第六章-微元法的应用

合集下载

物理解题方法6微元法

物理解题方法6微元法
MOMODA POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.
*
*
二、其它类的“微元”模型(范例)
[例6]如图所示,S为一点光源。M为一平面镜,光屏与平面镜平行放置。SO是一条垂直照射到M上的光线,已知SO=L,若M以角速度绕O点逆时针匀速转动,则转过30o角时光点S’在屏上移动的瞬时速率v=___________。
*
*
[例7]如图所示,质量为m的均匀闭合绳圈套在表面光滑,半顶角为α的圆锥上,当绳圈平衡时,绳中的张力是多大?
*
*
[例5]右图为阴极射线管示意图。由阴极K产生的热电子(初速为0)经电压U加速后,打在阳极A板上。若A板附近单位体积内的电子数为N,电子打到A板上即被吸收。求电子打击A板过程中,A板所受的压强。
*
*
3、“柱体微元”模型在98年高考17题中的应用
[题目]来自质子源的质子(初速为0),经一加速电压为800Kv的直线加速器加速,形成电流强度为1mA的细柱形质子流。已知质子电量e=1.6×10-19C。这束质子流每秒打到靶上的质子数为——————————。假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距L和4L的两处,各取一段极短的相等长度的质子流,其中的质子数分别为n1和n2,则n1:n2=——————————。
1、“质量柱体模型”---------------△m=ρsv△t [例1]某地强风的风速为v,设空气的密度为ρ,如果将通过横截面积为s的风的动能全部转化为电能,则其电功率多大?

