平面向量数量积运算专题(附答案)

合集下载

2025高考数学必刷题 第36讲、平面向量的数量积及运算(学生版)

2025高考数学必刷题  第36讲、平面向量的数量积及运算(学生版)

第36讲平面向量的数量积及运算知识梳理知识点一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量a 与 b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即a b ⋅ =||||cos a b θ,规定:零向量与任一向量的数量积为0.(2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积.③设a,b 是两个非零向量,它们的夹角是,e θ 与b 是方向相同的单位向量,,AB a CD b == ,过AB的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为11,A B ,得到11A B ,我们称上述变换为向量a 向向量b 投影,11A B 叫做向量a在向量b 上的投影向量.记为||cos a e θ.知识点二.数量积的运算律已知向量a 、b 、c 和实数λ,则:①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ;③()+⋅⋅+⋅a b c =a c b c .知识点三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||a .④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤.知识点四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.知识点五、向量中的易错点(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠ 时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=.当0a ≠ 时,且a b a c ⋅=⋅时,也不能推出一定有b c = ,当b 是与a 垂直的非零向量,c是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠ .(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()() ,这是因为a b c ⋅() 是一个与c共线的向量,而b c a ⋅() 是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅() 不一定等于b c a ⋅() ,即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅> 且(0)a b λλ≠> (或0a b ⋅<,且(0))a b λλ≠<【解题方法总结】(1)b 在a上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅= ,但0a b ⋅= 时不能得到0a=或0b =,因为a ⊥b 时,也有0a b ⋅=.(3)根据平面向量数量积的性质:||a cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅= 等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠ ),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.(5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅ ,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅ 表示一个与a 共线的向量,而a 与c不一定共线,因此()a b c ⋅⋅ 与()a b c ⋅⋅不一定相等.必考题型全归纳题型一:平面向量的数量积运算例1.(2024·吉林四平·高三四平市第一高级中学校考期末)已知向量a ,b满足|2|a b =,a 与b 的夹角为π6,则()()2a b a b +⋅-= ()A .6B .8C .10D .14例2.(2024·全国·高三专题练习)已知6a = ,3b = ,向量a 在b方向上投影向量是4e ,则a b ⋅为()A .12B .8C .-8D .2例3.(2024·湖南长沙·周南中学校考二模)已知菱形ABCD 的边长为1,12AB AD ⋅=- ,G 是菱形ABCD 内一点,若0GA GB GC ++= ,则AG AB ⋅=()A .12B .1C .32D .2变式1.(2024·云南昆明·高三昆明一中校考阶段练习)已知单位向量,a b →→,且π,3a b →→〈〉=,若()a b c →→→+⊥,||2c →=,则a c →→⋅=()A .1B .12C .2-或2D .1-或1变式2.(2024·广东·校联考模拟预测)将向量OP = 绕坐标原点O 顺时针旋转75︒得到1OP,则1OP OP ⋅= ()ABC D .2变式3.(2024·全国·高三专题练习)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A B .3C .D .5变式4.(2024·天津和平·高三耀华中学校考阶段练习)如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足()R 12AP mAC AB m +∈= ,若3AC =,4AB =,则AP CD ⋅的值为().A .3-B .1312-C .1312D .112-变式5.(2024·陕西西安·西北工业大学附属中学校考模拟预测)已知向量a ,b满足同向共线,且2b = ,1a b -=r r ,则()a b a +=⋅()A .3B .15C .3-或15D .3或15变式6.(2024·吉林长春·东北师大附中校考模拟预测)在矩形ABCD 中,1,2,AB AD AC==与BD 相交于点O ,过点A 作AE BD ⊥于E ,则AE AO ⋅=()A .1225B .2425C .125D .45【解题方法总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路.(2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a在向量b 方向上的投影为||a bb ⋅ .(4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±=()a b c ab ac +=+公式都可通用异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角)ma nb ±= ma nb ma nb ma nb -≤±≤+ ,通常是求ma nb ±最值的时候用.题型二:平面向量的夹角例4.(2024·河南驻马店·统考二模)若单位向量a ,b满足2a b -= a ,b夹角的余弦值为____________.例5.(2024·四川·校联考模拟预测)若21,e e 是夹角为60︒的两个单位向量,则122a e e =+ 与1232b e e =-+的夹角大小为________.例6.(2024·重庆·高三重庆一中校考阶段练习)已知向量a 和b满足:1a = ,2b = ,220a b a b --⋅= ,则a 与b的夹角为__________.变式7.(2024·上海杨浦·复旦附中校考模拟预测)若向量a 与b不共线也不垂直,且a a c ab a b ⋅⎛⎫=- ⎪⋅⎝⎭,则向量夹角,a c 〈〉= ________.变式8.(2024·上海长宁·上海市延安中学校考三模)已知a b c、、是同一个平面上的向量,若a c b == ,且0,2,1a b c a c b ⋅=⋅=⋅= ,则,c a = __________.变式9.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知向量a ,b满足()1,1a =- ,1b = ,1a b ⋅= ,则向量a 与b的夹角大小为___________.变式10.(2024·四川·校联考模拟预测)已知向量(a x =+ ,()1,0b = ,2a b ⋅=-,则向量a b + 与b的夹角为______.变式11.(2024·湖南长沙·雅礼中学校考模拟预测)已知向量()1,2a =,()4,2b =,若非零向量c 与a ,b 的夹角均相等,则c的坐标为___(写出一个符合要求的答案即可)【解题方法总结】求夹角,用数量积,由||||cos a b a b q×=×得cos ||||a ba bq ×==×进而求得向量,a b的夹角.题型三:平面向量的模长例7.