LTE NI干扰分析方法

LTE NI干扰分析方法
LTE NI干扰分析方法

LTE NI干扰分析方法

一、互调干扰

由于发射机的非线性特点,当多个不同频率的干扰信号通过非线性电路时,将会产生和有用信号相同或者相近的频率组合,形成干扰。

在同一个地点,有两台发射机以上,就可能产生互调干扰。发射机A发出的射频信号f A从空中再通过发射机B的天线,进入发射机B的功放级,与该机发射频率f B相互调制,产生出第三个频率f C。反之,同时产生f D。所以,在该处两台发射机发出四个频点的射频功率信号。其中f C和f D是互调产物(见图一)。

简单来说,当两个或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。由此形成的干扰,称为互调干扰。

1 干扰来源

从频谱上看(见附录),LTE互调干扰主要有以下几种:

1、GSM900下行信号(包含移动联通信号)二阶互调影响F频段。

2、DCS1800下行信号(包含移动联通信号)三阶或五阶互调影响F频段。

3、CDMA下行信号(800MHz)三阶互调影响E频段。

4、多网合路室分系统,GSM900与DCS1800三阶或五阶互调影响E频段。

2 波形特点

1)小区级平均干扰电平跟2G话务关联大,2G话务忙时TD-LLTE干扰越大。

2)PRB级干扰呈现的特点是有一个多个干扰凸起,突起范围2~3RB数。

3 定位干扰小区方法

定位干扰小区主要有以下几步:

①频段定位

由于互调干扰主要来自GSM频段(包括移动联通),且主要影响F频段(D、E频段互调干扰来源为非移动手机无线频段,该干扰源必须通过现场扫频去定位)。CDMA下行占用800MHz频段,可能对E频段造成三阶互调。

②站点勘察,筛选干扰小区

通过上站勘察,或根据小区工参,筛选出附近GSM小区,由于同一扇区的GSM900小区频点产生的二阶互调所对应的频率和LTE受干扰的PRB所对应的频率相同,可通过计算,列举出疑似干扰小区集。

③GSM后台调整参数,LTE后台观察干扰

GSM后台逐个对“疑似干扰小区”进行临时降功率或更换频点方式调整15至30分钟,LTE 后台同步观察干扰情况,若调整后干扰明显减弱,则可定位该小区为干扰小区。

4 建议解决方案

定位干扰小区后,建议可以对干扰小区进行如下调整:

①更换频点,避免同一小区频点二阶互调频率落到F频段中。

②调整干扰小区天线方位角或下倾角,或整改GSM天线位置等方法增加隔离度,减少干

扰小区对LTE小区影响。

③互调干扰主要器件老化,接头工程质量差,有源器件质量差等问题产生,针对移动自

身小区的产生互调干扰,可以更换合路器,更换天线,对有源器件加装抑制滤波器方式整改。

④针对D频段和E频段产生二阶互调,由于属于航空频段,难以协调,只能考虑调整下

倾角,加强覆盖区域信号强度,若干扰过于严重,可考虑更换成其他D频点。

⑤多网合路室分系统产生的互调干扰,主要是由于接头工程质量差,有源器件质量差等

问题产生,可使用互调仪逐段排查,定位故障器件,通过更换器件解决。

二、谐波干扰

二次谐波干扰是由于由于发射机有源器件和无源器件的非线性,在其发射频率的整数倍频率上将产生较强的谐波产物。当这些谐波产物正好落于受害系统接收机频段内,将导致受害接收机灵敏度损失。

1 干扰来源

从频谱上看(见附录),LTE互调干扰主要有以下几种:

1、GSM900下行信号(包含移动联通信号)二次谐波干扰影响F频段。

2、CDMA下行信号(800MHz)三阶互调影响E频段。

2 波形特点

1)小区级平均干扰电平跟2G话务关联大,2G话务忙时TD-LLTE干扰越大。

2)PRB级干扰呈现的特点是有一个多个干扰凸起。

下图为PRB级干扰图形,:

3 定位干扰小区方法

定位谐波干扰小区和定位互调干扰小区类似,主要有以下几步:

①频段定位

目前LTE使用的主要是三个频段

D频段(band 38)2575-2615MHz 40M

F频段(band 39)1880-1900MHz 20M

E频段(band40)2320-2370MHz 50M

由于谐波干扰主要来自GSM频段,F频主要干扰为940MHZ~950MHZ,该频段为中国移动GSM900频段,属于网内干扰;D频主要干扰为1287MHZ~1308MHZ,该频段科学、航空定位导航,属于网外干扰;E频主要干扰为1160 MHZ~1185MHZ,该频段用于航空导航,属于网外干扰。

②站点勘察,筛选干扰小区

通过上站勘察,或根据小区工参,筛选出附近GSM小区,由于同一扇区的GSM900小区频点产生的二次谐波所对应的频率和LTE受干扰的PRB所对应的频率相同,可通过计算,列举出疑似干扰小区集。

③GSM后台调整参数,LTE后台观察干扰

GSM后台逐个对“疑似干扰小区”进行临时降功率或更换频点方式调整15至30分钟,LTE 后台同步观察干扰情况,若调整后干扰明显减弱,则可定位该小区为干扰小区。

4 建议解决方案

定位干扰小区后,建议可以对干扰小区进行如下调整:

①更换频点,避免同一小区频点二阶互调频率落到F频段中。

②调整干扰小区天线方位角或下倾角,或整改GSM天线位置等方法增加隔离度,减少干

扰小区对LTE小区影响。

三、杂散干扰

1 干扰来源(F频)

根据目前DCS1800频段使用下行带宽为1805MHZ-1880MHZ,但测试中发现干扰信号频段实际延伸至1890频段,但由于LTE中F频段的使用频段未1880MHZ-1900MHZ,所以F频段内产生较强杂散信号。