定积分的部分应用

定积分的部分应用

第六章 定积分的应用§6-1 微元法用定积分解决已知变化率求总量问题的过程.若某量在[a ,b ]上的变化率f (x ),求它在[a ,b]上的总累积量S : 因为分割区间、取i 都要求有任意性,求和、求极限又是固定模式,故可简述过程:再简化一下,则变成:称为微元.以求曲边梯形面积A 问题为例,用微元法就可以简写成这样:任取微段[x ,x +dx ],曲边梯形在此微段部分的面积微元dA =f (x )dx ,所以A =⎰ba dx x f )(.§6-2定积分在几何中的应用一、平面图形的面积1. 直角坐标系下平面图形的面积 (1)X -型与Y -型平面图形的面积把由直线x =a,x =b (a <b )及两条连续曲线y =f 1(x ), y =f 2(x ),(f 1(x )≤f 2(x ))所围成的平面图形称为X y =d (c <d )y ) ≤g 2(y ))注意 构成图形的两条直线,有时也可能蜕化为点.把X -型图形称为X -型双曲边梯形,把Y -型图形称为Y -型双曲边梯形.1)用微元法分析X -型平面图形的面积取横坐标x 为积分变量,x ∈[a ,b ].在区间[a ,b ]上任取一微段[x ,x +dx ],该微段上的图形的面积dA 可以用高为f 2(x )-f 1(x )、底为dx 的矩形的面积近似代替.因此dA =[ f 2(x )-f 1(x )]dx , 从而 A =.)]()([ 12⎰-ba dx x f x f (1)2)微元法分析Y -型图形的面积A =.)]()([ 12⎰-dc dy y g y g (2)对于非X -型、非Y -型平面图形,我们可以进行适当的分割,划分成若干个X -型图形和Y -型图形,然后利用前面介绍的方法去求面积.例1 求由两条抛物线y 2=x , y =x 2所围成图形的面积A .解 解方程组,,22x y x y ==得交点(0,0),(1,1).将该平面图形视为X -型图形,确定积分变量为x ,积分 区间为[0,1].由公式(1),所求图形的面积为A =1 0 31 0 23132)(23x x dx x x -=-⎰=31. 例2 求由曲线y 2=2x 与直线y =-2x +2所围成图形的面积A . 解解方程组,22 ,22+-==x y x y 得交点(21,1),(2,-2). 积分变量选择y ,积分区间为[-2,1].所求图形的面积为 A =12- 31 2- 22]6141[]21)211[(y y y dy y y ⎰--=--=49.例3 求由曲线y =sin x ,y =cos x 和直线x =2π及y 轴所围成图形的面积A .解 在x =0与x =2π之间,两条曲线有两个交点: B (4π,22),C (45π,-22). 由图易知,整个图形可以划分为[0,4π],[4π,45π],[45π,2π]三段,在每一段上都是X -型图形.应用公式(1),所求平面图形的面积为A =⎰⎰⎰-+-+-4455 02)sin (cos )cos (sin )sin (cos πππππdx x x dx x x dx x x =42.2. 极坐标系中曲边扇形的面积在极坐标系中,称由连续曲线r =r (θ)及两条射线θ=α, θ=β,(α<β)所围成的平面图形为曲边扇形.在[α,β]上任取一微段[θ,θ+d θ],面积微元dA 表示1这个角内的小曲边扇形面积,dA =21[r (θ)]2d θ 所以 A =⎰βαθθ 2)]([21d r . (3) 例5 求心形线r =a (1+cos θ),(a >0)所围成图形的积A .解 因为心形线对称于极轴,所以所求图形的面积 A 是极轴上方图形A 1的两倍.极轴上方部分所对应的极角变化范围为θ∈[0,π],由 公式(3),所求图形的面积为A =2⨯⎰βαθθ 2)]([21d r=⎰⎰++=+ππθθθθθ 022 02)cos cos 21()]cos 1([d a d a=)23|2sin 41sin 22302=++ ⎝⎛πθθθa πa 2.二、空间立体的体积 1. 一般情形设有一立体,它夹在垂直于x 轴的两个平面x =a , x =b 之间(包括只与平面交于一点的情况),其中a <b ,如图所示.如果用任意垂直于x 轴的平面去截它,所得的截交面面积A 可得为A =A (x ),则用微元法可以得到立体的体积V 的计算公式.过微段[x ,x +dx ]两端作垂直于x 轴的平面,截得立体一微片,对应体积微元dV =A (x )dx . 因此立体体积V =.)( ⎰ba dx x A (4)例5 经过一如图所示的椭圆柱体的底面的短轴、与底面交成角α的一平面,可截得圆柱体一块楔形块, 求此楔形块的体积V .解 据图,椭圆方程为64422y x +=1. 过任意x ∈[-2,2]处作垂直于x 轴的平面,与楔形块 截交面为图示直角三角形,其面积为A (x )=21y ⋅y tan α=21y 2tan α=32(1-42x )tan α=8(4-x 2)tan α, 应用公式(4)V =⎰--22 2)4(tan 8dx x α=16tan α⎰-22)4(dx x =3256tan α.2. 旋转体的体积旋转体就是由一个平面图形绕这平面内的一条直线l 旋转一周而成的空间立体,其中直线l 称为该旋转体的旋转轴.把X -型图形的单曲边梯形绕x 旋转得到旋转体,则公式(4)中的截面面积A (x )是很容易得到的.如图,设曲边方程为y =f (x ), x ∈[a ,b ](a <b ),旋转体体积记作V x .过任意x ∈[a ,b ]处作垂直于x 轴的截面,所得截面是半径为|f (x )|的圆,因此截面面积 A (x )= π|f (x )|2.应用公式(4),即得V x =π⎰ba dx x f 2)]([ (5)类似可得Y -型图形的单曲边梯形绕y 轴旋转得到的旋转体的体积V y 计算公式 V y =π⎰d c dy y g 2)]([ (6)其中的x =g (y )是曲边方程,c ,d (c <d )为曲边梯形的上下界.例6 求曲线y =sin x (0≤x ≤π)绕x 轴旋转一周所得的旋转体体积V x .解 V x =π⎰b a dx x f 2)]([=π⎰π0 2)(sin dx x=⎰-=-ππππ0 0 ]22sin [2)2cos 1(2x x dx x =22π. 例7 计算椭圆2222bya x +=1(a >b >0)绕x 轴及y 轴旋转而成的椭球体的体积V x ,V y . 