函数的极大值和极小值

合集下载

高等数学《函数的极值与最大、最小值》课件

高等数学《函数的极值与最大、最小值》课件

3) 若 f ( x)在开区间内定义,这时最值不一定存 在 ,有些实际应用问题根据实际可确定问题一 定有解 .
设 f ( x)在开区间内定义且可导, f ( x)在开区间内 有唯一驻点 x0 ,若 f ( x0 )是 f ( x)的极小值(极大值) , 则 f ( x0 )是 f ( x)的最小值 (最大值) .
f (0) 1为极大值 , 即为最大值 .
x 1时, f ( x) f (0) 1 , 即当 x 1时, 有 e x 1 . 1 x
小结
注意最值与极值的区别. 最值是整体概念而极值是局部概念. 实际问题求最值的步骤. 利用最大、小值证明不等式
思考题
若 f (a) 是 f ( x) 在[a, b] 上的最大值或最 小值,且 f (a)存在,是否一定有 f (a) 0 ?
当x 2时,f ( x) 0;
M
当x 2时,f ( x) 0.
f (2) 1为f ( x)的极大值.
定理2(第二充分条件)
设 f ( x) 在 x0处具有二阶导数,且 f ( x0 ) 0 , f ( x0 ) 0 ,则 (1) 若 f ( x0 ) 0 ,则 f ( x0 )为 f ( x)的极大值 .
f
( xk ),
f
(a),
f
(b)
}.
min
x[ a ,b ]
f (x)
min{
f ( x1) ,,
f ( xk ),
f (a),
f (b) }.
例1 求函数 y 2x3 3x2 12x 14 的在[3,4] 上的最大值与最小值.
解 f ( x) 6( x 2)(x 1)
解方程 f ( x) 0,得 x1 2, x2 1.

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

o
x
定义 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果对于去心邻域U0(x0)内的任一x,有 y f(x)<f(x0)(或f(x)>f(x0)) 称f(x0)为函数f(x)的一个极大值(极小值) 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点 注 极值是一个局部的概念
海岸位于A点南侧40km,是一条东西走向的笔直长堤. 演习中部队先从A出发陆上行军到达海堤,再从海堤处乘舰艇 到达海岛B. 已知陆上行军速度为每小时36km,舰艇速度为
每小时12km.问演习部队在海堤的何处乘舰艇才能使登岛用 y 时最少? 分析 陆上行军耗时 o 海上行军耗时 A
(0,40)
? R(x,0) B
x
(140,-60)
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
例4 从边长为a的一张正方形薄铁皮的四角切去 边长为x的四个小正方形,折转四边,作一 个盒子,问x为何值时盒子的容积最大?
例5 某企业以钢材为主要生产材料。设该厂每天的钢材需求量为 R吨,每次订货费为C1元,每天每吨钢材的存贮费为C2元 (其中R、 C1、 C2为常数),并设当存贮量降为零时,能 立即得到补充(在一个订货周期内每天的平均存贮量为订货 量的二分之一)求一个最佳的订货周期,使每天的平均费用 最小? q(t) Q o T C C0
o
x
定义 设函数f(x)在区间I上有定义,如果存在x0∈I,使得对于区间I内 的任一x,有 f(x)≤f(x0)(或f(x)≥f(x0)),则称f(x0)为函数f(x) 在区间I上的最大值(或最小值).

3.5 函数的极值与最大值最小值

3.5 函数的极值与最大值最小值

因为在1的左右邻域内f (x)0
所以f(x)在1处没有极值 同理 f(x)在1处也没有极值
首页
上页
返回
下页
结束

例4已知f(x)x3+ax2bx在x=1处有极值-12,试确定常系数a与b 解 因为f(x)x3+ax2bx,所以 f (x)3x2+2ax+b 因为f(1)=-12为极值点,所以,令f (1)0
下页 结束 铃 首页 上页 返回
三、数学建模——最优化问题
1.数学建模 数学模型是用数学符号、数学公式、程序、图、表 刻画客观事物的本质的属性、结构与联系。创建一个 数学模型的全过程称为数学建模。为解决一个实际问 题,建立数学模型是一种有效的重要方法.
2.最优化模型 给定一个函数(称为目标函数),寻找自变量的一个取值使得 对于定义域中所有的情况中,目标函数取得最小值或者最大 值.
f (x)
f(x)