2 波形特点

从RB0最强,开始逐步减弱,约到RB30-50左右。

深圳布心东湖F-HLH-2小区受到干扰的平均电平是-102,干扰系数是2.36,属于超强干扰。

3 定位干扰小区方法

通过网管确认杂散干扰通常采用降低同基站同扇区DCS1800基站功率10dB以上,对受干扰TD-LTE小区前后各一段时间如十分钟的PRB进行轮询来完成确认。杂散干扰的站点的PRB干扰图如果基本不受降功率影响或,

并且该小区rb0-rb99所受干扰呈现“左高右低”平滑下降态势,可以确认是受到了其他基站的杂散干扰,需要去现场确认。

4 杂散干扰整治方案

定位干扰小区后,建议可以对干扰小区进行如下调整:

①通过增大TD-LTE 基站天线与干扰源基站天线的系统间的隔离度,以达到降低干扰的目

的,一般可以将水平隔离改为垂直隔离。

②通过在干扰源基站加装带通滤波器来降低杂散干扰。

1 干扰来源(E频)

Wlan杂散干扰

2 波形特点

从PRB99开始往PRB0逐渐减弱,约到RB30-50左右。

3 定位干扰小区方法

杂散干扰隔离度要求:

-30-(-109-7)=86db

-30为Wlan AP在2370的杂散指标、-109为Wlan系统低噪、-7表示LTE系统的杂散要比Wlan的低噪低7db

结论:为了避免Wlan系统对LTE系统的杂散,所需的隔离度为86db,较难满足,因此Wlan 对LTE系统的干扰主要为杂散干扰。

4 建议解决方案

工程隔离、AP内置滤波器、AP末端合路、馈入式AP+板状天线。

四、阻塞干扰

1 干扰来源

GSM900/1800及距离较近的友商基站系统带来的。

2 波形特点

从PRB0~10左右干扰干扰达到峰值凸起

3 定位干扰小区方法

从PRB级干扰可以看出该小区PRB1左右存在较大的上行干扰,通过网管确认阻塞干扰通常采用降低同一基站相同及相邻扇区GSM900/1800基站功率20dB以上,对受干扰TD-LTE 小区前后各一段时间如十分钟的PRB进行轮询来完成确认。(注:考虑到现网工参数据天线方位角的误差,建议同时降低LTE基站相邻的2个扇区),如果干扰随着GSM900/1800基站的功率下降,干扰功率又降低,则可以确认是同一基站受到相邻2G小区的阻塞干扰。

4 阻塞干扰整治方案

阻塞干扰整治方法一般有以下3种:

①在受干扰TD-LTE基站上安装相应频段的滤波器。需要注意的是与A频段TD-SCDMA共

模的RRU,安装的滤波器必须兼容2010~2025MHz。

②增加两个系统间的隔离度,比如升高干扰源基站或受干扰基站的天线高度,使其从水

平隔离变为垂直隔离(一般情况下垂直隔离度大于水平隔离度10dB以上。

③将受干扰的TD-LTE RRU更换为抗阻塞能力更强的RRU。比如更换为2012年之后生产的

的TD-LTE RRU,其抗阻塞能力按照最新的3GPP规范研发生产的,偏离工作频段边缘5MHz外能达到-5dBm的阻塞要求,比之前的TD-LTE RRU抗阻塞能力明显增强。

五、外部干扰器干扰

1 干扰来源

军区的通信系统、学校及社会考点的信号屏蔽装置、银行ATM机内警用信号干扰装置等。

2 波形特点

1)干扰与话务无关。

(F频)

(D频)

3 定位干扰源方法

由于干扰源来自其他系统,只能通过现场扫频确认。大部分的外部干扰持续存在,因此可以较顺利的找到干扰源,如银行,军事区,看守所等。但有些外部干扰至少偶尔出现,追踪起来具有一定的难度。

4 外部干扰整治方案

这种干扰只能通过协调解决,部分地区如看守所,可能无法同意关闭,只能建议对方调低干扰器功率,或更换小功率天线。

六、干扰排查流程

干扰分析流程图如下:

七、附录(国内频率分配情况)

国内频率分配情况:

目前LTE使用的主要是三个频段

D频段(band 38)2575-2615MHz 40M

F频段(band 39)1880-1900MHz 20M

E频段(band40)2320-2370MHz 50M

叶文俊15:48:32

干扰系数:F=(2级RB数*1+3级RB数*2+4级RB数*3+5级RB数*4)/100,

根据上述定义可知,干扰系数F的值域为[0,4]

叶文俊15:48:49

就是这个(COUNTIFS(E2:CZ2,">=-116",E2:CZ2,"<-110")+COUNTIFS(E2:CZ2,">=-110",E2:CZ2,"<-100")*2+CO UNTIFS(E2:CZ2,">=-100",E2:CZ2,"<-90")*3+COUNTIFS(E2:CZ2,">=-90",E2:CZ2,"<-50")*4)/100

李宇丰15:49:17

2级rb,3级rb如何定义

叶文俊15:49:21

1级:[-120,-116);

2级:[-116,-110);

3级:[-110,-100);

4级:[-100,-90];

5级:[-90,-50];

各类干扰的分类及排查方法

各类干扰的分类及排查方法 GSM移动通信技术在我国迅速发展,目前已经发展相当成熟的阶段,在实际的网络优化工作中,发现GSM系统受到的上行干扰问题已经成为网络优化中一个不容忽视的重要问题。上行干扰会使系统掉话率增加,减少基站的覆盖范围,降低通话质量,使网络指标和用户的通话质量受到严重影响。 阿尔卡特GSM系统中采用干扰带Band指标来衡量系统受到上行干扰的程度。干扰带Band指标表示话音信道在空闲模式下收到的上行噪声信号强度,分为Band1—Band5,其中Band5代表上行干扰信号电平强度>-85dBm,Band4代表上行干扰信号电平强度-85dBm-- -90dBm之间,Band3代表上行干扰信号电平强度-90dBm-- -95dBm之间,Band2代表上行干扰信号电平强度-95dBm-- -100dBm之间,Band1代表上行干扰信号电平强度<-100dBm。该统计指标是基于时隙统计的。如果出现Band3以上,一般认为基站受到较强的上行干扰,由此会产生掉话和话音质量差的情况,需要进行解决。 根据在实际网络优化工作中长期对上行干扰问题的分析,基本上可以认为出现上行干扰的原因可以分为以下几类: 一、上行干扰排查思路及排查方法: 根据在实际网络优化工作中长期对上行干扰问题的分析,基本上可以认为出现上行干扰的原因可以分为以下几类:

