中等数学2012增刊(第一卷)
63徐州市2012-2013学年高三(上)期中数学试卷(文科)

2012-2013学年江苏省徐州市高三(上)期中数学试卷(文科)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)A={﹣1,0,1},B={0,1,2,3},A∩B={0,1}.2.(5分)命题“∀x∈(1,2),x2>1”的否定是∃x∈(1,2),x2≤1.3.(5分)设(i为虚数单位),则a+b=.解:因为==,b=.故答案为:.4.(5分)在等差数列{a n}中,已知该数列前10项的和为S10=120,那么a5+a6=24.=55.(5分)已知=(1,2m),=(2,﹣m),则“m=1”是“⊥”的充分不必要条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)⊥”•=0:已知=⊥”,∴•“”⊥”6.(5分)设直线是y=3x+b是曲线y=e x的一条切线,则实数b的值是3﹣3ln3.﹣=3﹣+7.(5分)在△ABC中,a=14,b=7,B=60°,则边c=7(1+).,,=,即=,又∴由正弦定理得:==14,sin75sin(××)1+8.(5分)(文)动点P(a,b)在不等式组表示的平面区域内部及其边界上运动,则w=的取值范围是[﹣7,3].w=表示的平面区域如下图所示:w=,当w=9.(5分)下列四个命题:①函数f(x)=xsinx是偶函数;②函数f(x)=sin4x﹣cos4x的最小正周期是π;③把函数f(x)=3sin(2x+)的图象向右平移个单位长度可以得到f(x)=3sin2x的图象;④函数f(x)=sin(x﹣)在区间[0,π]上是减函数.其中是真命题的是①②③(写出所有真命题的序号).)x+))),图象向右平移个单位长度﹣10.(5分)(2008•长宁区二模)函数y=log a(x+3)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为8.4+,利用基本不+==4++≥4+,11.(5分)已知数列{a n}满足a1=1,a2=2,对于任意的正整数n都有a n﹣a n+1≠1,a n a n+1a n+2=a n+a n+1+a n+2,则S2012=4023.12.(5分)已知△ABC中,AB边上的中线CM=2,若动点P满足,则的最小值是﹣2.上,而而=2解:由题意可得:,故=2cos,,由基本不等式可得:≤213.(5分)若函数f(x)=x3﹣ax(a>0)的零点都在区间[﹣10,10]上,则使得方程f(x)=1000有正整数解的实数a的取值的个数为3.±上,∴±<﹣时,当﹣<﹣(﹣.<.,﹣=1967114.(5分)设a,b均为大于1的自然数,函数f(x)=a(b+sinx),g(x)=b+cosx,若存在实数m,使得f(m)=g(m),则a+b=4.•sin(m﹣θ)=b(1﹣a)[注:sinθ=]≤﹣=二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2010•苏州一模)已知数列{a n}满足:a1=1,a2=a(a>0).数列{b n}满足b n=a n a n+1(n∈N*).(1)若{a n}是等差数列,且b3=12,求a的值及{a n}的通项公式;(2)若{a n}是等比数列,求{b n}的前项和S n.,=16.(14分)在锐角△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC.(1)求角B的大小;(2)设,试求的取值范围.cosB=.由此能求出),由,得,由此能求出cosB=…)因为)…的取值范围是17.(14分)在边长为a的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?×(==x=)时,,x=)=.答:当箱子底边长为时,箱子容积最大,最大值为18.(16分)已知二次函数f(x)=ax2﹣bx+1.(1)若f(x)<0的解集是(,),求实数a,b的值;(2)若a为正整数,b=a+2,且函数f(x)在[0,1]上的最小值为﹣1,求a的值.,由根系关系即可求得实数,),,=x,=x=﹣x==,=+((==+=19.(16分)各项为正数的数列{a n} 的前n项和为S n,且满足:S n=2++(n∈N*)(1)求a n;(2)设函数f(n)=,c n=f(2n+4(n∈N*),求数列{c n} 的前n项和T n;(3)设λ为实数,对满足m+n=3k且m≠n的任意正整数m、n、k,不等式S m+S n>λS k恒成立,求实数λ的最大值.2(2(+恒成立..20.(16分)设函数y=f(x)=x2﹣bx+1,且y=f(x+1)的图象关于直线x=﹣1对称.又y=f (x)的图象与一次函数g(x)=kx+2(k<0)的图象交于两点A、B,且|AB=|.(1)求b及k的值;(2)记函数F(x)=f(x)g(x),求F(x)在区间[0,1]上的最小值;(3)若sinα,sinβ,sinγ∈[0,1],且sinα+sinβ+sinγ=1,试根据上述(1)、(2)的结论证明:++≤.,可以求出≥≤得:=,,,)=恒成立,所以(≤(+[2=γ≥∴()=时,等号成立.。