解 (1)绕x 轴旋转,旋转椭球体如图所示,可看作上半椭圆y =22x a ab-及x 轴围成的单曲边梯形绕x 轴旋转而成的,由公式(5)得V x =π⎰-a a dx x a a b - 222)(=⎰-a dx x a a b 02222)(2π =a 0 3222]3[2x x a a b -π=34πab 2.(2)绕y 轴旋转,旋转椭球体如图所示,可看作右半 椭圆x =22y b ba-及y 轴围成的单曲边梯形绕y 轴旋转而成的,由公式(6)得V y =π⎰-bb dy y b b a - 222)(=⎰-b dy y b ba 0 2222)(2π =b 0 3222]3[2y y b ba -π=34πa 2b .f (x当a =b =R 时,即得球体的体积公式V =34πR 3. 例8 求由抛物线y =x 与直线y =0,y =1和y 轴围成的平面图形,绕y 轴旋转而成的旋转体的体积V y .解 抛物线方程改写为x =y 2,y ∈[0,1]. 由公式(6)可得所求旋转体的体积为 V y =π55])[(1 0514122ππ===⎰⎰y dy y dy y .三、平面曲线的弧长1. 表示为直角坐标方程的曲线的长度计算公式称切线连续变化的曲线为光滑曲线.若光滑曲线C 由直角坐标方程y =f (x ),(a ≤x ≤b ),则导数f '(x )在[a ,b ]上连续.如图所示,在[a ,b ]上任意取一微段[x ,x +dx ],对应的曲线微段为AB ,C 在点A 处的切线也有对应微段AP .以AP 替代AB ,注意切线改变量是微分,即得曲线长度微元d s 的计算公式d s=22)()(dy dx +, (7) 得到的公式称为弧微分公式.以C 的方程y =f (x )代入,得 ds =2)]([1x f '+dx.据微元法,即得直角坐标方程表示的曲线长度的一般计算公式s =⎰ba ds =⎰'+ba dx x f 2)]([1 (8)若光滑曲线C 由方程x =g (y )(c ≤y ≤d )给出,则g '(y )在[c ,d ]上连续,根据弧微分公式(7)及微元法,同样可得曲线C 的弧长计算公式为 s =⎰'+d cdy y g 2)]([1 (9)例9 求曲线y =41x 2-21ln x (1≤x ≤e )的弧长s . 解 y '=21x -x 21=21(x -x1),ds =2)]([1x f '+dx =)1(21)1(4112x dx x x +=-+dx , 所求弧长为s =⎰ba ds =41]ln 21[21)1(21e1 2 1=+=+⎰x x dx x x e (e 2+1). 例10 求心形线r =a (1+cos θ) (a >0)的全长.解 θ∈[0,2π];又因为心形线关于极轴对称,全长是其半长的两倍,所以θ∈[0,π].ds =22)]([)]([θθr r +'d θ=2)cos 1(2θ+d θ=2a cos 2θd θ,所以 s =2⎰πθθ2cos2d a =8a .§6—3 定积分在物理中的部分应用一、变力做功物体在一个常力F 的作用下,沿力的方向作直线运动,则当物体移动距离s 时,F 所作的功W =F ⋅s .物体在变力作用下做功的问题,用微元法来求解.设力F 的方向不变,但其大小随着位移而连续变化;物体在F 的作用下,沿平行于力的作用方向作直线运动.取物体运动路径为x 轴,位移量为x ,则F =F (x ).现物体从点x =a 移动到点x =b ,求力F 作功W .在区间[a ,b ]上任取一微段[x ,x +dx ],力F 在此微段上做功微元为dW .由于F (x )的连续性,物体移动在这一微段时,力F (x )的变化很小,它可以近似的看成不变,那么在微段dx 上就可以使用常力做功的公式.于是,功的微元为dW =F (x )dx . 作功W 是功微元dW 在[a ,b ]上的累积,据微元法W =⎰ba dW =⎰ba dx x F )(. (12)例1 在弹簧弹性限度之内,外力拉长或压缩弹簧,需要克服弹力作功.已知弹簧每拉长0.02m 要用9.8N 的力,求把弹簧拉长0.1m 时,外力所做的功W .解 据虎克定律,在弹性限度内,拉伸弹簧所需要的外力F 和弹簧的伸长量x 成正比,即 F (x )=kx ,其中k 为弹性系数. 据题设,x =0.02m 时,F =9.8N ,所以 9.8=0.02k ,得k =4.9⨯102(N/m).所以外力需要克服的弹力为 F (x )=4.9⨯102x .由(12)可知,当弹簧被拉长0.1m 时,外力克服弹力作功W =⎰⨯1.0 0 2109.4xdx =21⨯4.9⨯1021.0 0 2x =2.45(J).例2 一个点电荷O 会形成一个电场,其表现就是对周围的其他电荷A 产生沿径向OA作用的引力或斥力;电场内单位正电荷所受的力称为电场强度.据库仑定律,距点电荷r =OA 处的电场强度为F (r )=k 2r q(k 为比例常数,q 为点电荷O 的电量). 现若电场中单位正电荷A 沿OA 从r =OA =a 移到r =OB =b (a <b ),求电场对它所作的功W .解 这是在变力F (r )对移动物体作用下作功问题.因 为作用力和移动路径在同一直线上,故以r 为积分变量,可应用公式(12),得W =⎰b adr rq k 2=kq b a r ]1[-=kq (b a 11-).二、液体的压力单位面积上所受的垂直于面的压力称为压强,即p=ρ⋅h,(其中ρ是液体密度,单位是kg/3m,h是深度,单位是m).如果沉于一定深度的承压面平行于液体表面,则此时承压面上所有点处的h是常数,承压面所受的压力P=ρ⋅h⋅A,其中A是单位为m2的承压面的面积.若承压面不平行于液体表面,此时承压面不同点处的深度未必相同,压强也就因点而异.考虑一种特殊情况:设承压面如图那样为一垂直于液体表面的薄板,薄板在深度为x 处的宽度为f(x),求液体对薄板的压力.薄板沿深度为x的水平线上压强相同,为ρ⋅x,现在在薄板深x处取一高为dx的微条(见图中斜线阴影区域),设其面积为dA.微条上受液体压力为压力微元dP.近似认为在该微条上压强相同,为ρ⋅x,则dP=ρ⋅xdA;又深度为x处薄板宽为f(x),故dA=f(x)dx,因此dP=ρ⋅x⋅f(x)dx.若承压面的入水深度从a到b(a<b),则薄板承压面上液体总压力是x从a到b所有压力微元dP的累积.据微元法P=⎰badxxxf)(ρ=ρ⎰badxxxf)(.(13)。

