一、交错级数及其审敛法

合集下载

高数第九章数项级数-任意项资料

高数第九章数项级数-任意项资料

u1 (u2 u3 ) (u2m2 u2m1 ) (u2m u2m1 )
S2m1 即数列 {S2m-1 } 单调减少, 又因
un1 un 0,
中央财经大学
数学分析
S2m1 (u1 u2 ) (u3 u4 ) (u2m3 u2m2 ) u2m1
(u1 u2 )
[sin(n 1)x sin(n 1 )x]
2
2
sin(n
1 )x
2

x (0,2 )
时,
x sin
0,
故得到
2
1
1
n
sin(n x)
cos kx
2
2 k1
2sin x
2
中央财经大学
数学分析
所以级数 cosnx 的部分和数列当 x (0,2 ) 时 有界,由狄利克雷判别法推得级数 an cosnx 收敛. 同理可证级数 an sinnx 也是收敛的.
证明:由阿贝尔变换
同号
m
m1
S aibi | (ai ai1) || Bi | | amBm |
i1
i1
m1
S M | (ai ai1) | | am | M i 1
m
故 S aibi M ( a1 2 am ) i1
中央财经大学
数学分析
三、阿贝尔判别法和狄利克雷判别法
阿贝尔判别法
数学分析
第九章 级数
数项级数
中央财经大学
数学分析
III 任意项级数
一、交错级数及其审敛法
定义: 正、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
n1
n1
莱布尼茨定理 如果交错级数满足条件:

第7章 第3讲 交错级数和任意项级数审敛法

第7章 第3讲 交错级数和任意项级数审敛法

=1
=1
因为 = ෍ ( + 1 − )= + 1 − 1 → ∞( → ∞时),
=1

所以级数 ෍ | | 发散.
=1
25
02
任意项级数审敛法

( + 1 − ) .

(−1)
再考察交错级数
=1
由 +1− =
1
+1+
> 0可得:
数列 { + 1 − } 单调递减
2 →∞


可知 lim ≠ 0,
→∞
故级数 ෍ (−1)
=1
1
1 2
(1 + ) 发散.

2

24
02
任意项级数审敛法

例8 判别级数 ෍ (−1) ( + 1 − ) 的敛散性.
=1
如果收敛,是绝对收敛还是条件收敛?


解 先考察正项级数෍ | | = ෍ ( + 1 − ) :


=1

1
sin
1
≤ ,当 > 1时,෍ 收敛,
证 因为




=1


=1
=1
sin
sin
故级数 ෍
收敛, 从而级数 ෍


绝对收敛.
18
02
任意项级数审敛法



(1)对于任意项级数 ෍ , 如果级数 ෍ 收敛,
=1

=1
那么级数 ෍ 一定收敛, 这样可以把一大类级数的敛散

02-交错级数及其审敛法PPT

02-交错级数及其审敛法PPT
一、交错级数及其审敛法
定义:正、负项相间的级数称为交错级数,即
8
8
£ (~1)n an,或 £(-1)-1 an,
n=1
n=1
其中对任意n,有an > 0 .
交错级数审敛法(莱布尼茨判别法):
8
若交错级数£ (-1)"T an (匕> 0)的一般项满足:
n=1
① an+i < an (n = L2,…);
(ii) lim an = 0 .
nT8 8
£ 则⑴ (-1)n-1 an收敛,且其和s满足:0 < s < a1;
n=1
(2)级数的余项rn = s-sn满足|rn| < an+1.
板书少 证明:⑴..・an_1 - an > 0,
•・• s2 n = (a1 一 a2)+ (a3 一 a4)+ …+ (a2 n-1 一 a 2 n)
数列{ s2〃}是单调增加的,
又 s2n = a1 一 (a2 一 a3)-----(a2n-2 一 a2n-1)
一 a2n
< "数列{S2n }是有界的,
lim s2n = s < a1. •/ lim a2n+1 = 0,
n—8
n—B
板 书,・・・ lim 5+i = lim(sn + a2w+1) = s,
竺"ns ns
・级数收敛于和S, 且s < a1.
(2)余项 rn =~(an+1 - an+2 + …), + rn\ = an+1 - an+2 …,
满足收敛的两个条件,...|" < an+!•

第三节 一般常数项级数

第三节 一般常数项级数
满足莱布尼兹定理条件,故级数收敛,且为条件收敛。 满足莱布尼兹定理条件,故级数收敛,且为条件收敛。
上页 下页 返回
例3:判定级数 ∑ :

n =1
x 的敛散性。 的敛散性。 n

n
高等数学
xn xn | , 记 un = | 解: 考察正项级数 ∑ | |, n n=0 n
n→ ∞
lim
un +1 un
则交错级数收敛,其和 s ≤ u1 , 余项满足 | Rn | ≤ un+1 则交错级数收敛, 4. 检验条件(1)常用的方法 检验条件( )
un+1 是否成立? ≤ 1 是否成立? (1)比值法: 考察 )比值法: un 是否成立? (2)差值法: 考察 un+1 un ≤ 0 是否成立? )差值法:
上页 下页 返回
定理7(莱布尼兹定理) 定理 (莱布尼兹定理)如果交错级数
n =1
高等数学
∑ (1)