2012年全国高中数学联赛加试题另解

2012年全国高中数学联赛加试题另解
蒋国盛
【期刊名称】《中等数学》
【年(卷),期】2012(000)012
【摘要】第一题如图1,在锐角△ABC中,AB〉AC,M、N是边BC上不同的两点,
【总页数】3页(P14-16)
【作者】蒋国盛
【作者单位】南京审计学院数学与统计学院2010级数学三班,211815
【正文语种】中文
【中图分类】O12
【相关文献】
1.2012年全国高中数学联赛加试平面几何题的另解 [J], 吴志湖
2.评2012年全国高中数学联赛试题 [J], 单墫
3.2020年全国高中数学联赛加试题另解 [J],
4.关于征集2012年全国高中数学联赛候选试题的启事 [J],
5.2021年全国高中数学联赛加试题另解 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
2012年北京高考模拟系列试卷(一)数学(理)试题

2012年北京高考模拟系列试卷(一)数学试题(理)【新课标版】题 号 一 二 三 得 分第Ⅰ卷为选择题,共60分;第Ⅱ卷为非选择题共90分。
满分100分,考试时间为120分钟。
第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的. 1.若集合211{|log (1)1},{|()1}42xM x x N x =-<=<<,则M N =( ) A .{|12}x x <<B .{|13}x x <<C .{|03}x x <<D .{|02}x x <<2.已知向量()52,5,2,1=-=⋅=b a b a a ,则b 等于( )A .5B .52C .25D .53.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =( )A .22B .23C .24D .25 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3B .38000cm 3C .32000cmD .34000cm2020正视图20侧视图101020俯视图5.命题“存在R x ∈,使a aax x 42-+<0,为假命题”是命题“016≤≤-a ”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件6.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,105,45=∠=∠CAB ACB 后,就可以计算出A 、B 两点的距离为( ) A. m 250B. m 350C. m 225D.m 2225 7. 若1()nx x展开式中第四项与第六项的系数相等,则展开式中的常数项的值等于( )A .8B .16C .80D . 708. 已知直线22x y +=与x 轴,y 轴分别交于,A B 两点,若动点(,)P a b 在线段AB 上,则ab 的最大值为( )A .12B .2C .3D .319. 某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图). 1s ,2s 分别表 示甲、乙两班抽取的5名学生学分的标准差,则1s 2s .(填“>”、“<”或“=”).A .>B .<C .=D .不能确定 10、函数x xy sin 3+=的图象大致是( )第9题图11.已知函数2221,0()21,0x x x f x x x x ⎧+-≥=⎨--<⎩,则对任意12,x x R ∈,若120x x <<,下列不等式成立的是( )A. 12()()0f x f x +<B. 12()()0f x f x +>C. 12()()0f x f x ->D. 12()()0f x f x -<12.设双曲线1422=-y x 的两条渐近线与直线2=x 围成的三角形区域(包括边界)为D ,P ()y x , 为D 内的一个动点,则目标函数y x z -=21的最小值为( )A .2-B .223-C .0D .225-第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2012年江苏苏州中考数学及答案(word版)

2012年苏州市初中毕业暨升学考试试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上........... 1.(2012江苏苏州,1,3分)2的相反数是( ) A . -2 B . 2 C . D .【答案】A A .B .C .D .【答案】D3.(2012江苏苏州,3,3分)一组数据2,4,5,5,6的众数是A . 2B . 4C . 5D . 6 【答案】C4.(2012江苏苏州,4,3分)如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是 A . B . C . D . 【答案】BDCBAOBODECA(第4题) (第5题) (第6题) 5.(2012江苏苏州,5,3分)如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,⌒AB =⌒BC ,∠AOB =60°,则∠BDC 的度数是A .20°B .25°C .30°D . 