(2024·湖北·荆门市龙泉中学校联考模拟预测)已知平面向量a ,b ,c满足(2,1)a = ,(1,2)b = ,且a c ⊥ .若b c ⋅=,则||c = ()AB.C.D.例8.(2024·陕西咸阳·武功县普集高级中学校考模拟预测)已知a ,b是非零向量,1a = ,()2a b a +⊥ ,向量a 在向量b方向上的投影为4-,则a b -=r r ________.例9.(2024·海南·高三校联考期末)已知向量a ,b满足()1,1a = ,4b = ,()2a a b -=-⋅ ,则3a b -=__________.变式12.(2024·四川南充·阆中中学校考二模)已知,a b 为单位向量,且满足a = 则2a b +=______.变式13.(2024·河南驻马店·统考三模)已知平面向量,a b满足2a b == ,且()()214a b a b +⋅-= ,则a b +=_________________.变式14.(2024·全国·高三专题练习)已知向量,a b满足a b -= 2a b a b +=- ,则b =______.变式15.(2024·河南郑州·模拟预测)已知点O 为坐标原点,()1,1OA = ,()3,4OB =-,点P 在线段AB 上,且1AP =,则点P 的坐标为______.变式16.(2024·广西·高三校联考阶段练习)已知()2,1a =- ,()4,b t = ,若2a b ⋅=,则2a b -=______.【解题方法总结】求模长,用平方,||a=.题型四:平面向量的投影、投影向量例10.(2024·上海宝山·高三上海交大附中校考期中)已知向量()3,6a =,()3,4b =- ,则a 在b方向上的数量投影为______.例11.(2024·上海虹口·华东师范大学第一附属中学校考三模)已知(2,1),(4,),a b m =--=-若向量b 在向量am =_______.例12.(2024·全国·高三专题练习)已知向量6a = ,e 为单位向量,当向量a 、e 的夹角等于45 时,则向量a 在向量e上的投影向量是________.变式17.(2024·云南昆明·高三昆明一中校考阶段练习)已知向量(1,2)a =-,向量(1,1)b = ,则向量a在向量b 方向上的投影为_________.变式18.(2024·新疆喀什·统考模拟预测)已知向量a ,b满足3a b += ,2a = ,()0,1b = ,则向量a 在向量b方向上的投影为______.变式19.(2024·全国·高三专题练习)已知非零向量,a b 满足(2)(2)a b a b +⊥-,且向量b 在向量a 方向的投影向量是14a ,则向量a 与b的夹角是________.变式20.(2024·全国·模拟预测)已知向量()()1,0,0,1,1a b a c b c ==⋅=⋅= ,则向量a 在向量c上的投影向量为__________.【解题方法总结】设a,b 是两个非零向量,它们的夹角是,e θ 与b 是方向相同的单位向量,,AB a CD b == ,过AB的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为11,A B ,得到11A B ,我们称上述变换为向量a 向向量b 投影,11A B 叫做向量a在向量b 上的投影向量.记为||cos a e θ.题型五:平面向量的垂直问题例13.(2024·四川巴中·南江中学校考模拟预测)已知向量()()1,2,2,3a b ==-,若()()ka b a b +⊥-,则k =___________.例14.(2024·全国·高三专题练习)已知向量a ,b ,c ,其中a ,b 为单位向量,且a b ⊥,若c = ______,则()()2a c b c -⊥- .注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.例15.(2024·江西宜春·高三校联考期末)设非零向量a ,b 的夹角为θ.若2b a = ,且()()23a b a b +⊥-,则θ=____________.变式21.(2024·江西南昌·高三统考开学考试)已知两单位向量21,e e 的夹角为π3,若12122,a e e b e me =+=+ ,且a b ⊥,则实数m =_________.变式22.(2024·海南·校考模拟预测)已知a 为单位向量,向量b 在向量a上的投影向量是2a,且()3a b a λ+⊥ ,则实数λ的值为______.变式23.(2024·全国·模拟预测)向量()()1,,2,1m x n ==,且()n m n ⊥+ ,则实数x =_________.变式24.(2024·全国·高三专题练习)非零向量(cos(),sin )a αββ=- ,(1,sin )b α= ,若a b ⊥ ,则tan tan αβ=______.变式25.(2024·河南开封·校考模拟预测)已知向量()()2,3,4,5a b =-=- ,若()a b b λ-⊥ ,则λ=________.变式26.(2024·海南海口·海南华侨中学校考模拟预测)已知向量a ,b不共线,()2,1a =r ,()a b a ⊥- ,写出一个符合条件的向量b的坐标:______.变式27.(2024·河南开封·统考三模)已知向量(,1)a m =-,(1,3)b = ,若()a b b -⊥ ,则m =______.【解题方法总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例16.(2024·全国·高三专题练习)已知1||||||1,2a b c a b ===⋅=- ,(,R)c xa yb x y =+∈,则x y -的最小值为()例17.(2024·安徽合肥·合肥市第七中学校考三模)以边长为2的等边三角形ABC 每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成曲边三角形,已知P 为弧AC 上的一点,且π6PBC ∠=,则BP CP ⋅ 的值为()A .4B .4C .4-D .4+例18.(2024·黑龙江哈尔滨·哈师大附中校考模拟预测)下图是北京2022年冬奥会会徽的图案,奥运五环的大小和间距如图所示.若圆半径均为12,相邻圆圆心水平路离为26,两排圆圆心垂直距离为11.设五个圆的圆心分别为1O 、2O 、3O 、4O 、5O ,则()414542O O O O O O ⋅+的值为()A .507-B .386-C .338-D .242-变式28.(2024·陕西安康·陕西省安康中学校考模拟预测)如图,在圆内接四边形ABCD 中,120,1,2BAD AB AD AC ∠=︒===.若E 为CD 的中点,则EA EB ⋅的值为()变式29.(2024·安徽合肥·合肥市第八中学校考模拟预测)如图,已知ABC 是面积为的等边三角形,四边形MNPQ 是面积为2的正方形,其各顶点均位于ABC 的内部及三边上,且恰好可在ABC 内任意旋转,则当0BQ CP ⋅= 时,2||BQ CP +=()A .2+B .4+C .3+D .2+变式30.(2024·河南安阳·统考三模)已知正方形ABCD 的边长为1,O 为正方形的中心,E是AB 的中点,则DE DO ⋅=()A .14-B .12C .34D .1【解题方法总结】边长为a 的等边三角形已知夹角的任意三角形正方形矩形平行四边形直角梯形等腰梯形圆建系必备(1)三角函数知识cos ,sin x r y r q q ==;(2)向量三点共线知识(1)OC OB OA l l =+-.题型七:平面向量的实际应用例19.(2024·江西宜春·高三校考阶段练习)一质点受到同一平面上的三个力1F ,2F ,3F (单位:牛顿)的作用而处于平衡状态,已知1F ,2F 成120°角,且1F ,2F 的大小都为6牛顿,则3F 的大小为______牛顿.例20.(2024·内蒙古赤峰·统考三模)如图所示,把一个物体放在倾斜角为30 的斜面上,物体处于平衡状态,且受到三个力的作用,即重力G ,垂直斜面向上的弹力1F ,沿着斜面向上的摩擦力2F .已知:1160N F G == ,则2F 的大小为___________.例21.(2024·全国·高三专题练习)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态.已知两条绳上的拉力分别是1F ,2F ,且1F ,2F 与水平夹角均为45︒,12F F == ,则物体的重力大小为___________N .变式31.(2024·全国·高三专题练习)两同学合提一捆书,提起后书保持静止,如图所示,则1F与2F大小之比为___________.变式32.(2024·浙江·高三专题练习)一条渔船距对岸4km,以2/km h的速度向垂直于对km h.岸的方向划去,到达对岸时,船的实际行程为8km,则河水的流速是________/【解题方法总结】用向量方法解决实际问题的步骤。

