随机变量独立性

合集下载

随机变量的独立性

随机变量的独立性

P{ X = 0} = 1 p , P{ Z = 0} = 2 p(1 p) ,
P{ X = 0, Z = 0} = P{ X = 0, X + Y = 1}
= P{ X = 0, Y = 1} = P{ X = 0} P{Y = 1} = p(1 p ) .
2 p(1 p ) 2 = p(1 p ) , p = 0.5 . 令
1 ,若X + Y为偶数, Z= 0 ,若X + Y为奇数. 取何值时, 和 相互独立 相互独立? 问p取何值时,X和Z相互独立? 取何值时
解 首先求出Z的概率分布: 首先求出 的概率分布: 的概率分布
P{ Z = 0} = P{ X + Y = 1}
因为X和 因为 和Y 相互独立
= P{ X = 0, Y = 1} + P{ X = 1, Y = 0}
1 α= . 6
2 β = . 9
5
又由分布律的性质,有 又由分布律的性质 有
1 1 1 1 α + + + +β + =1 9 18 3 9
7 α+β = 18
假设随机变量X和 相互独立 相互独立, 例3 假设随机变量 和Y相互独立,都服从参数为 p(0<p<1)的0-1分布,随机变量 分布, ( ) 分布
f (x, y) = f X ( x) fY ( y) 成立,所以 相互独立.8 成立,所以X,Y相互独立 相互独立.
例5 设(X,Y )的联合密度函数为 ,
8 xy 0 ≤ x ≤ y , 0 ≤ y ≤ 1 f ( x, y) = , 其它 0
1
y
y= x
是否相互独立? 问X与Y是否相互独立? 与 是否相互独立 的边缘密度分别为 解 X,Y的边缘密度分别为

随机变量独立性判断随机变量的独立性和相关性

随机变量独立性判断随机变量的独立性和相关性

随机变量独立性判断随机变量的独立性和相关性随机变量的独立性和相关性是概率论和数理统计中的重要概念。

在实际问题中,我们经常需要判断随机变量之间是否相互独立或者相关。

本文将介绍如何判断随机变量的独立性和相关性。

一、什么是随机变量的独立性和相关性随机变量的独立性和相关性描述了随机变量之间的关系。

独立性:若两个随机变量X和Y的联合分布等于各自的边缘分布之积,即P(X=x, Y=y) = P(X=x)P(Y=y),则称X和Y独立。

相关性:若两个随机变量X和Y之间存在某种依赖关系,即它们的联合分布和边缘分布不相等,称X和Y相关。

二、判断随机变量的独立性和相关性的方法1. 统计方法利用样本数据进行统计分析,可以判断随机变量的独立性和相关性。

对于两个随机变量X和Y,如果它们的样本相关系数接近于0,可以认为X和Y近似独立;如果样本相关系数接近于1或-1,可以认为X和Y相关。

2. 图形方法通过绘制散点图可以直观地观察随机变量的相关性。

对于两个随机变量X和Y,如果它们的散点图呈现出线性关系,则可以认为X和Y相关;如果散点图呈现出无规律的分布,则可以认为X和Y近似独立。

3. 利用协方差和相关系数判断协方差和相关系数是判断随机变量相关性的重要指标。

协方差衡量了两个随机变量之间的线性相关性,若协方差为0,则可以认为两个随机变量不相关。

相关系数除了衡量两个随机变量的线性相关性,还可以衡量非线性相关性,相关系数的范围在-1至1之间,绝对值越接近1表示相关性越强,绝对值越接近0表示独立性越强。

三、应用举例1. 抛硬币问题假设一次抛硬币,X表示正面次数,Y表示反面次数。

在这个例子中,X和Y的取值只能是0或1,它们的联合分布如下:P(X=0, Y=0) = 1/2P(X=1, Y=0) = 1/2P(X=0, Y=1) = 1/2P(X=1, Y=1) = 1/2可以看出,X和Y的联合分布等于各自的边缘分布之积,即P(X=x, Y=y) = P(X=x)P(Y=y),因此X和Y是独立的。