微元法在高中物理中的运用及技巧简说

微元法在高中物理中的运用及技巧简说

微元法在高中物理中的运用及技巧简说微积分在高中要求不是很高,但它的思想可以说贯穿了整个高中物理。

比如瞬时速度、瞬时加速度、感应电动势、匀变速直线运动位移公式、重力做功的特点等都用到了微元法的思想,学会这种研究问题的方法可以丰富我们处理问题的手段,拓展我们的思维,特别是在解决高层面物理问题时,常常起到事半功倍的效果。

微元法,即在处理问题时,从事物的极小部分(微元)分析入手,达到解决事物整体问题的方法。

微元法基本思想内涵可以概括为两个重要方面:一是“无限分割”(取微元);二是“逼近”(对微元作“低细节”描述)。

用微元法解决问题的特点是“大处着眼,小处着手”,具体说即是对事物作整体客观观察后,必须取出该事物的某一小单元,即微元进行分析,通过微元构造“低细节”的物理描述,最终解决整体问题。

所以微元法解决问题的两要诀就是取微元与对微元作“低细节”描述。

如何取微元呢?主要有这么几种:对整体对象进行无限分割得到“线元”、“面元”、“体元”、“角元”等;也可以分割一段时间或过程,得到“时间元”、“元过程”;还可以对各种物理量进行分割,得到诸如“元电荷”、“元功”、“元电流”等相应的元物理量;这些微元都是通过无限分割得到的,要多么小就有多么小的“无穷小量”,解决整体问题就要从它们入手。

对微元作“低细节”描述,即通过对微元性质作合理近似描述,在微元是无穷小量的前提下,通过求取极限,达到向精确描述的逼近。

关于逼近有这么常见的几种逼近:①“直”向“曲”的逼近。

例如质量为m的物体由A沿曲线运动到B时,计算重力做的功。

我们将曲线AB细分成n段小弧,任意一段元弧可以近似地看成一段直线,则重力做的元功为Wi=mglicosθ=mgHi,在无限分割下,即n→∞的条件下,WG=ΣWi=mgH;②平均值向瞬时值的逼近。

例如瞬时速度的求解,设某时刻t至邻近一时间点t’长度为△x,则物体在时间△t内平均速度为■=■,当△t→0时,该时间元的平均速度即时刻的瞬时速度。

微元法在高中物理中应用

微元法在高中物理中应用

微元法在高中物理中应用微元法是一种以计算机模拟和分析实际现象的方法,在若干学科中,如力学、热力学、流体力学、电磁学、材料力学等有广泛的应用。

物理学也是其中的重要应用领域,微元法在高中物理教学中的应用是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率。

一、微元法的基本原理微元法是一种基于数值模拟的方法,它将物理实验中的复杂现象分解为若干基本现象,然后逐一计算,从而获得结果。

它的基本思想是:将实际情况分解为多个简单的微元,将每个微元的物理量用数值代替,经过一系列的计算,可以得出实验结果。

二、微元法在高中物理教学中的应用1、模拟物理实验微元法可以用来模拟各种物理实验,提供学生更直观的实验体验,更加直观地理解物理现象。

比如,在学习曲线运动时,可以用微元法模拟出曲线运动的过程,使学生能够更加直观地理解曲线运动的物理原理。

同时,微元法还可以用来模拟物理实验,可以替代传统的实验方式,节省采购实验器材的时间和成本。

2、开展深入的物理探究微元法可以模拟出物理实验的过程,让学生可以更深入地探究物理现象。

比如,在学习静电场时,可以用微元法模拟出电荷在静电场中的运动,更深入地理解静电场的物理原理。

3、提高学生的学习效率微元法可以用来计算物理实验的结果,可以极大地提高学生的学习效率,节省实验时间。

比如,在学习电磁学时,可以用微元法模拟出电磁波的传播,而不需要耗费大量的时间来实验,更有效地掌握电磁学的知识。

三、微元法的不足微元法虽然在高中物理教学中有着广泛的应用,但也存在一些不足。

首先,微元法要求计算机具备较高的计算能力,而不是所有的学校都能满足这一要求;其次,微元法要求有一定的编程能力,因此,学习微元法需要耗费较多的学习时间;最后,微元法模拟的物理实验结果可能会有误差,因此,学生应该在理解物理原理的基础上,更加细致地检查模拟的结果。

总之,微元法是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率,但也有一定的不足,所以,在开展微元法的应用时,应该注意避免其缺陷,以取得最佳的教学效果。

微元法在电磁感应中的应用

微元法在电磁感应中的应用

注:
解:将整个导体棒分割成n个小线元,小线元端点到轴线的距离分别为r-r(=0),r , r ,……,r ,r ,……,r ,r (= a),第i个线元的长度为Δ r =r ,当Δ r
0 1
很小时,可以认为该线元上各点的速度都为vi=ω ri,各点的磁感应强度都为 Bi=Kri, 该线元因切割磁感线而产生的感应电动势为 ΔE Bvi Δri Kri ri Δri K ri2 Δri ① i 整个棒上的电动势为
2
代入②式,得
n 1 1 1 E K (ri3 ri3 1 ) K[(r13 r03 ) (r23 r13 ) (rn3 rn31 )] Ka 3 3 3 3 i 1