40°【答案】C6.(2012江苏苏州,6,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC =4,则四边形CODE 的周长是A .4B .6C .8D . 10 【答案】C7.(2012江苏苏州,7,3分)若点在函数的图象上,则的值是A .2B .-2C .1D . -1 【答案】D8.(2012江苏苏州,8,3分)若,则的值是A .3B .4C .5D . 6 【答案】B9.(2012江苏苏州, 9, 3分)如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'OB ',若∠AOB =15°,则∠AOB '的度数是A .25°B .30°C .35°D . 40° 【答案】BBA 'AB 'Oxy E 4C 3E 3C 2E 2E 1D 1C 1B 2A 3A 2A 1B 3B 1O(第9题) (第10题) 10.(2012江苏苏州,10,3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点在轴上,点、、、、、、在轴上.若正方形的边长为1,∠=60°,∥∥,则点到轴的距离是A.B. C. D.【答案】D二、填空题:本大题共8个小题,每小题3分,共24分.把答案直接填在答题卡相对应的位........置上...11.(2012江苏苏州,11,3分)计算:= ▲ .【答案】812.(2012江苏苏州,12,3分)若,,则= ▲ .【答案】613.(2012江苏苏州,13,3分)已知太阳的半径约为696 000 000m,696 000 000这个数用科学记数法可表示为▲ .【答案】14.(2012江苏苏州,14,3分)已知扇形的圆心角为45°,弧长等于,则该扇形的半径是▲ .【答案】215.(2012江苏苏州,15,3分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有▲人.(第15题)【答案】21616.(2012江苏苏州,16,3分)已知点A、B在二次函数的图象上,若,则 ▲ .【答案】>17.(2012江苏苏州,17,3分)如图,已知第一象限内的图象是反比例函数图象的一个分支,第二象限内的图象是反比例函数图象的一个分支,在轴上方有一条平行于轴的直线与它们分别交于点A 、B ,过点A 、B 作轴的垂线,垂足分别为C 、D .若四边形ACDB 的周长为8且AB <AC ,则点A 的坐标是 ▲ . 【答案】yxlB AC D O B C D PA3342xy O(第17题) (图①) (图②) 18.(2012江苏苏州,18,3分)如图①,在梯形ABCD 中,AD ∥BC ,∠A =60°,动点P从A 点出发,以1cm/s 的速度沿着A →B →C →D 的方向不停移动,直到点P 到达点D后才停止.已知△P AD 的面积S (单位:)与点P 移动的时间t (单位:s )的函数关系式如图②所示,则点P 从开始移动到停止移动一共用了 ▲ 秒(结果保留根号). 【答案】三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相对应的位置上,解答时应写必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(2012江苏苏州,19,5分)计算:.【答案】解:原式=1+2-2=1.20.(2012江苏苏州,20,5分)解不等式组:.【答案】解:由①得:由②得:∴不等式组的解集为.21.(2012江苏苏州,21,5分)先化简,再求值:,其中.【答案】解:原式= = =.当时,原式= = =.22.(2012江苏苏州,22,6分)解分式方程:.【答案】解:去分母,得:解得:经检验:是原方程的解.23.(2012江苏苏州,23,6分)如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.⑴求证:△ABE≌△CDA;⑵若∠DAC=40°,求∠EAC的度数.EDC BA(第23题)【答案】⑴证明:在梯形ABCD中,∵AD∥BC,AB=CD,∴∠ABE=∠BAD,∠BAD=∠CDA.∴∠ABE=∠CDA.在△ABE和△CDA 中,∴△ABE≌△CDA .⑵解:由⑴得:∠AEB=∠CAD ,AE =AC.∴∠AEB =∠ACE .∵∠DAC=40°∴∠AEB=∠ACE=40°.∴∠EAC=180°-40°-40°=100°.24.(2012江苏苏州,24,6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800,问中、美两国人均淡水资源占有量各为多少(单位:)?【答案】解:设中国人均淡水资源占有量为x,美国人均淡水资源占有量为y.根据题意,得解之得:答:中国人均淡水资源占有量为2300,美国人均淡水资源占有量为11500.25.(2012江苏苏州,25,8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.