2-2-3随机变量的独立性,条件分布

2-2-3随机变量的独立性,条件分布

x
FX Y ( x y) pX Y ( x y) d x
x
[ p(x, y)
pY ( y)]d x.
y
FY X ( y x) pY X ( y x) d y
y
[ p(x, y)
pX (x)]d y.
备份题
例1 设
(X,Y )
~
p( x,
y)
Cy(1 0,
x),
0 x 1,0 其 它.
则称X和Y相互独立.
例1 已知 ( X ,Y ) 的分布律为
( X ,Y ) (1,1) (1,2) (1,3) (2,1) (2,2)
111 1
pij
6
9 18
3
(1) 求与应满足的条件;
(2) 若 X 与 Y 相互独立,求 与 的值.
(2,3)
解 将 ( X ,Y ) 的分布律改写为
Y X
1
1
1
6
1
2
3
p• j P{Y yj } 1 2
2 1 9
1
9
3 pi• P{ X xi }
1
1
18
3
1
3
1
18
2
3
(1)由分布律的性质知
0,
0,
2
3
1,
故与应满足的条件是 : 0, 0 且 1 .
3
(2) 因为 X 与 Y 相互独立, 所以有
pij pi• p• j , (i 1,2; j 1,2,3)
xe(x y)dy xe x
0
x>0
pY ( y) 0 xe( x y)dx e y
y >0
即:

3.4 随机变量的独立性

3.4 随机变量的独立性
则称X与Y 相互独立 . 它表明,两个随机变量相互独立时,它们的联合分布函数等于 两个边缘分布函数的乘积 .
第2页
3.4 随机变量独立性
可以证明如下结论: (1)若 (X,Y)是连续型r.v ,则上述独立性的定义等价于:
对任意的 x, y, 有
f ( x , y ) f X ( x ) fY ( y )
第6页
3.4 随机变量独立性
例3.4.1
1.
P( X P( X P( X P( X
X ,Y 具有分布律右图,则:
1, Y 0) 1 6 P( X 1) P(Y 0) 2, Y 0) 1 6 P( X 2) P(Y 0) 1, Y 1) 2 6 P( X 1) P(Y 1) 2, Y 1) 2 6 P( X 2) P(Y 1)
p ij p i p j
离散型随机变量的联合分布列等于其边缘分布列的乘积
P { X x i | Y y j } p i , , P { Y y j | X x i } p j
任一变量的条件分布列等于其边缘分布列
要判断 X 和 Y 不独立,只需找到 X, Y 的一对取值(xi,yj),使得 P{X xi , Y y j } P{X xi }P{Y y j }.
P( X1 x1i1 )
i2 ,i3 ,in

P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
P( X1 x1i1 , X 2 x2i2 )
f X1 ( x1 )


i3 ,i4 ,in

P( X1 x1i1 , X 2 x2i2 ,, X n xnin )

随机变量的独立性

随机变量的独立性
0
目 录 前一页
( 1,1 ) G 1
后一页
X
退 出
例4 已知二维随机变量( X , Y )的概率密度为:
8 xy, 0 y x 1; f ( x, y ) = 0 , 其他.
问 X , Y 是否相互独立? 解: f X ( x ) =



f ( x, y ) dy
Y ( 1,1 ) G 1
目 录
前一页
后一页
退 出
等价条件: 1. X与 Y 相互独立 F (x , y ) = F X (x )FY ( y ) 2. (离散型)X与Y相互独立 = X P{ = xi ,Y = y j } P{ = xi } P{ = y j } X Y
3. (连续型)X与Y相互独立 f (x , y ) = f X (x ) fY (y ) 在平面上除去“面积”为0 的集合外成 立。
0
X
退 出
fY ( y ) = f ( x, y )dx


1 6 xy 2dx , y 1 0 0 = 0, 其他
3 y 2 , 0 y 1 = 0 , 其他
在区域G中,f X ( x) fY ( y ) = f ( x, y )
Y
X 与 Y 相互独立
目 录 前一页 后一页
x 8 xydy ,0 x 1 0 = 0 , 其他 4 x 3 ,0 x 1 = , 其他 0
0
X
退 出
4 y(1 y 2 ),0 y 1 fY ( y )= , 其他 0
记 G={(x, y ) 0 y x 1}
6 xy 2 , 0 x 1,0 y 1; f ( x, y ) = 0 , 其他.