1、无线系统自身问题造成Band较高排查方法及思路: 无线系统自身问题一般集中在天线器件、基站接收通路的问题上,由于基站子系统问题造成的上行干扰Band较高存在以下规律:Band值随话务量变化,话务量高时,Band也随之增高,到了深夜话务量降低后,Band统计恢复正常。一般如果出现这样的规律,首先要考虑无线子系统的问题(天馈系统问题产生的三阶互调干扰)。三阶互调干扰排查方法有: (1)、利用罗森伯格设备进行现场排查天馈系统具体问题。 (2)、利用频谱仪现场排查,利用八木天线指向基站天线的背板观察扫频仪上的频谱变化,如果频谱整体底噪抬升至-80dB到-50dB之间基本可以判断为天馈系统产生的三阶互调。 (3)、如果一个基站上面只一个小区有上行干扰的话,可以调换两个小区的天馈线来进行判断。例如:某个基站1小区存在上行干扰,2、3小区没有上行干扰。我们可以将1、2小区天馈线进行调换后观察1、2小区的上行干扰变化情况。如果调换后上行干扰转移到2小区上面,这样基本可以判断天馈线系统问题或是外部干扰;如果调换后上行干扰依然在1小区上面,这样基本可以判断为设备内部器件产生的干扰。如果是设备内部器件问题我们需要检查内部器件是否有损坏,如ANC、载频、腔体等,需要更换的及时进行更换。 2、直放站引起的上行干扰问题: 目前存在的最普遍的上行干扰问题是直放站引起的上行干扰,特别是一些用户自行安装的非法直放站,由于价格低廉,各种器件的性

模拟量信号干扰分析及11种解决秘诀

模拟量信号干扰分析及11种解决秘诀 关键词:PLC 模拟量信号干扰 1、概述 随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。 2、电磁干扰源及对系统的干扰 影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。 干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 3、PLC 控制系统中电磁干扰的主要来源有哪些呢? (1) 来自空间的辐射干扰: 空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC 内部的辐射,由电路感应产生干扰;而是对PLC 通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。 (2) 来自系统外引线的干扰: 主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。 (3)来自电源的干扰:

TD-LTE干扰分析、排查及解决措施(1001)--经典

TD-LTE干扰分析、排查及解决措施(1001)--经典

江西TD-LTE干扰分析进展及排除思路 目录 一、背景 (3) 二、TDD-LTE系统间干扰情况 (3) 三、干扰分类 (5) 3.1阻塞干扰 (5) 3.2杂散干扰 (9) 3.3GSM900二次谐波/互调干扰 (12) 3.4系统自身器件干扰 (14) 3.5外部干扰 (16) 四、排查方法 (17) 4.1资源准备 (17) 4.2数据采集 (18) 4.3制作RB干扰曲线分布图 (18) 4.4现场排查方法 (19) 五、江西LTE现网情况 (20) 5.1各地市干扰统计情况 (20) 5.2各地市干扰分布情况 (20) 六、新余现场干扰排查整治 (22) 6.1干扰样本站点信息 (23) 6.2样本站点案例 (24) 七、九江FDD干扰专题 (37) 7.1九江现网情况 (37) 7.2干扰样本点信息 (38) 7.3受干扰站点与电信FDD站点分布情况 (39) 7.4九江彭泽县FDD干扰排查 (39) 7.5抽样排查处理 (40) 7.6电信FDD干扰解决建议 (46) 八、后续计划 (46)

一、背景 ●使用频率:工信部批准电信和联通混合组网试点开展,随着1875~1880MHz保护带推移至1880~1885MHz,不排除电信不加滤波器提前使用1880频段; ●设备能力:我司早期采购设备抗阻塞能力不满足559号文要求导致TDS升级TDD的部分双模站点现网使用存在阻塞干扰; ●工程施工:现场施工问题导致各制式/系统间隔离度不够带来的干扰。 二、TDD-LTE系统间干扰情况 TD-LTE频 段容易受到的干扰

最新tdlte干扰分析、排查及解决措施(1001)经典资料

江西TD-LTE干扰分析进展及排除思路 目录 一、背景 (2) 二、TDD-LTE系统间干扰情况 (2) 三、干扰分类 (3) 3.1阻塞干扰 (3) 3.2杂散干扰 (5) 3.3GSM900二次谐波/互调干扰 (6) 3.4系统自身器件干扰 (8) 3.5外部干扰 (9) 四、排查方法 (9) 4.1资源准备 (9) 4.2数据采集 (10) 4.3制作RB干扰曲线分布图 (10) 4.4现场排查方法 (10) 五、江西LTE现网情况 (11) 5.1各地市干扰统计情况 (11) 5.2各地市干扰分布情况 (11) 六、新余现场干扰排查整治 (13) 6.1干扰样本站点信息 (14) 6.2样本站点案例 (14) 七、九江FDD干扰专题 (24) 7.1九江现网情况 (24) 7.2干扰样本点信息 (25) 7.3受干扰站点与电信FDD站点分布情况 (26) 7.4九江彭泽县FDD干扰排查 (26) 7.5抽样排查处理 (27) 7.6电信FDD干扰解决建议 (32) 八、后续计划 (33)