平面向量数量积的坐标运算含答案

平面向量数量积的坐标运算含答案

平面向量数量积的坐标运算答案一、单选题1.已知(2,1),(1,1)a b =-=-,则(2)(3)a b a b +⋅-等于() A .10 B .-10 C .3 D .-3【答案】B【分析】根据向量坐标表示的线性运算求出2,3a b a b +-,再根据向量数量积的坐标运算即可得解.【详解】因为(2,1),(1,1)a b =-=-, 所以2(4,3),3(1,2)a b a b +=--=-,所以(2)(3)4(1)(3)210a b a b +⋅-=⨯-+-⨯=-. 故选:B.2.已知()()()1,1,2,5,3,a b c x ===,若()830a b c -⋅=,则x 等于() A .6 B .5 C .4 D .3【答案】C【分析】根据向量数量积运算列方程,化简求得x 的值. 【详解】由于()()86,3,830a b a b c -=-⋅=, 所以63330,4x x ⨯+==. 故选:C3.已知向量()2,1a =,10a b ⋅=,52a b +=,则b 等于() A 5B 10C .5 D .25【答案】C【分析】对52a b +=两边同时平方,化简可得22250a a b b +⋅+=,再将25a =,10a b ⋅=代入化简即可得出答案. 【详解】∵()2,1a =,∵25a =,又52a b +=, 所以()()225250a b+==,即22250a a b b +⋅+=, ∵5+2×10+2b =50, 所以2b =25,即b =5. 故选:C.4.已知点()1,1A ,()2,1B -,向量()2,1a =-,()1,1b =,则AB 与a b -的夹角的余弦值为() A.B. CD【分析】由平面向量的坐标运算求得AB ,a b -,结合平面向量的夹角公式即可求得答案.【详解】由题意,得()1,2AB =-,()3,0a b -=-,则AB 与a b -的夹角的余弦值为()()()221312AB a bAB a b⋅-⨯-+=-+-故选:A ..边长为2的正ABC 中,G 为重心,P 为线段上一动点,则AG AP ⋅=()A .1B .2C .()()BG BA BA BP -⋅-D .2()3AB AC AP +⋅为ABC的重心,所以为线段BC 所以23(0,3AG =-,(,AP x =-,则0AG AP x ⋅=⋅故选:B .a 与b 相互垂直,()6,8a =-,5b =,且b 与向量(1则b =() A .()3,4--B .()4,3C .()4,3-D .()4,3--【答案】D【分析】设(),b x y =,则由题意得2268025x y x y -=⎧⎨+=⎩,解出方程,检验即可.【详解】设(),b x y =,则由题意得2205a b x y ⎧⋅=⎪⎨+=⎪⎩,即2268025x y x y -=⎧⎨+=⎩, 解得43x y =⎧⎨=⎩或43x y =-⎧⎨=-⎩,设()1,0c =,当()4,3b =时,此时4cos ,05b c b c b c⋅==>, 又因为向量夹角范围为[]0,π,故此时夹角为锐角,舍去; 当()4,3b =--时,此时4cos ,05b cb c b c⋅==-<,故此时夹角为钝角,故选:D.,则AO AP ⋅的最大值为() A .2 B .4 C .6 D .3【答案】C【分析】由条件可知点P 的方程,三角换元写出P 点坐标,用坐标表示AP ,AO ,坐标运算向量的数量积,根据角的范围即可求出最大值.【详解】解:点P 在以()0,1为圆心的单位圆上,所以点P 的方程为()2211x y +-=,设P[)cos ,0,2π1sin x y θθθ=⎧∈⎨=+⎩,则()cos 2,1sin AP θθ=++,()2,0AO =,所以[]2cos 42,6AO AP θ⋅=+∈,即AO AP ⋅的最大值为6.故选:C8.已知函数()()sin 0,0,2f x A x A ωϕωϕ=+>>< ⎪⎝⎭的图象如图所示,图象与x 轴的交点为5,02M ⎛⎫⎪⎝⎭,与y 轴的交点为N ,最高点()1,P A ,且满足NM NP ⊥,则A =()A B C .D .10由0NM NP ⋅=解得,所以2π6ω=π2,所以π6ϕ=,则NM NP ⋅=5,2⎛ ⎝二、多选题9.已知向量(2,1),(,1)a m b m =-=,则下列结论正确的是() A .若a b ∥,则2m = B .若2m =,则a b ∥ C .若a b ⊥,则13m = D .若13m =,则a b ⊥【分析】根据平面向量平行与垂直的坐标表示公式,可得答案【详解】由a b ∥,得2m -正确;由a b ⊥,得2m +BCD.10.