⑴从A、D、E、F四点中任意取一点,以所取的这一点及B、C为顶点三角形,则所画三角形是等腰三角形的概率是▲;⑵从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表求解).FEDC BA(第25题)【答案】解:⑴P (所画三角形是等腰三角形)= . ⑵用树状图或利用表格列出所有可能的结果:ED A F D A FE A D EF FEDA开始F ,E ()E ,D ()F ,D ()E ,F ()D ,E ()D ,F ()A ,F ()A ,E ()F ,A ()E ,A ()A ,D ()D ,A ()F FE E D D AA∵以点A 、E 、B 、C 为顶点及以点D 、F 、B 、C 为顶点所画的四边形是平行四边形,∴P (所画的四边形是平行四边形)=.26.(2012江苏苏州,26,8分)如图,已知斜坡AB 长60米,坡角(即∠BAC )为30°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(请将下面2小题的结果都精确到0.1米,参考数据).⑴若修建的斜坡BE 的坡角(即∠BAC )不大于45°,则平台DE 的长最多为 ▲ 米;⑵一座建筑物GH 距离坡脚A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角(即∠HDM )为30°.点B 、C 、A 、G 、H 在同一个平面上,点C 、A 、G 在同一条直线上,且HG ⊥CG ,问建筑物GH 高为多少米?30°30°HM GDE F CB A【答案】解:⑴11.0(10.9也对).⑵过点D 作DP ⊥AC ,垂足为P . 在Rt△DP A中,,.在矩形DPGM 中,,.在Rt △DMH 中,.∴.答:建筑物GH 高为45.6米.27.(2012江苏苏州,27,8分)如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接P A 、PB ,设PC 的长为.⑴当 时,求弦P A 、PB 的长度;⑵当x 为何值时,的值最大?最大值是多少?lPD CBOA【答案】解:⑴∵⊙O 与直线l 相切于点A ,AB 为⊙O 的直径,∴AB ⊥l .又∵PC ⊥l ,∴AB ∥PC . ∴∠CP A =∠P AB . ∵AB 为⊙O 的直径,∴∠APB =90°. ∴∠PCA =∠APB .∴△PCA ∽△APB .∴.∵PC =,AB =4,∴.∴在Rt △APB 中,由勾股定理得:.⑵过O 作OE ⊥PD ,垂足为E .∵PD 是⊙O 的弦,OF ⊥PD ,∴PF =FD .在矩形OECA 中,CE =OA =2,∴PE =ED =x -2. ∴.∴.∵,∴当时,有最大值,最大值是2.28.(2012江苏苏州,28,9分)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD 以1cm/s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为1cm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm.设正方形移动时间为x (s ),线段GP 的长为y (cm ),其中.⑴试求出y 关于x 的函数关系式,并求出y =3时相应x 的值;⑵记△DGP 的面积为,△CDG 的面积为,试说明是常数;⑶当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.P HG FEDC B A【答案】解:⑴∵CG ∥AP ,∴∠CGD =∠P AG ,则.∴.∵GF =4,CD =DA =1,AF =x ,∴GD =3-x ,AG =4-x . ∴,即. ∴y 关于x 的函数关系式为.当y =3时,,解得:x =2.5.⑵∵,.∴ 即为常数.⑶延长PD 交AC 于点Q .∵正方形ABCD 中,AC 为对角线,∴∠CAD =45°. ∵PQ ⊥AC ,∴∠ADQ =45°.∴∠GDP =∠ADQ =45°. ∴△DGP 是等腰直角三角形,则GD =GP . ∴,化简得:,解得:.∵,∴.在Rt △DGP 中,.29.(2012江苏苏州,29,10分)如图,已知抛物线与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C . ⑴点B 的坐标为 ▲ ,点C 的坐标为 ▲ (用含b 的代数式表示);⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;⑶请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.xyPO CBA 【答案】解:⑴B (b ,0),C (0,);⑵假设存在这样的点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形.设点P 坐标(x ,y ),连接OP ,则,∴. 过P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,∴∠PEO =∠EOD =∠ODP =90°. ∴四边形PEOD 是矩形. ∴∠EPD =90°.