随机变量的独立性和相关性

随机变量的独立性和相关性

随机变量的独立性和相关性随机变量是概率论和数理统计中的重要概念,用于描述随机事件和随机现象的数值特征。

研究随机变量之间的关系对于深入理解概率和统计学的基本原理至关重要。

在这篇文章中,我们将探讨随机变量的独立性和相关性。

一、独立性独立性是指两个或多个随机变量之间的关系,即一个随机变量的取值对另一个随机变量的取值没有任何影响。

如果两个随机变量X和Y 是独立的,那么它们满足以下条件:P(X=x, Y=y) = P(X=x) * P(Y=y)其中P(X=x, Y=y)表示X等于x,Y等于y的概率,P(X=x)和P(Y=y)分别表示X等于x的概率和Y等于y的概率。

换句话说,当两个随机变量独立时,它们的联合概率等于各自的边缘概率的乘积。

独立性的意义在于可以简化概率计算。

如果X和Y是独立的,那么我们可以通过独立事件的性质计算它们的联合概率。

此外,独立性还可以应用于贝叶斯定理、条件概率和协方差等相关概念的推导与计算。

二、相关性相关性是指两个随机变量之间存在某种程度的关联或依赖关系。

如果两个随机变量X和Y相关,那么它们的取值是彼此依赖的,即当X的取值发生变化时,Y的取值也会随之变化。

在统计学中,相关性通过协方差和相关系数来度量。

协方差描述了两个随机变量之间的总体关系,定义为:cov(X,Y) = E[(X - E(X))(Y - E(Y))]其中cov(X,Y)表示X和Y的协方差,E(X)和E(Y)分别表示X和Y的期望(均值)。

协方差的数值可以为负、零或正,分别表示负相关、无相关或正相关。

相关系数是协方差的标准化形式,用于度量两个随机变量之间的线性相关程度。

相关系数的取值范围在-1和1之间,越接近-1或1表示相关性越强,越接近0表示相关性越弱或不存在。

三、独立性与相关性的区别独立性和相关性是两个不同的概念。

独立性是指两个或多个随机变量之间的独立关系,即一个变量的取值对另一个变量的取值没有影响。

相关性是指两个随机变量之间存在某种关联或依赖关系,即一个变量的取值会随着另一个变量的取值而变化。

独立性随机变量之间的独立性定义与判别

独立性随机变量之间的独立性定义与判别

独立性随机变量之间的独立性定义与判别随机变量是概率论与数理统计中的重要概念,在许多实际问题中起到了关键作用。

在随机变量的研究中,我们经常需要考虑多个随机变量的关系,其中独立性是一个重要的概念。

本文将探讨独立性随机变量之间的独立性的定义与判别方法。

一、独立性的定义在开始讨论独立性随机变量之间的独立性之前,我们先来了解一下独立性的定义。

设有两个随机变量X和Y,它们的联合概率分布函数为F(x, y),如果对于任意的x和y,X=x与Y=y的概率等于X=x的概率乘以Y=y的概率,即:P(X=x, Y=y) = P(X=x) * P(Y=y)上述等式成立时,我们称随机变量X与Y是独立的。

二、判别独立性的方法在实际问题中,我们需要判断随机变量之间是否独立。

下面介绍几种常见的判别独立性的方法。

1. 通过联合概率分布函数判断根据独立性的定义,我们可以通过联合概率分布函数来判断随机变量的独立性。

如果联合概率分布函数可以拆分成各个随机变量的边缘概率分布函数的乘积形式,即:F(x, y) = F_X(x) * F_Y(y)其中F_X(x)和F_Y(y)分别为X和Y的边缘概率分布函数,那么X与Y就是独立的。