由全电路欧姆定律,导体棒通过的电流为
E Ka 3 I R 3R
2
式中已略去高阶小量(Δri)2。该细圆环带上、下表面所带电荷量之和为
Δqi 2σΔS i 2σ 0 ri2 2π ri Δri 4π 0 Δri ri
设时刻t,细圆环转动的角速度为 , 0 t 单位时间内,通过它的“横截面”的电荷量,即为电流
ΔI i Δqi

2 2 2k 0 (a 2 a1 ) πa 0 2k 0 (a 2 a1 ) πa 0 E t a1 a 2 t a1 a 2

由全电路欧姆定律可知,导线环内感应电流的大小为
2 E 2k 0 (a 2 a1 ) πa 0 I R a1 a 2 R
二、微元法解决问题的一般思路
(1)将所研究的对象进行无限分割,或假设研究对象发生了微小的 变化,如伸长了一小段长度Δl、质量减少了Δm、发生了一小段位 移Δx、经历了一小段时间Δt等等。 (2)从该微元入手,以某个微元为研究对象或微小变化为研究过程, 找出所选取的微元或微小变化所遵循的物理规律,列出对应的物理 方程。

高中物理解题中“微元法”的应用

高中物理解题中“微元法”的应用

高中物理解题中“微元法”的应用作者:王进来源:《理科考试研究·高中》2014年第07期“微元法”是从局部到整体的思维方式,将复杂的问题进行分解,使复杂的过程变得简单.物理学本身就是一门比较复杂难懂的学科,学生学习的过程中,会遇到很多比较繁琐的物理过程,微元法的应用,能够将物理过程分解成几个简单的过程,通过对简单过程的分析,最后整体处理,使学生在解决这一类问题时可以很容易找到切入点,以简单的过程代替繁杂的过程,学生通过这一解题过程,能够增强对物理学习的信心,对物理学习有重要的促进作用.一、“微元法”的解题思路“微元法”指从问题的局部开始研究、进而研究问题整体的一种综合分析的方式.对于一些比较复杂的物理问题,可采用微元法进行解题.首先研究问题,将问题进行分解,使问题中的各个部分分解成相应的微元.微元是整体中的一小部分,在物理问题中经常出现的微元质量、时间和体积等.虽然微元属于小的概念,但是能够一定程度上代表问题整体的特征.对于分解之后的微元,要根据物理原理,将其模型化,并采用相应的物理方法进行各个微元的求解.最后对各个微元之间的关系进行分析,通过适当的物理方法或者数学方法,对各个微元的求解结果进行相应的处理,进而得出整个问题的解题过程和最终答案.二、高中物理解题中“微元法”的具体应用1.质量元相关题目存在质量元的高中物理题目中,大多数的规律都是差不多的.根据“微元法”的解题思路,首先将问题进行分解,得到很多小的质量元.在这些质量元中选择出一个进行研究,再根据质量元之间的关系对其进行综合分析,最后得题目的解题过程和最终结果.例1一辆加速启动的火车上,其中一节车厢中有一桶水,水面和水平面之间存在夹角,其夹角为θ,问火车在加速行驶过程中的加速度.解析对于这个问题,可以采用“微元法”进行求解.在水面上,任意选取一点作为水元.水元的质量为Δm,根据受力情况可得出图1.如果合力F合=Δmgtanθ,根据牛顿第二定律的内容不难得到F合=ma,进而可以得出加速度a=gtanθ,方向和启动方向一致.例2在建筑工地上常常会堆放一些黄砂,无论堆得方式怎样,黄砂堆的锥角总是不变的.如果圆锥的底周长是12.1m,高1.5m,问黄砂之间存在的动摩擦因数是多少.注:最大静摩擦力=滑动摩擦力.解析如图2所示,黄砂堆的锥角为θ,在锥面中任意选取一点作为砂粒的质量元,对质量元Δm进行受力分析.当质量元Δm沿着锥面滑动停止时,表示质量元Δm处于平衡状态,这时的摩擦力为最大静摩擦力,所以得出Δmgsinθ=βΔmgcosθ,即tanθ=β.由于β不变,所以锥角θ保持不变的.得出结果β=tanθ=2πh/1=2π×1.5/12.5≈0.75.2.时间元相关题目时间这一概念在物理问题中特别常见.在解题过程中,由于除了时间以外的元素都是变量元素,这时采用“微元法”解题比较容易,而且与常规的解题方式相比,“微元法”的应用,能够提高解题过程和结果的正确性,所以必须掌握“微元法”,求解时间元类的题目时,能够以最有效的方式达到解题目的.例3图3为一个有理想边界的匀强磁场,一个正方形的必和导线框在绝缘水平面上匀速运动,速度为v1,当导线框穿过磁场时之后速度变为v2,此时仍是匀速运动.当导线框完全在在磁场中时,运动的速度u为().A.u>12(v1+v2)B.u=12(v1+v2)C.u解析假设导线框穿入和穿出磁场时的瞬时速度为v,加速度为a,这样可以得出E=LvBE=IRFB=ILB-FB=ma.所以能够求出瞬时速度v和加速度a的关系为-L2B2Rv=ma.这个等式中,瞬时速度v和加速度a为变量,时间元为常量,这时可采用“微元法”进行解题.首先在等式两端同时乘以时间元Δt,得到-L2B2RvΔt=maΔt,由于瞬时速度v和加速度a不具有平权性,需要进行换元,在时间元Δt之内,瞬时速度v和加速度a可看做不变,所以将Δx=vΔt、Δv=aΔt带入上面的等式中得到-L2B2R.此式中,Δx和Δv权函数分别为f1(x)=-L2B2R=k1=常量f2(v)=m=k2=常量.所以应进行下一步的叠加环节,穿入时-穿出时-,通过叠加可以得出-L3B2R=m(u-v1),-L3B2R=m(v2-u),将两式联立得出最终结果u=12(v1+v2).三、结束语随着新课程改革的普遍实施,物理科目对于学生来说增加了学习的难度,对于一些复杂的问题,很多学生无从下手,或者很容易出现问题.所以教师应经常对学生渗透微元法的解题方式,简化复杂的物理过程,从局部入手,解决局部问题之后再进行整体处理,这样以几个简单的过程代替繁琐的过程,使问题的解决更加容易,正确率更高.微元法的应用,不仅能够提高学生的解题能力、学习效率,以及物理学习能力,对于学生思维能力和科学素质的培养也有一定的促进作用.。