一、背景 ●使用频率:工信部批准电信和联通混合组网试点开展,随着1875~1880MHz保护带 推移至1880~1885MHz,不排除电信不加滤波器提前使用1880频段; ●设备能力:我司早期采购设备抗阻塞能力不满足559号文要求导致TDS升级TDD的 部分双模站点现网使用存在阻塞干扰; ●工程施工:现场施工问题导致各制式/系统间隔离度不够带来的干扰。 二、TDD-LTE系统间干扰情况

上行干扰影响 干扰对TD-LTE上行性能影响如下表: 三、干扰分类 根据射频特性和频谱关系分析出F 频段TD-LTE 基站会受到电信与联通FDD-LTE、DCS1800、GSM900 和PHS基站的干扰,按照干扰类型又分为阻塞干扰、杂散干扰、谐波/互调干扰等。 注:F 频段TD-LTE 终端也会对DCS1800 终端造成干扰。经分析由于DCS 终端抗阻塞能力较强且终端间相对位置随机性较大,因此干扰强度不高。 3.1 阻塞干扰(注:全频段干扰) 由于TD-LTE 基站接收滤波器的非理想性,在接收有用信号的同时,还将接收到来自邻频的1800-1880MHz 频段基站的发射信号,造成TD-LTE 基站接收机灵敏度损失,严重时甚至将无法工作,称为阻塞干扰。 DCS1800、友商FDD-LTE均工作在以上频段中,可能F 频段TD-LTE 基站的抗阻塞能力不足时,将产生严重的阻塞干扰。 (注: 阻塞干扰:问题出在我们接收机滤波器性能不好,没有滤除掉带外强干扰信号,导致接收机性能下降,出现阻塞干扰 杂散干扰:问题出在对方发射机滤波器性能上,干扰信号落到我们接收机频带内,造成杂散干扰) 阻塞干扰示意图

LTE干扰处理

LTE干扰处理_ 王楠 一、TD-L TE干扰概述 1.TD-LTE频段分析 目前TD-LTE主要使用三个频段,F、D、E。

2.TD-LTE内外干扰分析 1)内部干扰 交叉时隙干扰:上下行时隙干扰 远距离同频干扰:站A和站B间距>GP传播距离 GPS失步:失步基站与周围基站上下行收发不一致,相互干扰 小区间同频干扰:同PCI同mod3 设备故障:RRU故障;天馈故障 2)外部干扰 同频干扰:杂散干扰,互调干扰,谐波干扰 异频干扰:阻塞干扰

3)干扰表现 上行底噪≥=105db ping包延时大于正常小区,或无法ping成功KPI:切换、接通、掉线 4)外部干扰分频段分析

①F频点干扰状况 ?DCS1800阻塞干扰:16~30dB底噪抬升,UL吞吐量损失严重,甚至无法建立连 接 ?DCS1800杂散干扰:5dB的底噪抬升, UL吞吐量损失约10% ?DCS1800互调干扰:8~16dB的底噪抬升, UL吞吐量损失超过30% ?GSM900谐波干扰:约5dB的底噪抬升 ?PHS杂散:一般情况下轻微干扰,严重时TD-S或TD-L无法建立连接

②E频段干扰状况 ?E频段和Wifi相隔30MHz,比较近,且Wifi不遵循3GPP协议,射频指标比较差?普通室分系统下,80dB的合路器基本可以消除干扰,两者频率越远,受到的影响 越小。 ?外挂情况下,空间隔离需1m以上 ③D频段干扰状况 ?从频谱状况来说,存有各运营商TD-LTE间的干扰、与雷达间、射频天文、北斗、 Wifi以及MMDS、Wimax间的干扰 ?MMDS和WiMAX对D频段的同频干扰,可使底噪抬升20dB以上,严重时更会 导致TD-LTE业务无法建立连接

抗干扰的方法

一、抗干扰方法: 为了使高频电路板的设计更合理,抗干扰性能更好,在进行PCB 设计时应从以下几个方面考虑: 1、合理选择层数:利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、降低信号间的交叉干扰,一般情况下,四层板比两层板的噪声低20dB。 2、走线方式:走线必须按照45°角拐弯,这样可以减小高频信号的发射和相互之间的耦合。 3、走线长度:走线长度越短越好,两根线并行距离越短越好。 4、过孔数量:过孔数量越少越好。 5、层间布线方向:层间布线方向应该取垂直方向,就是顶层为水平方向,底层为垂直方向,这样可以减小信号间的干扰。 6、敷铜:增加接地的敷铜可以减小信号间的干扰。 7、包地:对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 8、信号线:信号走线不能环路,需要按照菊花链方式布线。 9、去耦电容:在集成电路的电源端跨接去耦电容。 10、高频扼流。数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。 二、包地法 抗干扰包地: 电路板设计中抗干扰的措施还可以采取包地的办法,即用接地的导线将某一网络包住,采用接地屏蔽的办法来抵抗外界干扰。 网络包地的使用步骤如下: 1.1、选择需要包地的网络或者导线。从主菜单中执行命令Edit/Select/Net (E+S+N),光标将变成十字形状,移动光标一要进行包 地的网络处单击,选中该网络。如果是组件没有定义网络,可以执行主菜单命令Select/Connected Copper 选中要包地的导 线。 1.2、放置包地导线。从主菜单中执行命令Tools/Outline Selected Objects(T+J)。系统自动对已经选中的网络或导线进行包地操 作。 1.3、对包地导线的删除。如果不再需要包地的导线,可以在主菜单中执行命令Edit/Select/Connected Copper 。此时光标将变成 十字形状,移动光标选中要删除的包地导线,按Delect键即可删除不需要的包地导线。

