离子交换树脂基础知识
离子交换树脂使用方法

离子交换树脂使用方法
离子交换树脂是一种常见的水处理方法,用于去除水中的离子物质。
以下是离子交换树脂的使用方法:
1. 准备工作:根据水质需求,选择合适的离子交换树脂。
树脂通常以珠形或颗粒形式存在,可以根据需要选择合适的尺寸。
2. 选择床层:根据水处理系统的需求,确定离子交换树脂的床层深度。
一般来说,树脂床层的深度越大,处理效果越好。
3. 处理过程:将离子交换树脂装入处理设备中,通常为一个带有床层的垂直柱状容器。
将待处理的水通过树脂床层流过,树脂会吸附或释放特定的离子物质。
4. 回收树脂:当树脂饱和时,需要进行树脂的再生或更换。
根据不同的树脂类型和水质要求,可以使用盐水(纳盐)或酸碱溶液(酸洗、碱洗)来再生树脂,从而使其恢复吸附能力。
5. 检测和控制:使用合适的水质测试仪器,对处理过的水进行定期检测,以确保离子交换树脂的性能和处理效果。
需要注意的是,离子交换树脂的使用过程可能会受到多个因素的影响,如水质、水量、树脂种类和状态等。
因此,在实际操作中,可能需要根据具体情况进行适
当的调整和优化。
离子交换树脂 载量

离子交换树脂载量摘要:1.离子交换树脂的概述2.离子交换树脂的分类与特点3.离子交换树脂的应用领域4.离子交换树脂的载量及其影响因素5.如何选择和使用离子交换树脂6.离子交换树脂的再生与维护正文:离子交换树脂是一种广泛应用于水处理、化工、冶金、食品、制革、制药等领域的材料。
它通过选择、交换、吸附和催化反应,实现净化水、脱盐、脱色、分离、精制等目的。
离子交换树脂主要分为阳离子树脂和阴离子树脂。
阳离子树脂由苯乙烯和二乙烯苯共聚而成,带有磺酸基团,具有良好的交换容量和交换速度。
阴离子树脂则是在苯乙烯-二乙烯苯共聚基体上带有磺酸基团的离子交换树脂,具有高交换容量和快速交换的特点。
离子交换树脂的载量是指树脂中可交换离子的数量,它受到树脂的物理和化学性质、制备工艺、再生方式等因素的影响。
一般来说,载量越高,树脂的性能越好。
但载量并非唯一决定树脂性能的因素,还需考虑树脂的交换速度、机械强度、耐热性等指标。
在使用离子交换树脂时,应根据实际需求选择合适的树脂类型和规格。
对于水处理行业,通常选择强酸性和弱酸性离子交换树脂;在化工领域,可根据需要选择特定功能的离子交换树脂。
此外,在使用过程中,要定期检查树脂的性能,如发现性能下降,应及时进行再生处理。
离子交换树脂的再生主要有两种方法:一种是化学再生,使用酸或碱溶液对树脂进行处理,使其恢复交换能力;另一种是物理再生,通过加热、搅拌、洗涤等方式去除树脂上的吸附物,恢复其交换能力。
无论哪种方法,都需要注意再生剂的浓度、温度、时间等条件,以保证再生效果。
总之,离子交换树脂是一种重要的新型材料,其选择、使用和再生均需要专业知识。
离子交换树脂基础知识

压缩空气的压力:0.1~0.15MPa 压缩空气的流量:2~3Nm3/(m2·s) 混合时间:30~60s
离子交换树脂基础知识
水处理专业学习笔记
离子交换树脂的结构
二乙烯苯将苯乙烯单体聚合而成 的线型高分子交联起来,搭接成 一个立体型的高分子化合物,不 溶于水的球状固体(树脂)。
苯乙烯和二乙烯苯聚合成的网状 聚合物树脂,是透明或半透明的 凝胶状结构。
离子交换树脂的双电层结构
由内层的带负电荷的固定离子和 外层的带正电荷的可交换离子组 成了“双电层结构”。
强酸阳树脂Na型
可以独立使用 用Na+置换水中的Ca2+、Mg2+ 去除了钙、镁的碳酸盐硬度和永久硬度 离子交换之后,水中阴离子成分不改变,水的碱度不改变 使用NaCl溶液再生