已知向量()()()1,3,2,,a b y a b a ==+⊥,则() A .()2,3b =- B .向量,a b 的夹角为3π4C .172a b +=D .a 在b 方向上的投影向量是1,2【答案】BD【分析】根据向量的加法求出a b +,由两个向量垂直,数量积为零,求出y ,然后逐一判断各选项,a 在b 方向上的投影向量为()2a b bb⋅⋅.【详解】已知()()1,3,2,,a b y ==则()3,3a b y +=+,()a b a +⊥,()31330y ∴⨯+⨯+=,4y =-,()2,4b =-,故A 错误;12342cos ,21020a b a b a b⋅⨯-⨯===-⋅⋅,所以向量,a b 的夹角为3π4,故B 正确;()()()11,31,22,12a b +=+-=,152a b ∴+=,故C 错误;a 在b 方向上的投影向量为()()21,2a b b b⋅⋅=-,故D 正确.故选:BD. 11.已知向量()()()()3,1,cos ,sin 0π,1,0a b c θθθ==≤≤=,则下列命题正确的是()A .a b ⋅的最大值为2B .存在θ,使得a b a b +=-C .向量31,33e ⎛⎫=-- ⎪ ⎪⎝⎭是与a 共线的单位向量 D .a 在c 3c 【答案】ABD【分析】A.根据向量数量积的坐标表示,结合三角函数的恒等变形和性质,即可判断; B.利用数量积公式,可得0a b ⋅=,即可求解θ; C.根据模的公式,计算e ,即可判断; D.根据投影向量公式,即可计算求值.【详解】对于A 选项,π3cos sin 2sin 3a b θθθ⎛⎫⋅=+=+ ⎪⎝⎭,当ππ32θ+=,即π6θ=时取最大值2,故A 正确;对于B 选项,要使a b a b +=-,则0a b ⋅=, 则tan 3θ=-,因为0πθ≤≤,所以2π3θ=,故存在θ,使得a b a b +=-,故B 正确;选项,因为33e ⎛=- ⎝所以向量e 不是单位向量,故选项,因为()1,0c =为单位向量,则a 在c 上的投影向量为3||a cc c c ⋅⋅=,故D 正确ABD .12.已知向量(cos ,sin m αα=,()cos ,sin n ββ=,且()1,1m n +=,则下列说法正确的是() A .221m n += B .()cos 0αβ-=C .()sin 1αβ+=-D .m n -的值为即可判断BC ,由模长公式以及垂直关系即可判断【详解】21m =,21n =,即有222m n +=,故选项β<,如图,设点A 、B 、C 的坐标为在单位圆221x y +=.根据向量加法的平行四边形法则,四边形OACB 可得:()cos 0αβ-=,()sin 1β+=由()1,1m n +=可得:()2222m nm n +=+⋅=,可得:20m n ⋅=,22222m n m n m n -=+-⋅=,则可得:2m n -=,故选项D 成立. 故选:BD三、填空题13.已知向量()()3,1,1,a b λ=-=,若222a b a b -=+,则λ=__________.【答案】3【分析】求出a b -,利用模长公式列出方程,求出3λ=.【详解】因为()2,1a b λ-=--,所以224(1)911λλ++=+++,解得:3λ=. 故答案为:314.已知向量()3,1a =-,(),1b t =,,45a b =,则t =______. 【答案】2【分析】利用向量坐标夹角运用求参数. 【详解】因为,45a b =︒, 所以2312cos ,2101a b t a b a bt ⋅-===⋅+,且13103t t ->⇒>,整理得2123203t t t ⎛⎫--=> ⎪⎝⎭,解得:2t =或12t =-(舍去),故答案为:2.15.已知(1,2a x =-,(),1b x =且//a b ,则||a b +=______. 【答案】32【分析】根据给定条件,利用共线向量的坐标表示求出x ,再利用模的坐标表示计算作答. 【详解】因为()1,2a x =-,(),1b x =且//a b ,则21x x =-,解得=1x -,有(21,3)(3,3)a x b =-=-+,所以22|(3)332|a b -+=+=. 故答案为:3216.已知()1,0a =,()1,1b =,则a 在b 上的投影向量为________. 【答案】11(,)22【分析】由投影向量的定义求结果即可. 【详解】由题意,a 在b 上的投影向量为(1,1)111(,)22||||22b a b b b ⋅⋅=⋅=.故答案为:11(,)22。