微元法在高中物理中的应用

微元法在高中物理中的应用

微元法在高中物理中的应用
微元法是一种分析、解决物理问题的常用方法,其基本思想是将研究对象(物体或物理过程)进行无限细分,从而将复杂的物理问题转化为简单的、易于解决的子问题,以便更好地进行分析和求解。

在高中物理中,微元法可以应用于以下几个方面:
1.计算物体的面积和体积:通过微元法,可以将物体的面积和体
积分别分成无限小的部分,然后对这些部分进行求解,最终将这些部分的解加起来,得到物体的面积和体积。

2.计算物理过程中的变化量:通过微元法,可以将物理过程分成
无限小的部分,然后对这些部分进行求解,最终将这些部分的解加起来,得到整个物理过程中的变化量。

3.计算物理量在时间或空间上的变化率:通过微元法,可以将时
间或空间分成无限小的部分,然后对这些部分进行求解,最终将这些部分的解加起来,得到物理量在时间或空间上的变化
率。

总之,微元法在高中物理中有着广泛的应用,可以帮助我们更好地解决一些复杂的物理问题。

微元法在电磁学中的应用

微元法在电磁学中的应用

微元法在电磁学中的应用
微元法在电磁学中的应用非常广泛,可以用来解决电荷分布、电场、电势、电磁感应等问题。

1. 电荷分布:微元法可以用于计算不规则形状电荷分布的总电荷量。

将电荷分布划分为许多微小电荷元,然后对每个微小电荷元进行求和,就可以得到整个电荷分布的总电荷量。

2. 电场:微元法可以用于计算电荷在某点产生的电场。

通过将电荷分布划分为微小电荷元,然后计算每个微小电荷元对某一点的电场贡献,再将所有微小电荷元的贡献相加,就可以得到该点的总电场。

3. 电势:微元法可以用于计算电荷在某一点产生的电势。

通过将电荷分布划分为微小电荷元,然后计算每个微小电荷元对某一点的电势贡献,再将所有微小电荷元的贡献相加,就可以得到该点的总电势。

4. 电磁感应:在计算电磁感应时,可以使用微元法来计算由磁场引起的感应电动势。

将磁场分布划分为微小磁场元,然后计算每个微小磁场元对某一回路的感应电动势贡献,再将所有微小磁场元的贡献相加,就可以得到该回路的总感应电动势。

微元法在电磁学中可以帮助我们计算复杂的电荷分布、电场、电势和电磁感应问题,通过将问题划分为微小元素并进行求和,使得计算更加简化和准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章微元法的应用 (2)§6.1 微元法 (2)§6.2 定积分在几何学中的应用 (4)§6.3 定积分在物理学中的应用 (9)§6.4 定积分在其它领域的应用 (11)总结与提高 (14)复习题六 (14)第六章 微元法的应用如阿基米德一个根本的那个人的、牛顿与高斯这样的最伟大的数学家,总是不偏不倚地把理论与应用结合起来。