n1
= u1 u 2 + u 3 u 4 + L + ( 1) n1 u n + L un
满足条件: 满足条件:
n→∞
(1) un ≥ un +1 ( n = 1, 2 , L), ( 2 ) lim un = 0
原级数绝对收敛, 从而收敛, 当 | x | < 1 时,原级数绝对收敛, 从而收敛,
xn 发散,且是用比值法判别的, | x | > 1 时, ∑ | | 发散,且是用比值法判别的, n n =1 xn 所以原级数 ∑ n =1 n


发散。 发散。
上页 下页 返回
例3:判定级数 ∑ :

一般级数的审敛法

一般级数的审敛法

1 单减, 在 (1,+) 上单增, 即 x ln x 1 故 当 n 1 时单减, n ln n
1 1 un un+1 ( n 1), n ln n ( n + 1) ln( n + 1)
所以此交错级数收敛, 故原级数是条件收敛.
定理 如果任意项级数
n 1

则任意重排得到的级数也绝对收敛,且有相同的 和数. 注:由条件收敛级数重排得到的新级数,即使收敛 也不一定收敛于原来的和数,而且条件收敛收敛 级数适当重排后,可得到发散级数,或收敛于任何 事先指定的数.如: 1 1 1 1 1 n +1 1 ( 1) 1 + + + A n 2 3 4 5 6 n 1 1 1 1 1 1 3 n+1 1 ( 1) 1+ + + + A n 3 2 5 7 4 2 n 1
lim u2 n+1 0,
n
lim s2 n s u1 .
lim s2 n+1 lim( s2 n + u2 n+1 ) s,
n n
级数收敛于和s, 且s u1 .
余项 rn (un+1 un+ 2 + L),
rn un+1 un+ 2 + L,
n 1 n 1 n 1



sin n 例 3 判别级数 2 的收敛性. n 1 n

sin n 1 1 2 2 , 而 2 收敛, n1 n n n

sin n 2 收敛, n n1
故由定理知原级数收敛.

第三节绝对收敛与条件收敛

第三节绝对收敛与条件收敛
第三节 绝对收敛与条件收敛
一、交错级数及其审敛法 二、级数的绝对收敛与条件收敛
一、交错级数及其审敛法
1、定义: 正、负项相间的级数称为交错级数.
(1)n1an 或 (1)nan (其中an 0)
n1
n1
2、莱布尼茨定理 如果交错级数满足条件:
(i) an an1 (n 1,2,3, );
n an
n 2
(3)
lim
n
n
|
an
|
lim
n
1 (1 2
1 )n n
e 2
1,
故原级数发散.
例2
判别级数 (1)n
n1
1 np
的收敛性.
(1) 当 p 0 时,级数发散 ; (2) 当 0<p 1 时,
级数条件收敛 ; (3) 当 p >1 时,级数绝对收敛 .
例3
判别级数 (1)n
n1
xn n
.
发散
收敛
收敛
例2
判别级数
n2
( 1)n n
1
n
的收敛性
.

(
x
x 1
)
2
(1 x ) x ( x1)2
0,
( x 2)
故函数
f (x)
x x1
单调递减,
an
an1 ,

lim
n
an
lim n n n 1
0.
故原级数收敛.
判断 an an1 常用方法有:
(1)
证明 an
an1
0

an an1
1
.
(2) 令 an f (n) , 对 f ( x)( x 1) 求导 ,由 f ( x) 的

交错级数及其审敛法绝对收敛与条件收敛

交错级数及其审敛法绝对收敛与条件收敛

级数绝对收敛与级数收敛有以下重要关系:
二、绝对收敛与条件收敛
定 理2
若级数
绝对收敛,则级数∑∞n=1un必定收敛.
证令
显然
,且
,所以
二、绝对收敛与条件收敛

由这个定理可以知道,对于一般的级数
,如果用正
项级数的审敛法判定级数
收敛,则此级数收敛.这就使得
很大一部分级数的收敛性判定问题,转化成为正项级数的收敛
,其余项rn的绝对值 ,由
一、交错级数及其审敛法
知数列s2n是单调增加的;由
知数列s2n 是有界的,故
因为

一、交错级数及其审敛法
所以级数收敛于和s,且 余项
满足收敛的两个条件,故
一、交错级数及其审敛法
【例1】
判别级数 解 因为
故函数
单调递减,所以

则由莱布尼茨定理知原级数收敛.
一、交错级数及其审敛法
交错级数交错级数是这样的级数,它的各项是正、负项交错 的,从而它可以写成下面的形式: 或
例如
是一个交错级数. 下面给出一个关于交错级数的审敛法.
一、交错级数及其审敛法
定 理1
(莱布尼茨定理)如果交错级数满足条件
则级数收敛,且其和 证 因为
性判定问题.
二、绝对收敛与条件收敛
【例2】
判别级数 由于
,而
收敛,所以
收敛,
故该级数绝对收敛,则由定理2知级数
收敛.
二、绝对收敛与条件收敛
【例3】
判别级数 绝对收敛还是条件收敛?