∵△PBC 是等腰直角三角形,∴PC =PB ,∠BPC =90°.∴∠EPC =∠BPD .∴△PEC ≌△PDB . ∴PE =PD ,即x =y .由 ,解得: .由△PEC≌△PDB得EC=DB,即,解得符合题意.∴点P坐标为(,).⑶假设存在这样的点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似.∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.∴要使得△QOA和△QAB相似,只能∠OAQ=∠QAB=90°,即QA⊥x轴.∵b>2,∴AB>OA. ∴∠QOA>∠QBA,∴∠QOA=∠AQB,此时∠OQB =90°.由QA⊥x轴知QA∥y轴,∴∠COQ=∠OQA.∴要使得△QOA和△OQC相似,只能∠OCQ=90°或∠OQC=90°.(Ⅰ)当∠OCQ=90°时,△QOA≌△OQC. ∴AQ=CO= .由得:,解得:. ∵,∴,.∴点Q坐标为(1,).(Ⅱ)当∠OQC=90°时,△QOA≌△OCQ. ∴,即.又. ∴,即.解得:AQ=4,此时b=17>2符合题意. ∴点Q坐标为(1,4).∴综上可知:存在点Q(1,)或(1,4),使得△QCO、△QOA和△QAB中的任意两个三角形均相似.。
2012年高考数学试卷及解析天津卷(理科)

2012年普通高等学校招生统一考试数学天津(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i 是虚数单位,复数ii +-37= (A ) 2 + i (B )2 – i(C )-2 + i (D )-2 – i(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分与不必要条件(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1(C )3 (D )9(4)函数22)(3-+=x x f x 在区间(0,1)内的零点个数是(A )0 (B )1(C )2 (D )3(5)在52)12(xx -的二项展开式中,x 的系数为 (A )10 (B )-10(C )40 (D )-40(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524 (7)已知ABC ∆为等边三角形,AB=2,设点P ,Q 满足λ=,)1(λ-=, R ∈λ,若32BQ CP ⋅=,则λ=(A )21 (B )221± (C )2101± (D )2223±- (8)设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m + n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________m 3.(11)已知集合{}32x <+∈=x R A ,集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.(12)已知抛物线的参数方程为⎩⎨⎧==pty pt x 2,22(t 为参数),其中p>0,焦点为F ,准线为l . 过抛物线上一点M 作l 的垂线,垂足为E. 若|EF|=|MF|,点M 的横坐标是3,则p = _________.(13)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D. 过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF=3, FB=1,EF=23,则线段CD 的长为____________.(14)已知函数112--=x x y 的图象与函数2-=kx y 的图象恰有两个交点,则实数k 的取值范围是_________.三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分) 已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.(16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (Ⅲ)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记Y X -=ξ,求随机变量ξ的分布列与数学期望ξE .(17)(本小题满分13分)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC ⊥AD ;(Ⅱ)求二面角A-PC-D 的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.(18)(本小题满分13分)已知}{n a 是等差数列,其前n 项和为S n ,}{n b 是等比数列,且27,24411=+==b a b a ,1044=-b S .(Ⅰ)求数列}{n a 与}{n b 的通项公式;(Ⅱ)记n n n n b a b a b a T 1211+++=- ,*N n ∈,证明n n n b a T 10212+-=+(*N n ∈).