关于LTE干扰处理

关于LTE干扰处理 一、TD-L TE干扰概述 1.TD-LTE频段分析 目前TD-LTE主要使用三个频段,F、D、E。

2.TD-LTE内外干扰分析 1)内部干扰 ?交叉时隙干扰:上下行时隙干扰 ?远距离同频干扰:站A和站B间距>GP传播距离 ?GPS失步:失步基站与周围基站上下行收发不一致,相互干扰?小区间同频干扰:同PCI同mod3 ?设备故障:RRU故障;天馈故障 2)外部干扰 ?同频干扰:杂散干扰,互调干扰,谐波干扰 ?异频干扰:阻塞干扰

3)干扰表现 上行底噪≥=105db ping包延时大于正常小区,或无法ping成功KPI:切换、接通、掉线 4)外部干扰分频段分析

①F频点干扰状况 ?DCS1800阻塞干扰:16~30dB底噪抬升,UL吞吐量损失严重,甚至无法建立连 接 ?DCS1800杂散干扰:5dB的底噪抬升, UL吞吐量损失约10% ?DCS1800互调干扰:8~16dB的底噪抬升, UL吞吐量损失超过30% ?GSM900谐波干扰:约5dB的底噪抬升 ?PHS杂散:一般情况下轻微干扰,严重时TD-S或TD-L无法建立连接

②E频段干扰状况 ?E频段和Wifi相隔30MHz,比较近,且Wifi不遵循3GPP协议,射频指标比较差?普通室分系统下,80dB的合路器基本可以消除干扰,两者频率越远,受到的影响 越小。 ?外挂情况下,空间隔离需1m以上 ③D频段干扰状况 ?从频谱状况来说,存有各运营商TD-LTE间的干扰、与雷达间、射频天文、北斗、 Wifi以及MMDS、Wimax间的干扰 ?MMDS和WiMAX对D频段的同频干扰,可使底噪抬升20dB以上,严重时更会 导致TD-LTE业务无法建立连接

干扰分类分析方法

1 干扰分类 干扰从它的来源可分为系统内部干扰和外部干扰;而从对通话链路的干扰方向来分又可分为上行干扰和下行干扰。 干扰分析 图表1 干扰分类 2 干扰定位分析方法 2.1 下行干扰小区的定义及定位思路 2.1.1 下行干扰定义 目前网络中还没有直接可反映小区下行干扰程度的指标,本次评估通过MRR 报告统计结果中的下行强信号高质差小区来定位下行干扰小区(排除设备硬件故障、天馈异常及低话务造成的高质差),定义如下: a、MRR报告中下行质差话务比例大于等于5%,且下行弱信号话务比例小于

5%的小区为强信号高质差小区; b、接收电平<-90dbm为弱信号话务样本,即小于-90dbm的采样点和 / 下行信号强度采样点总和 = 下行弱信号话务比例。 2.1.2 下行干扰原因定位思路 1. 频率干扰 频率干扰是常见的网内干扰的原因,通过被干扰系数定位下行频率干扰小区: 被干扰系数大于0.4即可认为该小区受到了网络内部的频率干扰,会造成上、下行的网络干扰。 被干扰系数的计算方法请参见:频率干扰分析评估规范(v1[1].0).doc 产生频率干扰的原因可能有: a. 频率资源应用瓶颈,在话务密集区域现有频率资源不足造成的分配冲突; 覆盖影响(关联)小区集的总载频数大于可用频点数的小区,其中900M网络取大于95,1800M取大于125。 覆盖关联的定义:跟服务小区的CoInfRatio大于3%的小区认为有覆盖关联,这些小区集合做为覆盖关联集合。 具体还可细分为容量是否冗余,如果小区存在可减容余量,即按最忙时话务量和数据业务量折算的配置载波数可减容2个以上或半速率占比配置为20%时可减容载波数大于1的小区。 b. 因小区过覆盖(高层站、覆盖参数设置不当、湖面反射等)等造成的同 邻频干扰冲突。 通过动态覆盖分析系统排查发现的过覆盖小区,及被过覆盖小区干扰的小区,都归结为过覆盖造成的频率干扰。 过覆盖小区: 以服务小区覆盖方位角120度范围内最近的3个小区的距离做为服务小区的

抗干扰处理方法(1)

PLC抗干扰处理办法 一、模拟量抗干扰处理办法 1.1、模拟量类型: 1.1.1模拟量输入类型(可根据客户需求定制) 1.1.2 模拟量输出类型 1.2模拟量输入抗干扰处理办法 1.2.1热电偶 特点: 1.测温范围广: 2.K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。 3.E型:在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用 4.J型:既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工; 5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期

1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶; 注意: 1.热电偶不能和强电放在一个线槽内 2.使用隔离型热电偶(信号线与屏蔽线分开的热电偶) 处理方法: 1.检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确; 1.冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器) 2.将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开 3.加104瓷片电容、磁环做防干扰处理 4.开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线 5.集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。 6.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 7.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 8.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 9.采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。 1.2.2 PT100 特点: 1.测温范围:-99.9~499.9℃,线距越长线损越大 注意: 1.三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端 2.线距1.5m左右,若测温距离长需使用特殊的延长线(线损小) 3.滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。 4.采用双绞线作为信号线:串模干扰和被测信号的频率相当,这时很难用滤波的方法消除,此时可在信号源到PLC之间选用带屏蔽层的双绞线作为信号电缆,并确保接地正确可靠。采用双绞线作为信号线的目的是减少电磁干扰,双绞线能使各个小环路的感应电势相互抵消。 5.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 6.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 7,采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 8,采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC 1.2.3 NTC10K/50K/100K