弱酸阳树脂H型
不独立使用 用H+置换水中的Ca2+、Mg2+ 去除了钙、镁的碳酸盐硬度,不能去除永久硬度 对于中性盐没有交换能力 离子交换之后,水的碱度降低,碳酸盐硬度降低,出水微酸,有CO2 使用HCl溶液再生
H-Na软化降碱
弱酸阳树脂H型+强酸阳树脂Na型
强酸阳树脂H型
不独立使用 用H+置换水中所有阳离子 离子交换后,中性溶解盐都转变成了相应的强酸,出水酸性 离子交换后,碳酸盐转变成了碳酸 使用HCl溶液再生
强碱阴树脂OH型
不独立使用 用OH-置换水中所有阴离子 离子交换后,溶液呈碱性 使用NaOH溶液再生
树脂的交换
磺酸型强酸性阳树脂(R-Na+的亲合力大于H+ 完全交换后的树脂为R-SO3Na 交换后的溶液呈酸性
离子交换树脂操作手册

离子交换树脂操作手册目录1. 简介2. 性质和分类3. 原理和机制4. 操作步骤5. 常见问题解答1. 简介离子交换树脂是一种用于分离和纯化化学物质的材料。
它们具有高度选择性,可用于去除溶液中的离子或分离特定化合物。
本操作手册旨在提供离子交换树脂的基本知识和操作指南。
2. 性质和分类离子交换树脂根据其功能和化学结构可分为阳离子交换树脂和阴离子交换树脂。
阳离子交换树脂具有吸附和交换正离子的能力,而阴离子交换树脂则对阴离子具有选择性吸附和交换能力。
根据粒度和形态,离子交换树脂还可分为凝胶型和颗粒型。
3. 原理和机制离子交换树脂能够与溶液中的离子发生化学反应,从而实现离子的吸附和交换。
阳离子交换树脂含有带正电荷的活性基团,可以与溶液中的带负电荷的离子发生吸附和交换。
阴离子交换树脂则含有带负电荷的活性基团,可以与溶液中的带正电荷的离子发生吸附和交换。
4. 操作步骤以下是使用离子交换树脂的基本操作步骤:1. 准备工作:根据需要选择适当的离子交换树脂,并确保树脂得到充分清洗和预处理。
2. 树脂装置配置:安装合适的离子交换装置,包括管道、压力调节器和溶液储存罐。
3. 树脂装载:将干燥的离子交换树脂装填到装置中,并确保均匀分布。
4. 树脂预处理:根据树脂的要求,进行酸洗或碱洗等预处理步骤。
5. 树脂调平:根据需要,对树脂进行调平步骤以保证操作效果和稳定性。
6. 树脂使用:将待处理的溶液加入装置中,通过流动或批处理的方式进行离子交换。
7. 树脂再生:根据需要,对已使用过的树脂进行再生或清洗步骤。
8. 结果分析:根据交换后的溶液性质,进行结果分析并记录。
5. 常见问题解答问:如何选择合适的离子交换树脂?答:根据溶液中需要去除或分离的离子种类和性质,选择具有相应交换能力的离子交换树脂。
问:树脂如何再生?答:根据树脂类型和使用情况,采用适当的方法进行树脂再生,如酸洗、碱洗或盐溶液处理等。
问:如何判断离子交换过程的完全性?答:通过检测交换后溶液中的离子浓度或其他相关指标,判断离子交换过程的完全性。
离子交换树脂基础知识

离子交换树脂的基础知识一、离子交换树脂发展简史离子交换剂是一类能发生离子交换的物质,分为无机离子交换剂和有机离子交换剂。
有机离子交换剂又称离子交换树脂。
无机离子交换剂(如沸石)早在一百多年前就已发现并应用,人类就已经会利用沙砾净水。
而有机离子交换树脂是在1933年由英国人亚当斯(Hdams)和霍姆斯(Holms)首先用人工方法制造酚醛类型的阳、阴离子交换树脂。
在第二次世界大战期间,德国首先进行工业规模的生产。
战后英、美、苏、日等国的发展很快。
1945年美国人迪阿莱里坞(D’Alelio)发表了关于聚苯乙烯型强酸性阳离子交换树脂及聚丙烯酸型弱酸性阳离子交换树脂的制备方法。