不可导
极大值0


0
极小值
1 2


(4)函数f(x)在区间( 0)和(1 )单调增加, 在区间 (0 1)单调减少. 在点x0处有极大值0,在点x1处有极小值-1/2
首页 上页 返回 下页 结束 铃
定理3(第二充分条件)
设函数f(x)在点x0处具有二阶导数且f (x0)0 f (x0)0 那么 >>>证明 (2)当f (x0)0时 函数f(x)在x0处取得极小值
M
注意:极值在哪些点处取得?
m
驻点 + 奇点
x1 x2
首页
x3 x4 x5
上页 返回 下页 结束 铃
最大值和最小值的求法 (1)求出函数f(x)在(a b)内的驻点和不可导点 设这此点

函数的极值与最大值最小值

函数的极值与最大值最小值
极值点是否一定是驻点? 驻点是否一定是极值点? 考察x=0是否是函数y=x3的 驻点, 是否是函数的极值点.
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.

函数的极值与最大、最小值

函数的极值与最大、最小值
极大值点与极小值点统称为极值点.
例如
x =1 为极大值点 ,
f (1)=2是极大值;
x =2 为极小值点 ,
f (1)=2是极小值.
例如
x =0为极小值点 ,
f (0)=0是极小值.
注意:
函数的极值是函数的局部性质.
x1 , x4 , x6 为极小值点,
x2 , x5 为极大值点,
二、最大与最小值问题
第十节 函数的极值与最大、最小值
单击此处添加副标题
一、函数的极值及其求法
CLICK HERE TO ADD A TITLE
一、函数的极值及其求法 1.函数极值的定义
设 f(x) 在区间 (a,b) 内有定义 , x0 (a,b) ,
若对任意的 xU(x0, ) (a,b) 且 x x0 , 有
练习题答案
第二充分条件;
(注意使用条件)
注意最值与极值的区别.
最值是整体概念而极值是局部概念.
实际问题求最值的步骤.
利用最大、小值证明不等式
则:
1

2
当 n 为偶数时,x = x0 为极值点 , 且
3
x = x0 为极小值点 ;
4
= x0 为极大值点 .
5
当 n 为奇数时,
6
= x0 不是极值点 .
7
但点 (x0 , f (x0 ) ) 是曲线 y=f(x)的拐点 .
最大值, 最小值的特殊情形:
1)如果区间内只有一个极值,则这个极值就是最值.(最大值或最小值)
3)对应用问题 , 有时可根据实际意义判别求出 的可疑点是否为最大值点或最小值点 .
例3 三角形 ABC 的底为 a , 高为 h ,求内接

5.3.2函数的极值与最大(小)值课件(人教版)

5.3.2函数的极值与最大(小)值课件(人教版)
最小值.
高中数学
探究新知
问题4 最大(小)值与极值有什么区分和联系?
最大(小)值与极值的区分是:
1.极值是函数的局部性质,最大(小)值是函数
的整体性质;
高中数学
探究新知
2.函数的极大(小)值可以有多个,而最大(小)值
是唯一的;
高中数学
探究新知
3.函数的极大值不一定大于极小值,极小值不
一定小于极大值,而最大值一定大于最小值(常值函
解: 函数定义域为(∞,+∞).
1
3
因为 f(x)= x34x+4,所以f′(x)=x24=(x+2)(x2).
令 f′(x)=0,解得x=2或x=2.
当x变化时,f′(x),f(x)的变化情况如下表所示
高中数学
知识应用
x (∞,2) 2
f′(x)
+
0
f(x) 单调递增
(2,2)
那么,我们称M是函数y=f(x)的最大值
(maximum value).
高中数学
探究新知
问题1 函数的最大值与最小值的定义是什么?
一般地,设函数y=f(x)的定义域为I,如果存在
实数m满足:
(1)∀x∈I,都有f(x)≥m;
(2)∃x0∈I,使得f(x0)=m.
那么,我们称m是函数y=f(x)的最小值