——克莱因“微元法”就是根据定积分的定义抽象出来的将实际问题转化成定积分的一种简单直接方法,就是将研究对象分割成许多微小的单元,或从研究对象上选取某一“微元”加以分析,从而可以化曲为直,使变量、难以确定的量为常量、容易确定的量.通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法。

在处理问题时,从对事物的极小部分(微元)分析入手,达到解决事物整体的方法.这是一种深刻的思维方法,是先分割逼近,找到规律,再累计求和,达到了解整体. 微元法在几何、物理、力学和工程技术等方面都有着极其广泛的应用.本章我们首先重点讨论定积分在几何上的应用;其次,讨论它在物理、力学方面的一些应用.最后再讨论在工程技术以及经济学方面的应用.§6.1 微元法6.1.1 微元法的原理定积分概念的引入,体现了一种思想,它就是:在微观意义下,没有什么“曲、直”之分,曲顶的图形可以看成是平顶的,“不均匀”的可以看成是“均匀”的。

简单地说,就是以“直”代“曲”,以“不变”代“变”;的思想.直观的看,对于图所示图形的面积时,在[a , b ]上任取一点x ,此处任给一个“宽度”x ∆,那么这个微小的“矩形”的面积为dx x f x x f dS )()(=∆=此时我们把dx x f dS )(=称为“面积微元”。

把这些微小的面积全部累加起来,就是整个图形的面积了。

这种累加通过什么来实现呢?当然就是通过积分,它就是⎰=badx x f S )(这些问题可化为定积分来计算的待求量A 有两个特点:一是对区间的可加性,这一特点是容易看出的;关键在于另一特点,即找任一部分量的表达式:()A f x x x ε∆=∆+∆(6.1.1)然而,人们往往根据问题的几何或物理特征,自然的将注意力集中于找()f x x ∆这一项。

但不要忘记,这一项与A ∆之差在0x ∆→时,应是比x ∆高阶的无穷小量(即舍弃的部分更微小),借用微分的记号,将这一项记为()dA f x dx = (6.1.2)这个量dA 称为待求量A 的元素或微元。

用定积分解决实际问题的关键就在于求出微图6.1.1 微元法的意义元。

设()f x 在[,]a b 上连续,则它的变动上限定积分()()xaU x f t dt=⎰ (6.1.3)是()f x 的一个原函数,即()()dU x f x dx =.于是,()bbaaf x dx dU U==⎰⎰ (6.1.4)这表明连续函数()f x 的定积分就是(6.1.1)的微分的定积分.由理论依据(6.1.2)可知,所求总量A 就是其微分()dU f x dx =从a 到b 的无限积累(即积分)()baU f x dx =⎰,这种取微元()f x dx 计算积分或原函数的方法称为微元法.如,求变速直线运动的质点的运行路程的时候,我们在T 0到T 1的时间内,任取一个时间值t ,再任给一个时间增量t ∆,那么在这个非常短暂的时间内(t ∆内)质点作匀速运动,质点的速度为v ( t ),其运行的路程当然就是dt t v t t v dS )()(=∆=()dS v t dt =就是“路程微元”,把它们全部累加起来之后就是:⎰=1)(T T dtt v S用这样的思想方法,将来我们还可以得出“弧长微元”、“体积微元”、“质量微元”和“功微元”等等。

这是一种解决实际问题非常有效、可行的好方法。

6.1.2 微元法的主要步骤设想有一个函数()F x , 所求量A 可以表示为: ()()A F b F a =-,然后实际进行以下三步:第一步取dx , 并确定它的变化区间[,]a b ;第二步设想把[,]a b 分成许多个小区间, 取其中任一个小区间[,]x x dx +, 相应于这个小区间的部分量A ∆ 能近似地表示为()f x 与dx 的乘积),就把()f x dx 称为量A 的微元并记作dA , 即()A dA f x dx ∆≈=第三步在区间[,]a b 上积分, 得到()()()baA f x dx F b F a ==-⎰Q =ba这里的关键和难点是求dA , 在解决具体问题时本着dA 是A ∆的线性主部的原则, 这样计算的A 为精确值。