高中数学第六章平面向量及其应用-向量的数量积课件及答案

高中数学第六章平面向量及其应用-向量的数量积课件及答案

【对点练清】 1.(2020·全国卷Ⅱ)已知单位向量 a ,b 的夹角为 45°,ka -b 与 a 垂直,则 k=_____.
解析:由题意,得 a ·b =|a |·|b |cos 45°= 22.因为向量a =ka
2-a ·b =k-
22=0,解得
【学透用活】 [典例 3] (1)已知 e1 与 e2 是两个互相垂直的单位向量,若向量 e1+ke2 与 ke1+e2 的夹角为锐角,则 k 的取值范围为_________. (2)已知非零向量 a ,b 满足 a +3b 与 7a -5b 互相垂直,a -4b 与 7a -2b 互相垂直,求 a 与 b 的夹角. [解析] (1)∵e1+ke2 与 ke1+e2 的夹角为锐角, ∴(e1+ke2)·(ke1+e2)=ke21+ke22+(k2+1)e1·e2=2k>0,∴k>0.当 k =1 时,e1+ke2=ke1+e2,它们的夹角为 0,不符合题意,舍去.综上, k 的取值范围为 k>0 且 k≠1. 答案:(0,1)∪(1,+∞)
(3)设非零向量 a 与 b 的夹角为 θ,则 cos θ>0⇔a ·b >0.
(√)
(4)|a ·b |≤a ·b .
( ×)
2.若向量 a ,b 满足|a |=|b |=1,a 与 b 的夹角为 60°,则 a ·b 等于 ( )
1 A.2
3 B.2
C.1+
3 2
D.2
答案:A
3.已知|a |=1,|b |=2,设 e 是与 a 同方向上的单位向量,a 与 b 的夹 角为π3,则 b 在 a 方向上的投影向量为______.
(4)|a ·b |≤__|_a_|_|_b_|.
2.平面向量数量积的运算律:

平面向量的数量积(习题及答案)

平面向量的数量积(习题及答案)

平面向量的数量积(习题)例题示范例1:已知=3a ,=4b ,且a 与b 不共线,若向量k +a b 与k -a b 互相垂直,则k 的值为___________.思路分析:∵向量k +a b 与k -a b 互相垂直,∴222()()0k k k +-=-=⋅a b a b a b ,即2220k -=a b ,则222340k -=⋅,解得34k =±.例2:在等边三角形ABC 中,AB =2,点P ,Q 满足−−→AP =λ−−→AB ,(1)AQ AC λ−−→−−→=-,λ∈R ,若32BQ CP −−→−−→=-⋅,则λ的值为()A .12B.122±C .1102±D .322-±思路分析: + +(1)BQ AB AQ AB AC λ−−→−−→−−→−−→−−→=-=--,CP AP AC AB AC −−→−−→−−→−−→−−→=-=-λ,222[ +(1)]()+(1)[1(1)]+(1)[1(1)]cos 14+4(1)[1(1)]22222 2BQ CP AB AC AB AC AB AB AC AC AB ACAB AC AB AC BACλλλλλλλλλλλλλλλλ−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→=---=--++-=--++-∠=--++-⨯⨯⨯=-+-⋅⋅⋅⋅⋅则232222-+-=-λλ,化简得21()02λ-=,解得12=λ,故选A .巩固练习1.已知a ,b 是两个非零向量,下列命题正确的是()A .若+=-a b a b ,则a ⊥bB .若a ⊥b ,则+=-a b a bC .若+=-a b a b ,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则+=-a b a b2.已知等边三角形ABC 的边长为1,若BC −−→=a ,CA −−→=b ,AB −−→=c ,则++a b b c c a ⋅⋅⋅=___________.3.已知a ⊥b ,=2a ,=3b ,若向量3a +2b 与k a -b 互相垂直,则k 的值为()A .32-B .32C .32±D .14.已知单位向量a ,b 的夹角为60°,则3+a b =_________.5.若向量a ,b 不共线,⋅a b ≠0,且⎛⎫=- ⎪⎝⎭a a c ab a b ⋅⋅,则向量a 与c 的夹角为()A .0B .π6C .π3D .π26.已知a ==2b ,a 与b 的夹角为60°,则a +b 在a 上的投影为___________.7.在△ABC 中,∠C =90°,若−−→AB =(1,k ),AC −−→=(2,1),则k 的值为____________.8.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则a =()A .1B .2C .2D .49.已知向量a =(1,2),b =(-2,-4),5=c ,若()+a b c ⋅52=,则a 与c 的夹角为()A .π6B .π3C .2π3D .5π610.已知向量a =(1,1),b =(2,y ),若+a b a b =⋅,则y 的值为()A .-3B .-1C .1D .311.如图,在△ABC 中,M 是BC 边的中点,若AM =3,BC =10,则AB −−→⋅AC −−→=______.12.如图,在矩形ABCD 中,AB =2,BC =2,E 为BC 边的中点,F 为CD 边上一点,若−−→AB ⋅−−→AF =2,则−−→AE ⋅BF −−→=_____.【参考答案】 巩固练习1.C2.32-3.B4.135.D6.37.38.C9.C10.D11.16-12.2。