LTE干扰

TD-LTE系统干扰分析 随着新技术的不断出现以及移动通信理念的变革,为了把握新一轮的技术浪潮,保持在移动通信领域的领导地位,2004年底3GPP启动了关于3G演进,即LTE的研究与标准化工作。随着LTER8、R9标准的冻结,LTE正日益成为业界的热点。 LTE系统同时定义了频分双工(FrequencyDivisionDuplexing,FDD) 和时分双工(Time Division Duplexing, TDD) 两种方式,但由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,LTE FDD 支持阵营更加强大,标准化与产业发展都领先于LTE TDD。2007年11月,3GPP RAN1会议通过了27家公司联署的LTE TDD融合帧结构的建议,统一了LTE TDD的两种帧结构。融合后的LTE TDD帧结构是以TD-SCDMA 的帧结构为基础的,这就为TD-SCDMA成功演进到LTE乃至4G标准奠定了基础。 在工信部TD-LTE工作组的领导下,规范制定、MTNet测试和6城市试验网正在紧张有序地进行。随着技术标准不断完善、产业链不断成熟、系统能力不断提高,TD-LTE将很快进入商用时代。 众所周知,干扰是影响网络质量的关键因素之一,对通话质量、掉话、切换、拥塞以及网络的覆盖、容量等均有显著影响。如何降低或消除干扰是TD-LTE网络性能能否充分发挥的重要环节,同时也是网络规划、优化的重要任务之一。 TD-LTE组网干扰分内部干扰和外部干扰,内部干扰包括同频组网干扰和异频干扰,外部干扰又包括系统间干扰及其它随机干扰。本文将重点分析系统内的同频和异频干扰,以及系统间与TD-SCDMA的干扰。 1. 系统内干扰 TD-LTE的组网包括同频和异频两种方式,对于同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,因此频谱效率高。但是对各子信道之间的正交性有严格的要求,否则会导致干扰。对于异频组网,由于频率的不同产生了一定的隔离度,但是仍然需要进行合理的频率规划,确保网络干扰最小,同时由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。 1.1.同频组网 1.1.1. 小区内干扰 由于OFDM的各子信道之间是正交的,这种特点决定了小区内干扰可以通过正交性加以克服。如果由于载波频率和相位的偏移等因素造成子信道间的干扰,可以在物理层通过采用先进的无线信号处理算法使这种干扰降到最低。因此,一般认为OFDMA系统中的小区内干扰很小。 1.1. 2. 小区间干扰 对于小区间的同频干扰,可以采用干扰抑制技术,主要包括干扰随机化、干扰消除和干扰协调。干扰随机化和干扰消除是一种被动的干扰抑制技术,对网络的载干比并无影响。 干扰随机化通过比如加扰、交织,跳频、扩频、动态调度等方式,使系统在时间和频率两个维度的干

LTE-NI干扰分析方法

LTE NI干扰分析方法 一、互调干扰 由于发射机的非线性特点,当多个不同频率的干扰信号通过非线性电路时,将会产生和有用信号相同或者相近的频率组合,形成干扰。 在同一个地点,有两台发射机以上,就可能产生互调干扰。发射机A发出的射频信号f A从空中再通过发射机B的天线,进入发射机B的功放级,与该机发射频率f B相互调制,产生出第三个频率f C。反之,同时产生f D。所以,在该处两台发射机发出四个频点的射频功率信号。其中f C和f D是互调产物(见图一)。 简单来说,当两个或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。由此形成的干扰,称为互调干扰。 二阶互调是乘以二就是二倍,三阶互调是乘以三也就是三倍 1 干扰来源 从频谱上看(见附录),LTE互调干扰主要有以下几种: 1、GSM900(上行890~915下行935~960)下行信号(包含移动联通信号)二阶互调影响F 频段。 2、DCS1800下行信号(包含移动联通信号)三阶或五阶互调影响F频段。 3、CDMA下行信号(800MHz)三阶互调影响E频段。 4、多网合路室分系统,GSM900与DCS1800三阶或五阶互调影响E频段。

(GSM系统, 上行/ MHz, 下行/ MHz, 带宽/ MHz, 双工间隔/ MHz, 双工信道数 GSM900, 890 ~ 915, 935 ~ 960, 2 ×25, 45, 124 GSM900E, 880 ~ 890, 925 ~ 935, 2 ×35, 45, 174 GSM1800, 1710 ~ 1785, 1805 ~ 1880, 2 ×75, 95, 374 GSM1900, 1850~1910, 1930~1990, 2 ×60, 80) 2 波形特点 1)小区级平均干扰电平跟2G话务关联大,2G话务忙时TD-LLTE干扰越大。 2)PRB级干扰呈现的特点是有一个多个干扰凸起,突起范围2~3RB数。 3 定位干扰小区方法 定位干扰小区主要有以下几步: ①频段定位 由于互调干扰主要来自GSM频段(包括移动联通),且主要影响F频段(D、E频段互调干扰来源为非移动手机无线频段,该干扰源必须通过现场扫频去定位)。CDMA下行占用800MHz频段,可能对E频段造成三阶互调。 ②站点勘察,筛选干扰小区 通过上站勘察,或根据小区工参,筛选出附近GSM小区,由于同一扇区的GSM900小区频点产生的二阶互调所对应的频率和LTE受干扰的PRB所对应的频率相同,可通过计算,列举出疑似干扰小区集。 ③GSM后台调整参数,LTE后台观察干扰 GSM后台逐个对“疑似干扰小区”进行临时降功率或更换频点方式调整15至30分钟,LTE后台同步观察干扰情况,若调整后干扰明显减弱,则可定位该小区为干扰小区。

如何消除变频器对PLC模拟量的干扰

如何消除变频器对PLC模拟量的干扰 在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 由于水系统的两台富士变频器离控制柜较远分别为30m和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定 要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 5.如无使用压线端子,接线时请注意。 二.关于接地 1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。 2.变频器的接地 ·400V级:C种接地(接地电阻10Ω以下)。 ·接地线切勿与焊机及动力设备共用。 ·接地线请按照电气设备技术基准所规定的导线线径规格。 如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。 ·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。 ·使用两台以上变频器的场合,请勿将接地线形成回路。