是否收敛.如果是收敛的,是
由根值审敛法知,该级数绝对收敛.由定理2知,该级数收敛.
二、绝对收敛与条件收敛

5_3交错级数 绝对收敛与条件收敛

5_3交错级数 绝对收敛与条件收敛

(−1) n 收敛. ∑ n n =1

3) 若用比值审敛法(根值审敛法)判断出 ∑ un n =1 un+1 发散,即 lim > 1(或 lim n un > 1) ,则必有 n→∞ u n→∞ ∞ n lim un ≠ 0, 或 lim un ≠ 0, 从而∑ un 发散.
n→∞ n→∞ n =1
13
n (2) 令 u n = n , e u n +1 ∵ lim n →∞ u n
2
(n + 1) e n +1 = lim 2 n →∞ n en
2
1 ⎛ n + 1⎞ 1 = lim ⎜ ⎟ = <1 n →∞ e ⎝ n ⎠ e
2



n =1
2 2 ∞ n n n (−1) n 收敛, 因此 ∑ (−1) n 绝对收敛. n e e n =1
(C) 条件收敛 ;
n →∞
n
(D) 收敛性根据条件不能确定.
n = 1, 知 (B) 错 ; 分析: 由 lim u
1 + 1 ) +( 1 + 1 ) −( 1 + 1 ) +( 1 + 1 ) 又 S n = −( u u2 u 2 u3 u3 u 4 u 4 u5 1
+
1
1 + 1 ) + (−1) n +1 ( u un +1 n
n +1
20
1 + ( −1) n +1 1 = −u u
作业
P248 1 (3)(5), 5, 6, 8
21
注:绝对收敛级数与条件收敛级数具有不同的性质. 例如, 绝对收敛级数不因改变项的位置而改变其和, 但条件收敛级数不具有这条性质.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

但本身 收敛,则称级n数1条 件收敛.
n 1
un
un
n 1
n1
发散,
绝对收敛、条件收敛与收敛 之间有着什么样的关系呢?
定理2 若 un 收敛,则un收敛.
ቤተ መጻሕፍቲ ባይዱ
n1
n1
证明

vn
1 2
(un
un
)
(n 1, 2,L ),
显然vn 0, 且vn un , vn收敛,
n1
又Q un (2vn un ), un收敛.
n1
n

记un
(1)
xn n
,则
lim un1 u n n
lim x n x n n 1
由达朗贝尔比值判别法知,
(1)0 x 1时, un 收敛,即绝对收敛,从而收敛.
n1
(2)x 1时,级数为 (1)n 1 ,易见级数是条件收敛;
n1
n
(3)x 1时,级数为 (1)n xn ,级数是发散的;
n1
n1
n1
结论:级数
un收敛,若
n1
un 收敛,则绝对收敛.
n1

n1
un
发散,则条件收敛.
例3
sin n
判别级数 n1
n2
的收敛性.

Q
sin n n2
1 n2
,

n1
1 n2
收敛,
n1
sin n n2
收敛,
故由定理知原级数绝对收敛.
例 4 判定
(1)n x级n数的(敛x 散0性).
例1 判定级数
的敛(散1)性n.1
1
n 1
n
解 这是一个交错级数,且
(1)un
1 n
,
且un
1 n
un1
n
1
1
,
(2)
lim
n
un
lim
n
1 n
0,
由莱布尼茨定理知这个交错级数收敛.
例 2 判定级数
的(敛1散)n性1.
n1
n 2n
解 这也是一个交错级数,且
如何比较大小?
(1)un
n 2n
, un1

2.

lim
n
un
0, 则级数
3.按基本性质;
n1
un发散.
敛 4.充要条件
4.绝对收敛
法 5.比较法
6.比值法 7.根值法
5.交错级数 (莱布尼茨定理)
n1
n
为什么?
NOTE:当我们运用达朗贝尔比值判别法或柯西根值判别法,判断出正项级数
发散,
un
n 1
可以断言, 也一定发散.
un
n1
事实上,lim un1 u n
n
1, (lim n
n
un
1),
lim
n
un
0,从而
lim
n
un
0
,
un必发散.
n1
三、小结
正项级数
任意项级数
1. 若 Sn → S,则级数收敛;
n 1 2n1
,

为什么?
un
un1
n 2n
n 1 2n1
n 1 2n1
0, (n
1, 2,3,L
),
(2)
lim
n
un
lim
n
n 2n
0,
由莱布尼茨定理知这个交错级数收敛.
二、绝对收敛与条件收敛
1、定义: 正项和负项任意出现的级数称为任意项级数.
定义:对于
级数, 若un
收敛,则称级 数u绝n 对收敛;如果
相关文档
最新文档