后来聚苯乙烯阴离子交换树脂、氧化还原树脂以及螯合树脂等也相继出现,在应用技术及其范围上也日益广大。
到了上世纪五十年代后期,各种大孔型的树脂又相继发展起来,在生产及科学研究中,离子交换树脂起着越来越重要的作用。
解放前,我国的离子交换树脂的科研和生产完全空白,解放后,从五十年代初期开始,我国在北京、上海和天津的一些科研单位和高等学校分别开始了离子交换树脂的研究。
1953年酚醛磺化树脂产生,1958年凝胶型苯乙烯树脂投入生产,1959年南开大学何炳林用苯乙烯做致孔剂合成孔径大、强度高和交换速度快的大孔型交联聚苯乙烯离子交换树脂。
60年代我国生产了大孔型苯乙烯系、丙烯酸系离子交换树脂。
到70年代中、后期又合成了多种吸附树脂、碳化树脂,并已先后投入生产。
经过50年的努力,我国的离子交换树脂的生产和工业应用得到了飞速的发展,生产的品种已超过六十种,产品的种类和产量日益增多,质量不断提高,并广泛应用于工农业生产、国防建设、医药卫生、交通运输及科学研究等部门,在我国的建设中起着越来越重要的作用。
二、离子交换树脂的组成离子交换树脂不溶于一般的酸、碱溶液及各种有机溶剂,如乙醇、丙酮及烃等,结构上属于既不溶解、也不熔融的多孔性海绵状固体高分子物质。
每个树脂颗粒都由交联的具有三维空间立体结构的网络骨架构成,在骨架上连接许多可以活动的功能基。
离子交换树脂原理及使用方法

离子交换树脂原理及使用方法离子交换树脂是一种重要的固相吸附材料,广泛应用于水处理、制药、食品工业等领域。
它的工作原理是通过静电作用,将溶液中的离子与树脂上的离子交换,从而实现对溶液中特定离子的去除或富集。
离子交换树脂的基本结构是一种聚合物,它的分子链上带有一些功能性基团,这些基团能够与离子发生化学反应。
树脂的功能性基团可以是阴离子基团,如氨基、羟基等,也可以是阳离子基团,如胺基、硫酸基等。
树脂的选择要根据需要去除或富集的离子种类来确定。
离子交换树脂的使用方法一般分为两步,即吸附和洗脱。
首先,将树脂装填在柱子或者固定在其他介质上,形成一个固定床。
然后,将需要处理的溶液通过固定床,溶液中的离子会与树脂上的离子发生交换作用,被吸附在树脂上。
这样,溶液中的目标离子就被去除或者富集到树脂上了。
吸附完毕后,需要对树脂进行洗脱,将吸附在树脂上的离子从树脂上解吸下来。
常用的洗脱方法有酸洗和盐洗。
酸洗是指用酸性溶液对树脂进行洗脱,通过与树脂上的离子发生反应,将其解离下来。
盐洗是指用盐溶液对树脂进行洗脱,通过与树脂上的离子发生交换,将其替换下来。
洗脱后的溶液中就含有高浓度的目标离子,可以进一步利用。
离子交换树脂的选择和运用需要根据具体的应用需求来确定。
不同的树脂具有不同的特性,对不同的离子有不同的选择性。
在选择树脂时,需要考虑离子的浓度、溶液的pH值、温度等因素。
同时,还需要根据溶液的体积和流速等参数来确定树脂的装填方式和床层高度,以确保充分的吸附和洗脱效果。
离子交换树脂的使用在水处理中有着广泛的应用。
例如,可利用阴离子交换树脂去除水中的硝酸盐、磷酸盐等无机离子,或者利用阳离子交换树脂去除水中的重金属离子。
在制药和食品工业中,离子交换树脂也常用于纯化和富集目标物质。
此外,离子交换树脂还可以应用于环境保护、化学分析等领域。
离子交换树脂是一种重要的固相吸附材料,其工作原理是通过静电作用实现溶液中离子的去除或富集。
在使用离子交换树脂时,需要根据具体的应用需求选择合适的树脂和操作条件。
6.阳离子交换树脂的基本结构及其工作原理

6.阳离子交换树脂的基本结构及其工作原理阳离子交换树脂是一种广泛用于水处理、化工、医药等领域的重要材料,它通过特殊的结构和工作原理,能够有效去除水中的阳离子杂质,从而改善水质或提纯目标物质。