6.2.2 平面向量的数量积(精练)(解析版)

6.2.2 平面向量的数量积(精练)(解析版)

6.2.2 平面向量的数量积(精练)【题组一 向量的数量积】1.(2020·天水市第一中学高一期末)已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-【答案】D【解析】等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭,2=-.故选:D . 2.(2020·陕西渭南市·高一期末)在ABC 中,D 为线段BC 的中点,1AD =,3BC =,则AB AC ⋅( ) A .13- B .54-C .3D .4【答案】B 【解析】在ABC 中,D 为线段BC 的中点()12AD AB AC BC AC AB⎧=+⎪∴⎨⎪=-⎩,可得12AB ADBC ,12AC ADBC , 2211152244AB AC AD BC ADBC AD BC ⎛⎫⎛⎫∴⋅=-⋅+=-=- ⎪ ⎪⎝⎭⎝⎭.故选:B.3.(2020·湖南益阳市·高一期末)在ABC 中,AB =AC =G 为ABC 的重心,则AG BC ⋅=________.【答案】6【解析】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-, 所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:64.(2020·黑龙江大庆市·大庆一中高一期末)如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.【答案】58【解析】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58.5.(2020·四川内江市)在等腰Rt ABC 中,斜边BC =AB c =,BC a =,CA b =,那么a b b c c a ⋅+⋅+⋅=_____.【答案】2-【解析】由题可知在等腰Rt ABC 中,斜边BC =1ABAC ,,24AB C,即2a =,1b c ==,()()cos 0cos a b b c c a a b C c a B ππ∴⋅+⋅+⋅=⋅⋅-++⋅⋅-11222⎛⎛⎫=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭.故答案为:2-.6.(2020·北京101中学高一期末)如图,在矩形ABCD 中,AB =2BC =,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=,则AE BF ⋅的值是______.【解析】∵AF AD DF =+,()22AB AF AB AD DF AB AD AB DF AB DF DF ⋅=⋅+=⋅+⋅=⋅==,∴1DF =,21CF =,∴()()AE BF AB BEBC CF AB CF BE BC ⋅=++=⋅+⋅)11222=+⨯=-+=.7.(2020·陕西咸阳市·高一期末)已知两个单位向量a ,b 的夹角为120︒,()1c ta t b =+-.若1a c ⋅=,则实数t =______. 【答案】1 【解析】两个单位向量a ,b 的夹角为120︒,∴11·1122a b ⎛⎫=⨯⨯-=- ⎪⎝⎭,又(1)c ta t b =+-,1a c =,∴21[(1)](1)(1)12a ta tb ta t a b t t +-=+-=--=,解得1t =. 故答案为:1.8.(2020·长沙县实验中学高一期末)已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t 的值为_____________. 【答案】4-【解析】非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=,n →⊥t m n →→⎛⎫+ ⎪⎝⎭,n →∴⋅22+||||cos ,||t m n t m n n t m n m n n →→→→→→→→→→⎛⎫+=⋅=<>+ ⎪⎝⎭223||||034t n n →→=⨯+=,解得4t =-,故答案为:4- 【题组二 向量的夹角】1.(2020·山东临沂市·高一期末)已知非零向量a ,b ,若||2||a b =,且(2)a a b ⊥-,则a 与b 的夹角为( ) A .6πB .4π C .3π D .34π 【答案】B【解析】因为(2)a a b ⊥-,所以22(2)22cos ,0a a b a a b a a b a b ⋅-=-⋅=-=,因为||2||a b =,所以22cos ,22aa ab a bb===, []a,b 0,,a,b 4ππ∈∴=.故选:B.2.(2020·镇原中学高一期末)已知a b c ,,为单位向量,且满足370a b c λ++=,a 与b 的夹角为3π,则实数λ=_______________. 【答案】8λ=-或5λ=【解析】由370a b c λ++=,可得7(3)c a b λ=-+,则22224996b b c a a λλ=++⋅. 由a b c ,,为单位向量,得2221a b c ===,则24996cos 3πλλ=++,即23400λλ+-=,解得8λ=-或5λ=.3.(2020·浙江温州市·高一期末)已知平面向,,a b c ,满足2,3,1a b c ===,且()()5a c b c -⋅-=,a b -与a b +夹角余弦值的最小值等于_________.