0
+
f(x) 单调递减 0 单调递增
所以,当x=1时,f(x)取得最小值.
1

所以f(x)≥f(1)=0. 即 1+lnx≥0.
1

所以当x>0时,1 ≤lnx.
高中数学
知识应用
小结 求函数在某区间上的最大(小)值,

4.3.2函数的极大值和极小值


6
6
即y=f′(x)关于直线x=- a 对称.
6
从而由题设条件知- a =- 1 ,即a=3.
62
又由于f′(1)=0,即6+2a+b=0,
得b=-12.
②由①知f(x)=2x3+3x2-12x+1, 所以f′(x)=6x2+6x-12=6(x-1)(x+2), 令f′(x)=0,即6(x-1)(x+2)=0,解得x=-2或x=1. 当x∈(-∞,-2)时,f′(x)>0, 即f(x)在(-∞,-2)上单调递增;
因为ex>0,所以y=f′(x)的零点就是g(x)=-ax2+
(2a-b)x+b-c的零点,且f′(x)与g(x)符号相同.
又因为a>0,所以-3<x<0时, g(x)>0,即f′(x)>0, 当x<-3或x>0时,g(x)<0,即f′(x)<0, 所以f(x)的单调增区间是(-3,0), 单调减区间是(-∞,-3),(0,+∞).
2.(2017·全国卷Ⅱ)若x=-2是函数f(x)=(x2+ax-1)ex-1
的极值点,则f(x)的极小值为 ( )
A.-1
B.-2e-3 C.5e-3
D.1
【解析】选A.由题可得f′(x)=(2x+a)ex-1+(x2+ax1)ex-1=[x2+(a+2)x+a-1]ex-1,因为f′(-2)=0,所以a= -1,f(x)=(x2-x-1)ex-1,故f′(x)=(x2+x-2)ex-1,令 f′(x)>0,解得x<-2或x>1,所以f(x)在(-∞,-2)和 (1,+∞)上单调递增,在(-2,1)上单调递减,所以f(x) 的极小值=f(1)=(1-1-1)e1-1=-1.

函数的极值与最大值最小值

第五节 函数的极值与最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
一、函数的极值及其求法
极值定义 设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
如果对 x U ( x0 ) ,有 f ( x ) f ( x0 ) ( 或 f ( x ) f ( x0 ) ),
求函数 f ( x ) x 2 3 x 2 在 [3,4] 上的 例3 最大值与最小值 .
解: 显然
一定取得最大值与最小值.
f ( x) ( x 2)( x 1)

x 1, x 2为不可导点
x [3,1] [2,4] x (1,2).
x 2 3 x 2, f ( x) 2 x 3 x 2,

2 5
0 0.33
2 ( 5 , )
其极大值为 是极大点,
是极小点, 其极小值为
确定函数极值点和极值的步骤
(1) 确定函数定义域 , 并求导数 f ( x );
(2) 求出 f ( x ) 的全部驻点与不可导点;
(3)驻点和不可导点将定义域区间分成若干个区间, 列表考察导函数在各个区间内的符号,以便确定该点
x 最大(小)值若在区间内部取得,则它一定是极大(小)值. o a x1 x2 x3x4 b x 2 , x4 为极小值点
费马( Fermat )引理
设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
若 (1) f ( x)在 x0 点可导
则 f ( x0 ) 0.
(2) f ( x)在 x0 点取得极大值或极小值
点处的切线与直线 y 0 及 x 8 所围成的三角形

函数的极值


3 的极值. 自我挑战 求函数 f(x)=x+3lnx 的极值. = 练习一 3 的定义域为(0,+ , ,+∞ 解:函数 f(x)= + 3lnx 的定义域为 ,+∞ ), = x ( - ) 3 3 3( x- 1) f′(x)=- 2 + = ′ =- , 2 x x x 令 f′ (x)=0 得 x= 1. ′ = = 的符号、 的单调性和 根据 x=1 列表分析 f′(x)的符号、f(x)的单调性和 = ′ 的符号 极值点: 极值点:
2.极小值点与极小值 . 如果x= 是函数 是函数y= 在某个开区间(u, 上的 如果 = c是函数 = f(x)在某个开区间 , v)上的 在某个开区间 最小值点,即不等式f(c)≤ 对一切x∈ , 成 最小值点,即不等式 ≤f(x)对一切 ∈(u,v)成 对一切 就说函数f(x)在x=c处取到极小值 处取到_________f(c),并 立,就说函数 在 = 处取到 , 的一个极小值点, 称 c为 f(x)的一个极小值点, f(c)为f(x)的一个极小 为 的一个极小值点 为 的一个极小 值. 极大值 和 极小值 统称极值 极大值点 _________和________统称极值,____________和 统称极值, 和 极小值点 ____________统称极值点. 统称极值点. 统称极值点
【点评】 点评】 (1)函数的极值是对函数在某一点附近的小区间而 函数的极值是对函数在某一点附近的小区间而 言, 在函数的定义域区间内可能有多个极大值或 极小值,且极大值不一定比极小值大。 极小值,且极大值不一定比极小值大。 (2)连续函数的某点是极值点的充分条件是在这点 连续函数的某点是极值点的充分条件是在这点 两侧的导数异号. 两侧的导数异号 . 可导函数的某点是极值点的必 要条件是在这点的导数为0. 要条件是在这点的导数为