LTE-FDD测试频段干扰分析

1. 概述 在某运营商开始规模建设LTE-FDD试验网初期,因为使用的是1755MHz-1785MHz和1850MHz-1880MHz这未使用的60MHz的频段,需要对该频段整体的干扰情况进行了解,并由针对性的提出解决办法,将优化前移到网络的建设前,建设一张精品网络,为LTE-FDD试验网和商用建网提供技术支撑,保障网络的性能质量。 本文基于以上考虑,研究对该频段可能的干扰情况,并结合实际案例进行分析并提出解决方法。 2. LTE频段理论底噪 RBW(ResolutionBandwidth)扫频仪频率分辨率,代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异。 NFrev(NoiseFactor)为扫频仪接收噪声系数,决定扫频仪接收机灵敏度。 理论低噪=-174+10*log(RBW)+NFrev (公式2-1) 测试过程中,设置以下参数: 1. RBW取值为15KHz, 2. NFrev为噪声系数,不同的扫频仪该值不同,根据扫频仪厂家提供为8dB, 得到本次测试的理论低噪为-124dBm. 3. 频谱干扰分析 对1755MHz-1785MHz的频段和1850MHz-1880MHz的频段进行可能的干扰分析。

1755MHz-1785MHz的频段 1. 该频段被非法占用 2. 阻塞干扰:DCS1800(上行频段1710MHz-1755MHz) 3. 杂散干扰:DCS1800(上行频段1710MHz-1755MHz) 4. 互调干扰: a) DCS1800(上行频段1710MHz-1755MHz,下行1805MHz-1850MHz) b) GSM900/E-GSM(上行频段889MHz-909MHz) c) CDMA下行频段(下行频段870MHz-880MHz) 5. 二次谐波: a) GSM900/E-GSM(上行频段889MHz-909MHz使用) b) CDMA下行频段(870MHz-880MHz) 1850MHz-1880MHz频段 1. 该频段被非法占用 2. 阻塞干扰: a) DCS1800(下行频段1805MHz-1850MHz) b) F频段(1880MHz-1920MHz)

如何消除变频器对模拟量的干扰

如何消除变频器对模拟量的干扰 在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 由于水系统的两台富士变频器离控制柜较远分别为30m 和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 二.关于接地 1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。2.变频器的接地 ·400V级:C种接地(接地电阻10Ω以下)。 ·接地线切勿与焊机及动力设备共用。 ·接地线请按照电气设备技术基准所规定的导线线径规格。 如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。 ·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。

模拟量干扰解决方案

为了减少电子干扰,对于plc的模拟信号的线缆有什么要求?使用的屏蔽线缆的屏蔽层应不应接地?如果接地应如何接地?(两端,一端,那端)说说为什么? 模拟信号的线缆主要有以下几点要求: (1)开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线。信号类型有条件也最好采用4-20mA,而且线径最好选大点,如果负载是电磁阀类的,最好能选1.5的线,屏蔽线也要大线径的。当然留一点的富裕量是必须的。 (2)模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆。 (3)集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。 (4)信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 (5)交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 应该接地,根据情况选择是两端还是一端接地。 (1)为了减少电子干扰对于模拟信号应使用双绞屏蔽电缆模拟信号电缆的屏蔽层应该两端接地。 (2)但是如果电缆两端存在电位差将会在屏蔽层中产生等电线连接电流造成对模拟信号的干扰在这种情况下你应该让电缆的屏蔽层一端接地。 外部有强电流干扰,单点接地无法满足静电的最快放电。如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。 比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除干扰才是内层的目的。 PLC 控制应用系统中的干扰是一个涉及到方方面面的十分复杂的问题,因此在系统的抗干扰设计中应综合考虑各方面的因素,根据实际应用中干扰现象分析出干扰产生的原因,从而合理有效地采取抑制干扰措施,使PLC 应用系统可靠的工作。文章从硬件电路入手,分析了常见干扰的引入途径和相应的抑制措施,为PLC 应用系统有效抑制干扰提供了

tdlte系统干扰解决方案

烽火科技TD-LTE系统干扰分析 烽火科技李翔周勇 随着新技术的不断出现以及移动通信理念的变革,为了把握新一轮的技术浪潮,保持在移动通信领域的领导地位,2004年底3GPP启动了关于3G演进,即LTE的研究与标准化工作。随着LTE R8、R9标准的冻结,LTE正日益成为业界的热点。 LTE系统同时定义了频分双工(Frequency Division Duplexing, FDD) 和时分双工(Time Division Duplexing, TDD) 两种方式,但由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,LTE FDD支持阵营更加强大,标准化与产业发展都领先于LTE TDD。2007年11月,3GPP RAN1会议通过了27家公司联署的LTE TDD融合帧结构的建议,统一了LTE TDD的两种帧结构。融合后的LTE TDD帧结构是以TD-SCDMA的帧结构为基础的,这就为TD-SCDMA成功演进到LTE乃至4G标准奠定了基础。 在工信部TD-LTE工作组的领导下,规范制定、MTNet测试和6城市试验网正在紧张有序地进行。随着技术标准不断完善、产业链不断成熟、系统能力不断提高,TD-LTE将很快进入商用时代。 众所周知,干扰是影响网络质量的关键因素之一,对通话质量、掉话、切换、拥塞以及网络的覆盖、容量等均有显著影响。如何降低或消除干扰是TD-LTE网络性能能否充分发挥的重要环节,同时也是网络规划、优化的重要任务之一。 TD-LTE组网干扰分内部干扰和外部干扰,内部干扰包括同频组网干扰和异频干扰,外部干扰又包括系统间干扰及其它随机干扰。本文将重点分析系统内的同频和异频干扰,以及系统间与TD-SCDMA的干扰。 1.系统内干扰 TD-LTE的组网包括同频和异频两种方式,对于同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,因此频谱效率高。但是对各子信道之间的正交性有严格的要求,否则会导致干扰。对于异频组网,由于频率的不同产生了一定的隔离度,但是仍然需要进行合理的频率规划,确保网络干扰最小,同时由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。