2. 通过条件概率分布函数判断除了使用联合概率分布函数,我们还可以通过条件概率分布函数来判断随机变量的独立性。

如果对于任意的x和y,X=x给定条件下,Y=y的条件概率等于Y=y的边缘概率分布函数,即:P(Y=y|X=x) = P(Y=y)那么X与Y就是独立的。

3. 通过相关系数判断除了基于概率分布函数的判别方法,我们还可以使用相关系数来判断随机变量的独立性。

相关系数描述了两个随机变量之间的线性相关程度,如果两个随机变量X和Y是独立的,那么它们的相关系数为0。

因此,我们可以通过计算相关系数来判断随机变量之间是否独立。

4. 通过独立性检验判断除了上述方法,还可以使用独立性检验来判断随机变量之间是否独立。

独立性检验是一种统计检验方法,根据样本数据的观察值来推断总体数据的分布情况,进而判断随机变量之间是否独立。

2.3随机变量的独立性

2.3随机变量的独立性

问X和Y是否独立?
解:fX (x)
xe( x y)dy xe x ,
0
x>0
fY ( y)
xe( x y)dx e y ,
0
y >0
即:
xex , x 0
fX (x)
0,
其它
e y , y 0
fY
(
y)
0,
其它
若(X,Y)的概率密度为
2, 0 x y,0 y 1
f
f(x,y)= fX(x)fY(y)
特别,取 x=u1 , y=u2 代入上式有 f(u1,u2)= fX(u1)fY(u2)
即:
1
11
21 2 1 2
2 1 2 2
对比两边 ∴ =0
例3 设(X,Y)的概率密度为
xe( x y) , f (x, y)
0,
x其它0f,(对yx,一y故切)0Xx,,YfyX,独(均x立)有fY:( y)
如果两个随机变量不独立,讨论它们的 关系时,除了前面介绍的联合分布和边缘 分布外,有必要引入条件分布的概念,这 将在下一讲介绍.
45 x5
[
1
dy]dx
15 x5 1800
10
0 15 y 45
x
=1/6
60
xy
P(X<Y)
45 60
[
1
dy]dx
15 x 1800
40
=1/2
10
0 15 45
x
y
解二:P(| X-Y| 5)
60
1 dxdy
40
1
|xy|5 1800
[60 30 2(10 30 30 30 / 2)]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2.23节 随机变量的独立性,条件分布
一、随机变量的相互独立性 二、离散型随机变量的条件分布 三、连续型随机变量的条件分布 四、小结
一、随机变量的相互独立性
随机变量的独立性是概率论中的一 个重要概念.两随机变量独立的定义是:
1.定义2.6 设 X,Y是两个r.v,若对任意的x,y,有
P ( X x ,Y y ) P ( X x ) P ( Y y )
对(X,Y)的所有可能取值(xi, yj),有
P ( X x i,Y y j) P ( X x i) P ( Y y j)
则称X和Y相互独立.
例1 已知(X,Y)的分布律为
(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)
1
1
1
1
p ij
6
9 18
3
(1)求 与 应满足;的条件 (2若 ) X与 Y相互,求 独 与 立 的.值
条件分布函数与条件密度函数的关系
x
x
F X Y ( x y ) p X Y ( x y ) d x [ p ( x ,y )p Y ( y ) ] d x .
y
y
F Y X ( y x ) p Y X ( y x ) d y [ p ( x ,y )p X ( x ) ] d y .
pij p•j
,
为在Y yj条件下随机变X量 的条件分布. 律
对于固定i, 的 若P{X xi }0, 则称
P{Y
yj
X
xi
}
P{X xi ,Y P{X xi }
yj
}
pij , pi•
为在 X xi条件下随机Y变的量条件分.布律
其i,中 j1,2,.
例1.设 (X,Y)的 分 布 律 为
若 (X,Y)是连续型r.v ,则x ,y )p X (x )p Y(y )
成立,则称X,Y相互独立 .
其中 p(x, y) 是X,Y的联合密度, pX(x),pY(y)分别是X
和Y 的边缘密度 .
若 (X,Y)是离散型r.v ,则上述独立性的 定义等价于:
特别有
p12 p1•p•2111
9 39
2, 9
又 1, 得 1.
3
9
例2 设(X,Y)的概率密度为
x e(xy), p(x,y)
0,
对一切x, y, 均有:
xp 0(,xy,y ) 0p X(x)p Y(y) 其 它 故X,Y 独立
问X和Y是否独立?
解:pX(x)0xe(xy)dy xex
条件下, X的条件分布函,记数为
P{X xY y}或FXY(x y),