本文将深入探讨阳离子交换树脂的基本结构及其工作原理,帮助读者更全面地了解这一重要材料。
一、阳离子交换树脂的基本结构1.1 树脂基质阳离子交换树脂的基本结构首先包括树脂基质,它通常由聚苯乙烯、丙烯腈、乙烯基苯等聚合物材料组成。
这些基质具有良好的机械强度和化学稳定性,能够承受反复的离子交换操作。
1.2 功能基团阳离子交换树脂的基本结构中含有功能基团,这些功能基团负责与水中的阳离子发生交换反应。
常见的功能基团包括硫酸基(-SO3H)、胺基(-NH2)等,它们具有高度选择性地吸附和释放特定的阳离子。
1.3 孔隙结构阳离子交换树脂还具有一定的孔隙结构,这些微孔和介孔为水分子和离子提供了通道,有利于吸附和传输反应。
二、阳离子交换树脂的工作原理2.1 离子交换过程阳离子交换树脂的工作原理主要是通过离子交换过程来去除水中的阳离子杂质。
当含有阳离子的水流经阳离子交换树脂床层时,阳离子与功能基团发生吸附和交换反应,被树脂表面所吸附,而树脂上原有的阳离子则被释放出来,达到了去除杂质的目的。
2.2 再生与回收阳离子交换树脂还可以通过再生和回收来重复利用。
当树脂吸附饱和后,可以通过使用盐酸、硫酸等溶液对其进行再生,使其脱除吸附的阳离子,恢复至初始状态,方便后续的继续使用。
三、个人观点和理解阳离子交换树脂凭借其独特的结构和工作原理在水处理、化工等领域发挥着重要的作用。
通过合理选择基质材料和功能基团,可以实现对不同类型阳离子的高效吸附和去除,为水质改善和目标物质提纯提供了有力支持。
阳离子交换树脂的再生与回收特性也大大降低了成本,具有良好的经济效益。
总结回顾通过本文的对阳离子交换树脂的基本结构及工作原理的深入探讨,相信读者对该主题有了更全面、深入的理解。
离子交换树脂的类型及作用机理

离子交换树脂的类型及作用机理离子交换树脂是一种常用的固相萃取材料,广泛应用于水处理、制药、食品加工、化学分析等领域。
离子交换树脂根据其功能和结构特点,可以分为阴离子交换树脂和阳离子交换树脂。
1. 阴离子交换树脂:阴离子交换树脂通常具有正电荷的功能基团,如胺基或季铵基团。
它们能够吸附和交换阴离子,如硝酸根、氯离子、磷酸根等。
常见的阴离子交换树脂有强碱性树脂和弱碱性树脂。
强碱性树脂,它们具有高度碱性的功能基团,如季铵基团,能够吸附和交换大多数阴离子。
常用于水处理中去除硝酸盐、氯离子等。
弱碱性树脂,它们具有较低的碱性功能基团,如胺基团,适用于去除较弱的阴离子,如有机酸和某些无机酸。
2. 阳离子交换树脂:阳离子交换树脂通常具有负电荷的功能基团,如硫酸基团或磷酸基团。
它们能够吸附和交换阳离子,如钠离子、钙离子、铵离子等。
常见的阳离子交换树脂有强酸性树脂和弱酸性树脂。
强酸性树脂,它们具有高度酸性的功能基团,如硫酸基团,能够吸附和交换大多数阳离子。
常用于水处理中去除钠离子、钙离子等。
弱酸性树脂,它们具有较低的酸性功能基团,如磷酸基团,适用于去除较弱的阳离子,如铵离子和某些金属离子。
离子交换树脂的作用机理是通过功能基团与待去除离子之间的静电吸引力实现的。
当离子交换树脂与水或溶液接触时,树脂中的功能基团会与水中的离子发生交换,使树脂中的离子与水中的离子达到平衡。
这样,树脂就能够吸附和去除溶液中的目标离子。
当树脂吸附饱和后,可以通过用盐水或酸碱溶液进行再生,使树脂恢复吸附能力。
总的来说,离子交换树脂通过其特殊的功能基团与待去除离子之间的静电吸引力,实现了对阴离子或阳离子的吸附和去除。