【解析】平面向,,a b c ,满足2,3,1a b c ===,则2222224,3,1a a b bc c ======因为()()5a c b c -⋅-=展开化简可得()25a b c a b c ⋅-++=,因为221c c ==,代入化简可得()4a b c a b ⋅-+= 设c 与a b +的夹角为[],0,θθπ∈ 则由上式可得cos 4a b c a b θ⋅-⋅+⋅= 而()222272a b aba abb a b +=+=+⋅+=+⋅代入上式化简可得cos θ=令m a b =⋅,设a 与b 的夹角为[],0,ααπ∈,则由平面向量数量积定义可得cosa b a b m αα⋅=⋅⋅==,而1cos 1α-≤≤所以m -≤≤由余弦函数的值域可得cos 1θ≤,即4cos 1722a b m a bθ⋅-==≤+⋅将不等式化简可得21090m m -+≤,解不等式可得19m ≤≤ 综上可得1m ≤≤即123a b ⋅≤≤而由平面向量数量积的运算可知,设a b -与a b +夹角为β,则()()22727c 2osa b a b a b a ba b a bβ-⋅+-⋅+-⋅⋅⋅=+==当分母越大时,cos β的值越小;当a b ⋅的值越小时,分母的值越大 所以当1a b ⋅=时,cos β的值最小 代入可得c s o β==所以a b -与a b +夹角余弦值的最小值等于15故答案为4.(2020·延安市第一中学高一月考)已知向量,a b满足2,1,2a b a b a b ==+=-. (1)求a 在b 上的投影; (2)求a 与2a b -夹角的余弦值. 【答案】(1)12-;(2)4. 【解析】(1)2222222(2)()442a b a b a b a b a a b b a a b b +=-⇒+=-⇒+⋅+=-⋅+2163,2a b b a b ∴⋅=-∴⋅=-,设a 和b 的夹角为θ,a 在b 上的投影为:1cos 2a ba bθ⋅==-;(2)设a 与2a b -夹角为α,()2222cos 2244a a ba a ba a ab bα⋅-====⨯⋅-⋅-⋅+.5.(2020·北京顺义区·高一期末)已知平面向量a ,b ,2=a ,1=b ,且a 与b 的夹角为3π. (1)求a b ⋅; (2)求2a b +;(3)若2a b +与()2a b R λλ+∈垂直,求λ的值. 【答案】(1)1;(2)(3)4-. 【解析】(1)1cos2132a b a b π⋅=⋅=⨯=; (2)()2222224444412a b a ba ab b +=+=+⋅+=++=,223a b +∴=;(3)()()22a b a b λ+⊥+,()()220a b a b λ∴+⋅+=,即()()222428421230a a b b λλλλλ++⋅+=+++=+=,解得:4λ=-. 6.(2020·南昌市·江西师大附中高一月考)已知向量,a b 满足||||1a b ==,||3||(0,)ka b a kb k k R +=->∈(1)若//a b ,求实数k 的值; (2)求向量a 与b 夹角的最大值. 【答案】(1)2±;(2)3π. 【解析】(1)因为//a b ,0k >,所以2104k a b k+⋅=>,则a 与b 同向.因为||||1a b ==,所以1a b ⋅=,即2114k k+=,整理得2410k k -+=,解得2k =所以当2k =±//a b . (2)设,a b 的夹角为θ,则221111cos 2444||||k a b k k a k a b b θ⋅⎡⎤+⎛⎫==⋅==+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,=,即1k =时,cos θ取最小值12,又0θπ≤≤,所以3πθ=,即向量a 与b 夹角的最大值为3π. 7.(2020·全国高一专题练习)已知向量12,e e ,且121e e ==,1e 与2e 的夹角为3π.12m e e λ=+,1232n e e =-.(1)求证:()1222e e e -⊥; (2)若m n =,求λ的值; (3)若m n ⊥,求λ的值; (4)若m 与n 的夹角为3π,求λ的值. 【答案】(1)见解析(2)2λ=或3λ=-.(3)14λ=(4)2λ= 【解析】(1)证明:因为121e e ==,1e 与2e 的夹角为3π,所以()2221221221221222cos2111032e e e e e e e e e π-⋅=-=-=⨯⨯⨯-=, 所以()1222e e e-⊥.(2)由m n =得()()22121232e e e e λ+=-,即()2211229(212)30e e e e λλ-++⋅-=.因为121e e ==,12,3e e π=,所以22121e e ==,12111cos 32e e π⋅=⨯⨯=, 所以()2191(212)3102λλ-⨯++⨯-⨯=, 即260λλ+-=.所以2λ=或3λ=-.(3)由m n ⊥知0m n ⋅=,即()()1212320e e e e λ+⋅-=,即2211223(32)20e e e e λλ+-⋅-=. 因为121e e ==,12,3e e π=,所以22121e e ==,12111cos32e e π⋅=⨯⨯=, 所以()1332202λλ+-⨯-=.所以14λ=.(4)由前面解答知22121e e ==,1212e e ⋅=,7n =.而()22222212112221m e e e e e e λλλλλ=+=+⋅+=++,所以2m λ=()()1212211222113(32)23(32)222322e e e m n e e e e e λλλλλλ+-⋅-=+-⨯-⋅=+⋅-==-因为,3m n π=,由cos ,m n m n m n ⋅=得11222λ-=, 化简得23520λλ--=, 所以2λ=或13λ=-.经检验知13λ=-不成立,故2λ=.【题组三 向量的投影】1.(2021·江西上饶市)若向量a 与b 满足()a b a +⊥,且1a =,2b =,则向量a 在b 方向上的投影为()A B .12-C .-1D .3 【答案】B【解析】利用向量垂直的充要条件有:()20a b a a a b +⋅=+⋅=,∴1a b ⋅=-,则向量a 在b 方向上的投影为12a b b⋅=-,故选B.2.