(19)(本小题满分14分) 设椭圆22221(0)x y a b a b+=>>的左、右顶点分别为B A ,,点P 在椭圆上且异于B A ,两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为21-,求椭圆的离心率; (Ⅱ)若OA AP =,证明直线OP 的斜率 k 满足3>k(20)(本小题满分14分)已知函数)ln()(a x x x f +-=的最小值为0,其中.0>a(Ⅰ)求a 的值;(Ⅱ)若对任意的),,0[+∞∈x 有)(x f ≤2kx 成立,求实数k 的最小值; (Ⅲ)证明∑=<+--n i n i 12)12ln(122(*N n ∈).试卷解析【试卷总评】今年天津市高考理科数学试卷所涉及的考点较去年变化不大,试题难度较去年有一定的下滑,着重考查学生的基础知识的掌握以及推导、运算和数形结合的能力。
2012年陕西中考数学试题的两种解法

2012年陕西中考数学试题的两种解法
2012年陕西中考数学试题很有特点,尤其是压轴题,难能可贵的是,第(3)小题解题所用的思路、方法源自课本,与课后作业题类似,又略高于课本,且解题方法不唯一。
可以说是紧扣课本,综合性较强的好题,现提供两种不同思路的解法,仅供参考。
(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法)。
(2)求(1)中做出的正方形的边长。
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPN,使得DE、EF在边AB上,在P、N分别在边CB、CA上,求这两个正方形面积和的最大值及最小值,并说明理由。
解:(1)如图③,正方形E′F′P′N′即为所求
(2)设正方形E′F′P′N′的边长为x
解法②主要体现技巧,利用完全平方公式求解。
可以说这道题所用的基础知识、解题思路、方法不算很难,难在计算。
2012年全国考研数学一真题

0 0 1 1 (5)设 1 0 , ,其中 c , c , c1 , c2 为任意常数,则下列 2 1 , 4 3 4 3 1 , 1 c c c c 2 3 4 1
(7)设随机变量 X 与 Y 相互独立,且分别服从参数为 1 与参数为 4 的指数分布,则 PX Y =3
(C)
2 5 1 2
(D)
4 5
)
(8)将长为 1m 的木棒随机的截成两段,则两段长度的相关系数为( (A)1 (B)
1 2
(C)
(D) 1
二、填空题:9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指定位置上
x0 y0
f ( x, y) 存在,则 f (x, y) 在(0,0)处可微 x y f ( x, y) 存在,则 f (x, y) 在(0,0)处可微 x2 y 2 f ( x, y ) 存在 x0 x y y0 f ( x, y ) 存在 x2 y 2
( )
(B)若极限lim
)
(B)1
(2)设函数 y( x) ( ex 1)(e2x 2) (enx n) ,其中 n 为正整数,则 y' (0) = (A) (1)n1 (n 1)! (B) (1)n (n 1)! (C) (1)n1 n!
(
)
(D) (1)n n! )
(3)如果函数 f (x, y) 在(0,0)处连续,那么下列命题正确的是 ( (A)若极限lim
y 轴无边界的区域的面积。
第 3 页 共 17 页
(19)(本题满分 10 分) 已知 L 是第一象限中从点(0,0)沿圆周 x2 y 2 2x 到点(2,0),再沿圆周 x2 y 2 4 到点(0,2 ) 的曲线段,计算曲线积分 J
2012年全国考研数学一真题

lim
f ( x, y) M ,可得 f (0, 0) 0 , 1 | x|| y|
z f (x, y) ,则 f x'(0, 0) lim
在,
x 0
f (x, 0) f (0, 0) f (x, 0) | x | lim lim M 1不存 x 0 x 0 x | x | 0 x
(22)(本题满分 11 分) 设二维随机变量 X 、 Y 的概率分布为
X 0 1 2 (Ⅰ)求 PX 2Y (Ⅱ)求 Cov( X Y ,Y ) Y 0 1 0 2
1 4
0
1 4
0
1 3
0
1 12
1 12
第 5 页 共 17 页
(23)(本题满分 11 分) 设随机变量 X 与 Y 相互独立分别服从正态分布 N (,2) 与 N (,22) ,其中 是未知参数且
(15)(本题满分 10 分) 证明 x ln
1 x cos x 1 x 2 , (1 x 1) 1 x 2
第 2 页 共 17 页
(16)(本题满分 10 分)
求函数 f (x, y) xe
x2 y2 2
的极值
(17)(本题满分 10 分) 求幂级数
4n2 4n 3 2 n 2n 1 x 的收敛域及和函数 n0
f y' (0, 0) 0 B ,
则
lim
0
z Ax By
lim
0
f (x ,y )
lim
0
f (x ,y ) (x ) 2 (y ) 2 lim M 20 0 2 2 (x) (y) 0 ( x)2 ( y)2