不同类型的离子交换树脂适用于不同的离子去除需求,可以根据具体应用场景进行选择和调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子交换树脂的基础知识一、离子交换树脂发展简史离子交换剂是一类能发生离子交换的物质,分为无机离子交换剂和有机离子交换剂。
有机离子交换剂又称离子交换树脂。
无机离子交换剂(如沸石)早在一百多年前就已发现并应用,人类就已经会利用沙砾净水。
而有机离子交换树脂是在1933年由英国人亚当斯(Hdams)和霍姆斯(Holms)首先用人工方法制造酚醛类型的阳、阴离子交换树脂。
在第二次世界大战期间,德国首先进行工业规模的生产。
战后英、美、苏、日等国的发展很快。
1945年美国人迪阿莱里坞(D’Alelio)发表了关于聚苯乙烯型强酸性阳离子交换树脂及聚丙烯酸型弱酸性阳离子交换树脂的制备方法。
后来聚苯乙烯阴离子交换树脂、氧化还原树脂以及螯合树脂等也相继出现,在应用技术及其范围上也日益广大。
到了上世纪五十年代后期,各种大孔型的树脂又相继发展起来,在生产及科学研究中,离子交换树脂起着越来越重要的作用。
解放前,我国的离子交换树脂的科研和生产完全空白,解放后,从五十年代初期开始,我国在北京、上海和天津的一些科研单位和高等学校分别开始了离子交换树脂的研究。
1953年酚醛磺化树脂产生,1958年凝胶型苯乙烯树脂投入生产,1959年南开大学何炳林用苯乙烯做致孔剂合成孔径大、强度高和交换速度快的大孔型交联聚苯乙烯离子交换树脂。
60年代我国生产了大孔型苯乙烯系、丙烯酸系离子交换树脂。
到70年代中、后期又合成了多种吸附树脂、碳化树脂,并已先后投入生产。
经过50年的努力,我国的离子交换树脂的生产和工业应用得到了飞速的发展,生产的品种已超过六十种,产品的种类和产量日益增多,质量不断提高,并广泛应用于工农业生产、国防建设、医药卫生、交通运输及科学研究等部门,在我国的建设中起着越来越重要的作用。
二、离子交换树脂的组成离子交换树脂不溶于一般的酸、碱溶液及各种有机溶剂,如乙醇、丙酮及烃等,结构上属于既不溶解、也不熔融的多孔性海绵状固体高分子物质。
每个树脂颗粒都由交联的具有三维空间立体结构的网络骨架构成,在骨架上连接许多可以活动的功能基。
这种功能基能离解出离子,可以与周围的外来离子互相交换。
功能基固定在网络骨架上不能自由移动,但功能基所带的可以离解的离子却能自由移动,随着使用或再生时,在不同的外界条件下,与周围的同类型其他离子相互交换,所以叫做可交换离子。
人们就是通过控制树脂上的这种可交换离子,创造适宜条件,如改变浓度差、利用亲合力差别等,使它与相近的同类型离子进行反复交换,以达到不同的使用目的,如浓缩、分离、提纯、净化等。
换言之,离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架、连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。
离子交换树脂也可以看作多功能基的高分子化合物。
对于具有能离解出阳离子作为可交换离子与外来的阳离子进行交换的物质叫做阳离子交换树脂,相当高分子的多元酸;对于能离解出阴离子作为可交换离子的物质,叫做阴离子交换树脂,相当于高分子多元碱。
它们通常被列入高分子领域。
又由于这种功能基除了离子交换的功能外,还能起吸附等多种作用,所以也属于功能高分子。
阳离子交换树脂是一类骨架上结合有磺酸(-SO3H)和羧酸(-COOH)等酸性功能基的聚合物。
将此树脂浸渍于水中时,交换基部分可如同普通酸那样发生电离。