TD-LTE干扰排查

TD-L TE干扰及分析处理 TD-LTE干扰及分析处理 (1) 一、概述 (2) 二、干扰的基本原理 (3) 1、杂散干扰 (3) 2、阻塞干扰 (3) 3、交调干扰 (4) 4、三阶交调干扰 (4) 三、干扰影响程度 (4) 四、干扰分析及处理 (4) 阻塞干扰 (5) 互调干扰 (6) 杂散干扰 (8) 外部干扰 (11) 网内干扰 (13) 混合干扰分析和整治 (15) 五、小结 (15)

一、概述 对于移动通信网络,保证业务质量的前提是使用干净的频谱,即该频段没有被其他系统使用或干扰。否则,会使受干扰系统的性能以及终端用户感受都会产生较大的负面影响。 随着4G LTE基站的逐步建设,目前已形成了2/3/4G基站共存的局面,系统间干扰的概率也大幅提升,在目前已建设的基站总,已发现大量的TD-LTE基站受到干扰。这些干扰主要包括2/3G小区对TD-LTE小区的阻塞、互调和杂散干扰,此外还有其他无线电设备,如手机信号屏蔽器带来的外部同频干扰,具体如下表: TD-LTE各频段上行容易受到的干扰 从上表可以看出,由于F频段与干扰源系统的频率比较接近,因此F频段受到的干扰最多。

二、干扰的基本原理 1、杂散干扰 由于发射机中的功放、混频器和滤波器等器件的非线性,会在工作频带以外很宽的范围内产生辐射信号分量, 若落在被干扰系统接收机的工作频带内时,会抬高了接收机的底噪,从而减低了接收灵敏度。 2、阻塞干扰 当输入信号为小信号,输出与输入成线性关系,当有用信号和强干扰一起加入接收机,系统工作在饱和区,输入输出不再是线性关系。 阻塞干扰是指当强的干扰信号与有用信号同时加入接收机时,强干扰会使接收机链路的非线性器件饱和,产生非线性失真。

消除变频器对PLC模拟量通道干扰的方法

一,信号隔离模块在消除变频器对PLC模拟量输出通道干扰中的应用 西门子S7-200PLC中模拟量输出模块发出一路4-20mA电流信号,接至西门子变频器MM430,变频器竟然不启动。疑似模拟量输出模块问题,用万用表测量模拟量输出模块的4-20mA输出信号,正常!开始怀疑是变频器控制信号输入端有了问题,换了一台同型号变频器,仍然是这样的。再用手持式信号发生器做4-20mA输出信号源,输出信号至变频器,这下变频器启动了,排除模拟量输出板卡和变频器故障。推测是变频器的干扰信号传导至模拟量通道,为了验证,在模拟量4-20mA输出通道中加装了一台信号隔离模块 TA3012,TA3012的3、4端子接外部24VDC供电电源,TA3012的输入端子5、6接模拟量输出模块,输出端子1、2端子接变频器。上电运行,变频器正常启动了。 因此,合理使用信号隔离模块可以有效的克服变频器对模拟量输出通道的干扰。 二,信号隔离模块在消除变频器对PLC模拟量输入通道干扰中的应用 在一个有西门子S7-200PLC、EM235四路模拟量输入模块、英威腾变频器,水泵、电磁流量计组成的一个自控系统中,问题如下:电磁流量计的流量信号输入至PLC的模拟量输入模块采集后,存在不小的测量误差,同时误差是动态变化的,当变频器控制泵运转的时候,误差会变的更加明显。经过仔细排查,发现,位于工业现场的电磁流量计的4-20mA电流输出信号输入至控制室后被PLC 的EM235模块采集,中间没有加信号隔离模块等设备,因而产生了由于现场地电位和控制室地电位的不同而附加的测量误差,同时,在变频器启动的时候,通过电源线和信号线传导了变频器的高次谐波干扰,因而测量信号会变得更加不稳定。通过在在电磁流量计和EM235之间安装信号隔离模块TA2012,效果立竿见影,干扰消失。 可见,合理的使用信号隔离模块,可以有效的消除变频器对PLC模拟量输入通道的干扰。 以上工程应用案例表明,信号隔离模块在消除变频器对PLC模拟量通道干扰方面发挥着积极作用。 如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注https://www.360docs.net/doc/8f2179787.html,/

对模拟量的处理方法

对模拟量的处理方法 1. 模拟量的处理 对于采集到的重量信号,采用算术平均值滤波法(多次采样,求和求平均值)减小各种干扰因素引起的误差。 2. 量程转换 由于各个通道的模拟量量程不同,所以要进行量程转换,以便正确显示重量值,量程转换公式: ()000 10 1S M M M M S S Y out +---= Y —转换后的结果 1M --变送器输出为满量程时模/数转换器的转换值 0M --变送器输出为零点时模/数转换器的转换值 out M --某一次采样时模/数转换器的转换值 1S --测量参数的上限 0S --测量参数的下限 如:假定某一通道测量的模拟量参数是液位,下限是mm S 2000=,上限是mm S 12001=,模拟量信号是1V ~5V ,8位模/数转换器。当液位是1200mm 时,变送器输出为满量程5V ,模拟量 信号的A/D 转换值2551=M ;当液位是200mm 时,变送器输出为是1V (零点),模拟量信号的A/D 转换值510=M 。假定液位是800mm 时,模拟信号的输出是x V x V V mm mm mm mm 1152008002001200--= -- V x 4.3=, 这时A/D 转换器的转换值 out M V V 4.32555= out M =173,代入公式 ()00010 1S M M M M S S Y out +---= ()7982005117351 2552001200=+---= 为了提高精度和减少运算时间,将)(-IN V 接1.00V 参考电压,这时00=M ,当模拟信号输出是1V ,A/D 转换输出结果是0,假设当液位是800mm 时,模拟信号的输出是3.4V ,这时out M =153,代入公式 ()00010 1S M M M M S S Y out +---= ()80020001730 2552001200=+---=

相关文档
最新文档