6.1.3 微元法的使用条件据以上分析,可以用定积分来解决的确实际问题中的所求量A 应符合下列条件:(1)A 是与一个变量的变化区间],[b a 有关的量; (2)A 对于区间],[b a 具有可加性;(3)局部量i A ∆的近似值可表示为,)(i i x f ∆ξ这里)(x f 是实际问题选择的函数.§6.2 定积分在几何学中的应用6.2.1直角坐标系下平面图形的面积由定积分的几何意义,连续曲线 )0()(≥=x f y 与直线 x a b b x a x ,)(,>== 轴所围成的曲边梯形的面积为⎰=badx x f A )(若)(x f y = 在 ],[b a 上不都是非负的,则所围成的面积为⎰=badx x f A |)(|一般的,由两条连续曲线 )(,)(2211x f y x f y == 及直线)(,a b b x a x >==所围成的平面图形称为-X 型图形,其面积为⎰-=badx x f x f A )]()([12而由两条连续曲线 1122(),()x g y x g y == 及直线,()y c y d d c ==>所围成的平面图形称为-Y 型平面图形其面积为:⎰-=dcdy y g y g A )]()([12上述结果用微元法分析如下:如图6.2.1可选取积分变量为x ,并可确定x 的变化区间为[a , b ],在[a , b ]上任取一小区间 [x , x+d x ],它对应的小条形区域的面积近似等于dx x g x f )()(-,故面积元素为dx x g x f dA )()(-=,所以()()b aA f x g x dx =-⎰图6.2.1同理,当平面图形是由连续曲线)()(y x y x ψϕ==,与直线d y c y ==,以及y 轴所围时(图6.2.1),其面积为()()dcA y y dy φψ=-⎰例1 试求由1,,2y y x x x===所围成的图形的面积. 解 如图,[1,2]x ∈,这是一个典型的-X 型图形,所以面积微元1()dA x dx x=-,于是所求面积2113()ln 22A x dx x =-=-⎰例2 求由曲线x = y 2以及直线y = x -2 所围的平面图形的面积(如右图)。

解 这是一个典型的Y —型平面图形。

由⎩⎨⎧-==22x y y x 解得它们的交点坐标是:(1, -1);(4, 2)因此所求的平面图形的面积为:(){}dy y y S ⎰--+=2122213231221-⎪⎭⎫ ⎝⎛-+=y y y2967310=+=在平面图形的面积计算过程当中,对图形进行适当的分割有时是必要的。

我们所求面积的图形就好比一块大蛋糕,必要的时候,我们就得拿起小刀,对这块“蛋糕”进行分割,把它切割成符合我们要求的形状,然后再求出每小块“蛋糕”的面积,最后把它们加起来就是整块“蛋糕”的面积了。

6.2.2 已知平行截面面积的几何体的体积现在我们看下面一个空间立体,假设我们知道它在x 处截面面积为S(x),可否利用类似于上节极坐标下推导面积公式的思想求出它的体积?如果像切红薯片一样,把它切成薄片,则每个薄片可近似看作直柱体,其体积等于底面积乘高,所有薄片体积加在一起就近似等于该立体的体积。

我们继续用微元法导出公式。

在[a , b ]上任取一点x ,并且任给x 的一个增量x ∆,这样就得到一个非常薄的薄片,这个小薄片我们可以近似地把它看成柱体,于是这个微小的柱体体积为:y图6.2.2图6.2.3dV =S (x )x ∆= A (x )dx把这些小体积加起来,就是我们要求的体积。

它就是: ()baV S x dx =⎰。

这里,体积的计算的关键是求截面面积S(x) , 常用的方法先画出草图,分析图象求出S(x).例 3 求两圆柱222222,a z x a y x =+=+ 所围的立体体积 先画出两圆柱的图象,图中看到的是所求立体的八分之一的图像, 该立体被平面ξ=x (因为两圆柱半径相同)所截的截面, 是一个边长为22ξ-a 的正方形, 所以截面面积 22)(ξξ-=a S ,考虑到是8 个卦限,所以有3022316)(8a dx x a V a=-=⎰再看一个例题例4一半径为a 的圆柱体,用与底面交角为α的平面去截该圆柱体,并且截面过底圆直径,求截下部分的几何体体积。

解 如下图建立坐标系。

在[-a , a ]上任取一点x ,那么在这一点垂直x 轴的截面为一个直角三角形,其面积为A (x )=21AB ×BE 而22OA OB AB -=;αtan AB BE =,所以:()αtan 21)(22x a x A -=所以,所求的体积为⎰⎰---==aaaa dx x a dx x A V 22 )(tan 21)(α=ααtan 3231tan 21332a x x a aa =⎪⎭⎫ ⎝⎛-- 由分析和上面几个例题看出,只要知道了截面面积函数就可以用定积分来解决立体的体积计算问题。

6.2.3 旋转体的体积设一平面图形以x=a ;x=b ;y=0以及y=f (x )为边界,求该图形绕x 轴旋转一周的旋转体体积。

其实这是一个求X —型平面图形绕x 轴旋转一周的旋转体体积问题。

我们用“微元法”的思想,来解决这一问题。

在[a , b ]上任取一点x ,再任给一个自变量的增量x ∆,y图6.2.6 旋转体的体积得到一个细长条,该细长条我们可以把它看成矩形,该矩形的宽为x ∆ ,高为f (x ),那么这个小“矩形”绕x 轴旋转一周的旋转体就是一个圆柱体,不过,这个圆柱体非常的薄,其厚度就是x ∆,圆柱体体积是:体积 = 底面积×高于是小圆柱体的体积微元是:dx x f x x f dV )( )( 22ππ=∆=再把这些微小的圆柱体体积累加起来,也就是积分,所以所求的体积为⎰=bax dx x f V 2)(π这样旋转出来的旋转体如图所示。

相关文档
最新文档