以R表示树脂的骨架部分,阳离子交换树脂R-SO3H或R-COOH在水中的电离如下:H RSO3- + H+RSORCOOH RCOO-+ H+RSO3H型的树脂易于电离,具有相当于盐酸或硫酸的强酸性,称为强酸性阳离子交换树脂。
而RCOOH型的树脂类似有机酸,较难电离。
具有弱酸的性质,因此称为弱酸性阳离子交换树脂。
阴离子交换树脂是一类在骨架上结合有季胺基、伯胺基、仲胺基、叔胺基的聚合物。
其中以季胺基上的羟基为交换基的树脂具有强碱性,称为强碱性阴离子交换树脂。
用R表示树脂中的聚合物骨架时,强碱性阴离子交换树脂在水中会发生如下的电离:R—N+(CH3)3OH-R—N+(CH3)3 + OH--具有伯胺、仲胺、叔胺基的阴离子交换树脂碱性较弱,称为弱碱性阴离子交换树脂。
强碱性阴离子交换树脂一般以化学稳定的CL盐型出售,应用时要用N a OH溶液进行转型。
三、离子交换树脂的分类按骨架结构不同,离子交换树脂可分为凝胶性和大孔型树脂两大类。
由苯乙烯和二乙烯苯混合物在引发剂存在下进行自由基悬浮聚合,得到具有交联网状结构的聚合体。
这种聚合体一般是呈透明状态的,无孔的凝胶型树脂。
聚会时增加DVB的加入量,则链的分枝多,成为紧密结构;将DVB量减少,则生成分枝少、网目大的树脂。
其中单体DVB称为交联剂,其加入量占单体总量的百分数表示网状结构粗密的尺度,称为交联度。
通常8%左右为标准交联度树脂,高于8%的称为高交联度树脂,低于8%的称为低交联度树脂。
在得到的苯乙烯-DVB共聚物上导入磺酸基可制的强酸性阳离子交换树脂,将共聚物氯甲基化后与胺反应则可制得强碱性阴离子交换树脂。
在功能基导入之前,苯乙烯和二乙烯苯共聚物无吸水性,导入功能基后,树脂会吸水溶胀,交联高的树脂骨架的链难于伸展,吸水量也受到限制,不易溶胀;而交联低的树脂吸水量大,溶胀也大。
离子交换树脂吸水后,树脂相内产生微孔,反离子可扩散进由吸水而产生的微孔内进行离子交换,微孔的大小依赖于树脂的交联度。
因此交联度是离子交换树脂的重要指标之一。
另一类型的是大孔离子交换树脂,它是60年代在一般凝胶型树脂基础上发展起来的一种新型树脂。
它的基本特点是在整个树脂内部无论干、湿或收缩、溶胀(在水中)都存在着比一般凝胶型更多、更大的孔道,因而表面积大,在离子交换过程中,离子容易迁移扩散,交换速度较快,工作效率高。
大孔离子交换树脂的制备,是通过加入适量的致孔剂,使在网状骨架固化和链结结构单元形成的过程中,添加惰性分子,预先留下孔道形成的。
在骨架固定后,再抽走致孔剂,便留下不受干湿或缩胀影响的永久性孔道。
所用致孔剂一般能与单体混溶,不参加化学反应,对聚合物来说是溶胀剂或沉淀剂的有机溶剂。
按所带的交换功能基的特性,离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和其他树脂。
带有酸性功能基,能与阳离子进行交换的聚合物叫阳离子交换树脂;带有碱性功能基、能与阴离子交换的聚合物叫阴离子交换树脂。
按功能基上酸或碱的强弱程度又可分为强酸(-SO3H)、中强酸(PO(OH)2)、弱酸(—COOH)阳离子交换树脂;弱碱(—NH2、—NRH、—NR2)及强碱(—N+R3CL)离子交换树脂。
强碱型阴离子交换树脂又把带三甲基苄铵基的树脂叫Ⅰ型树脂,带二甲基羟乙基苄铵基【—N—(CH3)CH2OH】的树脂叫Ⅱ型树脂。
带有第三锍基(—S+—)和第四磷基(—P+ 2—)的树脂也列入强碱树脂。
在同一种离子交换树脂中,有时也带有数种不同酸碱性的功能基,所以又有单功能基和多功能基离子交换树脂之分。