FXY(x y) P{X xY y}
x p(x, y) d x.
pY (y)
同理定 X义 x的在 条Y件 的下 条件分 为布函
y p (x ,y)
F YX (yx )P {Y y|X x } p X (x )d y.
解 将(X,Y)的分布律改写为
Y X
1
1
1
6
1
2
3
p•j P{Yyj}1 2
2 1 9
1 9
3 pi•P {Xxi}
1
1
18
3
1
3
1 18
2
3
(1)由分布律的性质知
0,0,2
3
1,
故 与 应满足 : 的 0 , 条 0且 件 1 是 .
3
(2) 因为 X 与 Y 相互独立, 所以有
p i j p i • p • j,( i 1 , 2 ; j 1 , 2 , 3 )
P {X1 } 0.045
即在 X1的条,件 Y的 下条件分布律为
Yk
012
P{YkX1} 6 2 1 999
同理可 Y0 得 的在 条,X 件 的下 条件分布
Xk 0 1 2 3 P {XkY0}84 3 2 1
90 90 90 90
三、连续型随机变量的条件分布
定义 设二维随机变量(X,Y)的概率密度为
Y X 0 1 2 3P{Yj}
0 0 .84 0 .0 03 0 .0 02 0 .0 0100 .900 1 0 .06 0 .0 01 0 .0 00 0 .0 8002 .080 2 0 .01 0 .0 00 0 .0 50 0 .0 4001 .020
P{Xi} 0 .91 0 .0 04 0 .0 53 0 .0 211.3 000
(1)求在 X1的条件 ,Y的 下条件分 ; 布律 (2)求在 Y0的条件 ,X的 下条件分 . 布律
解 由上述分布律的表格可得 P {Y0X1 }P {X1 ,Y0} 0.030 ,
P {X1 } 0.045 P {Y1X1 }P {X1 ,Y1 } 0.010 ,
P {X1 } 0.045 P {Y2X1 }P {X1 ,Y2} 0.005 ,
ab
2
a
0,
1 x2 a2 , x a x a
这里u b
1
x2 a2
则称X,Y相互独立 .
两事件A,B独立的定义是: 若P(AB)=P(A)P(B) 则称事件A,B独立 .
用分布函数表示,即 设 X,Y是两个r.v,若对任意的x,y,有
F (x ,y ) F X (x )F Y (y )
则称X,Y相互独立 .
它表明,两个r.v相互独立时,它们的联合 分布函数等于两个边缘分布函数的乘积 .
p(x, y),(X,Y) 关于Y 的边缘概率密度为pY ( y).若
对于固定的y,
pY
( y)
0,
则称
p(x, y) pY ( y)
为在Y
y
的条件下X 的条件概率密度,记为
p(x, y)
p (x y)
.
XY
pY ( y)

x
pXY (x y)dx
x
p(x, y) dx为在Y y的 pY (y)
说明
联合分布、边缘分布、条件分布的关系如下
联合分布
边缘分布 条件分布
联合分布
例2*设(x,y)在椭圆 x2
a2
y2 b2
1上服从均匀
分布,求条件分布密度函数p(x|y). 解 由题假设知
1
x2
y2
p( x,
y)
ab
0,
, a2 x2 a2
b2 y2 b2
1
1
则pX
( x)
u
u
dy
x>0
pY(y)0x e(xy)dx ey
y >0
即:
xex, x0
pX(x)0, 其它
ey,
pY
(
y)
0,
y0 其它
二、离散型随机变量的条件分布
定义
设(X,Y)是二维离散型随机,对变于量固定
的j, 若P{Y yj}0, 则称
P{ X
xi
Y
yj }
P{X xi ,Y P{Y yj }
yj }
相关文档
最新文档