos20∘−1)=sin70∘cos70∘⋅cos10∘⋅−2sin10∘cos20∘=−sin20∘cos70∘=−1;(4) 原式:sin50∘(1+√3sin10∘cos10∘)=sin50∘⋅cos10∘+√3sin10∘cos10∘=sin100∘cos10∘=1,14. (1) 95. (2) 2425. (3) ±2√23. (4) 1725.15. (1) 由已知可求得cosαcosβ=25,sinαsinβ=15. 于是有tanαtanβ=sinαsinβcosαcosβ=12.(2) 把cosα+cosβ=12两边分别平方,得cos2α+cos2β+2cosαcosβ=14. 把sinα+sinβ=13两边分别平方,得sin2α+sin2β+2sinαsinβ=19. 把所得两式相加,得2+2(cosαcosβ+sinαsinβ)=1336,即2+2cos(α−β)=1336. 所以cos(α−β)=−5972.16. (1) 左式=2cos22a−1+4cos2a+3=2(cos2a+1)2=2(2cos2a)2=8cos4a=右式.(2) 左式=sin2α+cos2α+2sinαcosα2cos2α+2sinαcosα=(sinα+cosα)22cosα(cosα+sinα)=12tanα+12=右式.(3) 左式=sin(2α+β)2cos(α+β)sinαsinα=sinβsinα=右式.(4) 左式=3−4cos2A+2cos22A−13+4cos2A+2cos∗2A−1=(1−cos2A)2(1+cos2A)2(2sin2A)2(2cos2A)2=tan4A=右式.17. sin(2α−π4)=31√250.18. sin2x+2sin2x1−tanx =2sinxcosx+2sin2x1−sinxcosx=sin2x⋅1+tanx1−tanx=sin2x⋅tan(π4+x).由17π12<x<7π4,得5π3<x+π4<2π. 又cos(π4+x)=35,所以sin(π4+x)=−45,tan(π4+x)=−43. 又cosx=cos[(π4+x)−π4]=−√210,所以sinx=−7√210,sin2x=725. 所以sin2x+2sin2x 1−tanx =−2875.19. 把已知代入sin2θ+cos2θ=(sinθ+cosθ)2−2sinθcosθ=1中,得(2sinα)2−2sin2β=1. 变形得2(1−cos2α)−(1−cos2β)=1,即2cos2α=cos2β,4cos22α= 4cos22β.20. f(x)=(cos2x+sin2x)(cos2x−sin2x)−2sinxcosx=cos2x−sin2x=√2cos(2x+π4).(1) 最小正周期是π.(2) 由x∈[0,π2],得2x+π4∈[π4,5π4],所以当2x+π4=π,即x=3π8时, f(x)的最小值为−√2,f(x)取最小值时x的集合为{3π8}.21. f(x)=√3sinx+cosx+a=2sin(x+π6)+a.(1) 由2+a=1,得a=−1.(2) 单调递减区间为[π3+2kπ,4π3+2kπ],k∈Z.(3) {x ∣2kπ≤x ≤2π3+2kπ,k ∈Z} .22. f (x )=√3sin2x +1+cos2x +m =2sin (2x +π6)+m +1 .(1) 由 x ∈[0,π2] ,得 2x +π6∈[π6,7π6] ,于是有 2+m +1=6 . 解得 m =3 . (2) f (x )=2sin (2x +π6)+4(x ∈R ) 的最小值为 −2+4=2 ,此时 x 的取值集合由2x +π6 =3π2+2kπ(k ∈Z ) 求得,所求集合为 {x ∣x =2π3+kπ,k ∈Z} .23. 设 AP =x,AQ =y,∠BCP =α,∠DCQ =β ,则 tanα=1−x,tanβ=1−y . 于是 tan (α+β)=2−(x+y )(x+y )−xy . 又 △APQ 的周长为 2,即 x +y +√x 2+y 2=2 ,变形可得 xy = 2(x +y )−2 . 于是 tan (α+β)=2−(x+y )(x+y )−[2(x+y )−2]=1 . 又 0<α+β<π2 ,所以 α+β=π4,∠PCQ =π2−(α+β)=π4. 24. (1) 由 {sinβ+cosβ=15,sin 2β+cos 2β=1,可得 25sin 2β−5sinβ−12=0 . 解得 sinβ=45 或 sinβ=−35 (由 β∈(0,π) ,舍去). 所以 cosβ=15−sinβ=−35 . 于是 tanβ=−43 .(2) 根据所给条件,可求出仅由 sinβ,cosβ,tanβ 表示的三角函数式的值. 例如, sin (β+π3) , cos2β+2,sinβ+cosβ2tanβ,sinβ−cosβ3sinβ+2cosβ ,等等.25. 因为 ∠ABD =α ,所以 ∠CAE =α,AB =ℎ2sinα,AC =ℎ1cosα . 所以 S △ABC =12⋅AB ⋅AC =ℎ1ℎ2sin2α,0<α<π2. (1) 所求函数解析式为 S (α)=ℎ1ℎ2sin2α,0<α<π2 . (2) 略 (可借助信息技术).(3) 当 2α=π2 ,即 α=π4 时, S (α) 的最小值为 ℎ1ℎ2 .26. 略.27. (1)(2) 由16.3862=23.4392911⋅sin(45ω),解得ω=0.01720279.=365.2422.(3) T=2πω(4) 400(T−365)=96.88,故应在400 年中设定97 个闰年.。

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。

相关文档
最新文档