对于带氧化还原(—SH,—螯合(—N(CH2COOH)2)、光活性、阴阳两性等功能基的树脂,一般按其特征命名。
从物质的基本组成来分,一般将主链上含有碳、氢,而功能基上带有氧、氮、磷、硫等元素的树脂列为有机离子交换树脂,可算是聚合物的一个分支,而把含有锆、钛、钒、钨、钼等元素为主的无机离子交换剂,当作无机高分子化合物的一个分支。
四、离子交换树脂的名称、牌号及命名方法为避免分类上的混乱,我国在1958年提出命名草案。
为了统一国产离子交换树脂的牌号,石油化学工业部在1977年7月1日制定了《离子交换树脂产品分类、命名及型号》的部颁标准。
《标准》根据离子交换树脂功能基的性质,将其分为强酸、弱酸、强碱、弱碱、螯合、两性及氧化还原等七类,见下表:表1 离子交换树脂的种类对离子交换树脂的命名做了如下规定:离子交换树脂的全名由分类名称、骨架(或集团)名称、基本名称排列组成。
离子交换树脂的型态分为凝胶型和大孔型两种。
凡具有物理孔结构的称为大孔型树脂,在全名前加“大孔”两字以示区别。
由于氧化还原树脂与离子交换树脂的特性不同,故在命名的排列上也有不同,其命名原则由基团的名称、骨架名称、分类名称和树脂两字排列组成。
离子交换树脂的基本名称为离子交换树脂。
凡分类中属酸性的,应在基本名称前加一“阳”字;凡分类中属碱性的,在基本名称前加一“阴”字。
为了区别离子交换树脂产品中的不同品种,在全名前必须有型号。
离子交换树脂产品的型号由三位阿拉伯数字组成。
第一位数字代表产品的分类,第二位数字代表骨架结构的差异(代号可见表2、3),第三位数字为顺序号,用以区别基团、交联剂等。
表2 离子交换树脂产品分类表3 离子交换树脂骨架分类凡大孔型离子交换树脂,在型号前加“大”字的汉语拼音首位字母“D”表示之。
凝胶型离子交换树脂,在型号后面用“×”号连接阿拉伯数字,表示交联度。
遇到二次聚合或其交联度不清楚时,可以采用近似值表示或不给予表示,见图1。
. . .×.交联度数值连接符号顺序号骨架代号分类代号0 0 1×7交联度数值、交联度为7连接符号顺序号骨架代号、苯乙烯系分类代号、强酸性2 0 1×7交联度数值、交联度为7连接符号顺序号骨架代号、苯乙烯系分类代号、强碱性D×××顺序号骨架代号分类代号大孔型代号图1 离子交换树脂型号图解D113顺序号骨架代号、丙烯酸系分类代号、弱酸性大孔型代号五、离子交换树脂的作用原理离子交换树脂的交换反应与溶液中的置换反应相似,例如NaCL + AgNO3AgCL + Na NO3这个反应可以看作是银离子交换了氯化钠中的钠离子。
利用固载在聚合物骨架上的功能基所带的可交换的离子在水溶液中能发生离解,如磺酸树脂上可离解出氢离子,这种离子可在较大的范围内自由移动,扩散到溶液中。
同时,在溶液中的同类型离子,如钠离子,也能从溶液中扩散到聚合物网络和孔内。
当这两种离子的浓度差较大时,就产生一种交换的推动力使他们之间发生交换作用,浓度差越大,交换速度越快。
利用这种浓度差的推动力关系使树脂上可交换离子发生可逆交换反应,如,当溶液中的钠离子浓度较大时,就可把磺酸树脂上的氢离子交换下来。
当全部氢离子被钠离子交换后,这时就称树脂为钠离子所饱和。
然后,如果把溶液变为浓度较高的酸时,溶液中的氢离子又能把树脂上的钠离子置换下来,这时树脂就“再生”为H+型。
通过这种可逆交换作用原理,加上树脂上固载的功能基对不同离子具有不同的亲和性,使离子交换树脂能应用于离子的分离、置换、浓缩、杂质的去除和催化反应等。
阴离子交换树脂骨架上带的是各种碱性不同的功能基(RN(CH3)3OH、RN(CH3)2HOH、RNH2HOH),能离解出与溶液里的阴离子进行交换的阴离子(OH-)。