函数极大值与极小值的判定与求解

函数极大值与极小值的判定与求解函数在数学中起着重要的作用,通过函数可以描述数学模型、分析现象并解决问题。

函数的极值是函数曲线中的最高点或最低点,是函数中的重要特征。

本文将讨论如何判定与求解函数的极大值与极小值。

一、理论基础在讨论函数的极大值和极小值之前,我们需要了解一些相关的概念和理论基础。

1.1 导数导数是函数的重要工具,它描述了函数在某一点附近的变化率。

函数的导数可以用来判断函数的增减性,即函数在某一区间上是递增还是递减的。

1.2 临界点函数的临界点是指函数导数等于零或导数不存在的点。

在临界点处,函数可能取得极值。

1.3 拐点拐点是函数曲线在该点处凹凸性发生变化的点。

拐点处的函数可能存在极大值或极小值。

二、函数极值的判定要判定一个函数 f(x) 在某一点 x0 处存在极大值或极小值,我们可以利用函数的导数和二阶导数来进行判定。

2.1 利用一阶导数当函数 f(x) 在一个区间上单调递增时,该区间上的最大值一定位于区间的右端点;当函数 f(x) 在一个区间上单调递减时,该区间上的最大值一定位于区间的左端点。

因此,我们可以通过求解 f'(x) = 0 的临界点来确定函数的极值点。

2.2 利用二阶导数若函数 f(x) 在临界点 x0 处的二阶导数 f''(x0) 大于零,则 f(x) 在 x0处取得极小值;若 f''(x0) 小于零,则 f(x) 在 x0 处取得极大值。

这是由于 f''(x) 描述了函数凹凸性变化的规律。

三、函数极值的求解在判定函数的极值后,我们可以通过求解极值点的横坐标来确定函数的极值。

3.1 集中式求解对于一些简单的函数,可以通过求导数并解方程的方式求得临界点,再通过代入法判断极值。

这种方法适用于函数简单且解析解容易求得的情况。

例如,对于函数 f(x) = 2x^3 - 6x^2 + 4x + 3,可以求得其导数f'(x) = 6x^2 - 12x + 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3.2函数的极大值和极小值
1.下列关于函数的极值的说法正确的是
() A.导数值为0的点一定是函数的极值点
B.函数的极小值一定小于它的极大值
C.函数在定义域内有一个极大值和一个极小值
D.若f(x)在(a,b)内有极值,那么f(x)在(a,b)内不是单调函数
答案 D
解析由极值的概念可知只有D正确.
2.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函
数f(x)
() A.无极大值点,有四个极小值点
B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点
D.有四个极大值点,无极小值点
答案 C
解析在x=x0的两侧,f′(x)的符号由正变负,则f(x0)是极大值;f′(x)的符号由负变正,则f(x0)是极小值,由图象易知有两个极大值点,两个极小值点.3.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为
() A.-1<a<2 B.-3<a<6
C.a<-1或a>2 D.a<-3或a>6
答案 D
解析f′(x)=3x2+2ax+(a+6),
因为f (x )既有极大值又有极小值,
那么Δ=(2a )2-4×3×(a +6)>0,
解得a >6或a <-3.
4.设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a 的值为________.
答案 9
解析 f ′(x )=18x 2+6(a +2)x +2a .由已知f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a 18
=1,所以a =9.
1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.
2.函数的极值是函数的局部性质.可导函数f (x )在点x =x 0处取得极值的充要条件是f ′(x 0)=0且在x =x 0两侧f ′(x )符号相反.
3.利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.。

相关文档
最新文档