(2020·沈阳市第一七〇中学高一期末)已知向量a ,b ,其中1a =,24a b -=,22a b +=,则a 在b 方向上的投影为( ) A .2-B .1C .1-D .2【答案】C【解析】由题意,向量a ,b ,其中1a =,24a b -=,22a b +=, 可得()222224414416a ba b a b b a b -=+-⋅=+-⋅= (1)()2222244144=4a b a b a b b a b +=++⋅=++⋅ (2)联立(1)(2)解得32b =,32a b ⋅=-, 所以a 在b 方向上的投影为1a b b⋅=-.故选:C .3.(2020·长沙市·湖南师大附中高一月考)已知向量a ,b 满足1a=,3b=,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A B C .4D .5【答案】A【解析】设两个向量的夹角为θ,则cos cos a b θθ=,从而cos 0θ=, 因为[]0,θπ∈,故2πθ=,所以2210a b a b -=+=.故选:A .4.(2020·眉山市彭山区第一中学高一期中)已知1a =,2b =,,60a b =︒,则a b +在a 上的投影是( ) A . 1 B C .2 D 【答案】C【解析】因为1a =,2b =,,60a b =︒,所以cos ,12cos601a b a b a b ⋅=<>=⨯⨯︒=()22112a b a ab a +⋅=+⋅=+=所以a b +在a上的投影()2a b a a+⋅=故选:C 5(2020·陕西渭南市·高一期末)已知3a =,3b =,32a b +=,则向量a 在向量b 方向的投影( ) A .1 B .1- C .3D .3-【答案】A【解析】由题意,向量3a =,3b =,32a b +=,可得222239218a b a b a b a b +=++⋅=++⋅=,解得3a b ⋅=, 所以向量a 在向量b 方向的投影313a b b⋅==.故选:A. 6.(2020·四川绵阳市·高一期末)在△ABC 中,ABAC ⋅=0,点P 为BC 的中点,且|PA |=|AB |,则向量BA 在向量BC 上的投影为( ) A BC B .BC C .﹣14BC D .14BC 【答案】D【解析】根据题意,AB AC ⊥,又点P 为BC 中点,故可得PC PB PA AB ===, 如下所示:故三角形PAB 为等边三角形,故可得60B ∠=︒, 不妨设BA a =,故可得2BC a =, 则向量BA 在向量BC 上的投影为21212224a BA BC a BC a BC⨯⋅===. 故选:D .7.(2020·营口市第二高级中学高一期末)已知向量,a b 满足||5,||4,||6b a b a b =+=-=,则向量a 在向量b 上的投影为________.【答案】1-【解析】向量,a b 满足||5,||4,||6b a b a b =+=-=,可得2()16a b +=,2()36a b -=,即为22216a b a b ++=,22236a b a b +-=,两式相减可得5a b =-, 则向量a 在向量b 上的投影为515||a b b -==-.故答案为:1-. 8.(2020·湖北武汉市·高一期末)设向量a ,b 满足2a =,1b =,且()b a b ⊥+,则向量b 在向量2a b +上的投影的数量为_______. 【答案】12【解析】()b a b ⊥+,()20a b b a b b =⋅+∴⋅+=,21a b b ∴=-=-⋅,()2221b a b a b b ∴⋅+=⋅+=,22244442a b a b a b +=++⋅=+=,∴向量b 在向量2a b +上的投影的数量为()2122b a b a b⋅+=+.故答案为:12.9.(2021·河南郑州市)已知平面向量,a b 满足1,2,3a b a b ==+=,则a 在b 方向上的投影等于______. 【答案】12-【解析】由题意结合平面向量数量积的运算法则有:()22221243,1a b a a b b a b a b +=+⋅+=+⋅+=∴⋅=-,据此可得,a 在b 方向上的投影等于1122a b b⋅-==-. 10.(2020·四川高一期末)已知边长为2的等边ABC 中,则向量AB 在向量CA 方向上的投影为_____. 【答案】1-【解析】因为ABC 是等边三角形, 所以向量AB 与向量CA 的夹角为120, 因为ABC 边长为2,所以向量AB 在向量CA 方向上的投影为1cos120212AB ⎛⎫⋅=⨯-=- ⎪⎝⎭, 故答案为:1-.11.(2020·全国高一课时练习)已知e 为一个单位向量,a 与e 的夹角是120︒.若a 在e 上的投影向量为2e -,则a =_____________. 【答案】4【解析】e 为一个单位向量,a 与e 的夹角是120︒由平面向量数量积定义可得1cos1202a e a ⋅=⨯⨯︒=-, 根据平面向量投影定义可得122a e e ⎛⎫⨯-⋅=- ⎪⎝⎭,∴4a =.故答案为:4 12.(2020·福建省福州第一中学高一期末)已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______. 【答案】18 【解析】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=.故答案为:18. 【题组四 向量的模长】1.(2020·全国高一)已知平面向量a ,b 满足2a =,3b =,若a ,b 的夹角为120°,则3a b -=( )A .B .C .D .3【答案】A【解析】由题意得,2239636a b a a b b -=-⋅+=+=A .2.(2020·全国高一)若向量a 与b 的夹角为60°,且43a b ==,, 则a b +等于( )A .37B .13C D 【答案】C【解析】因为向量a 与b 的夹角为60°,且43a b ==,, 所以22222+2++2cos 60+a b a a b b a a b b +⋅=⋅⋅=2214+243+3372=⨯⨯⨯=所以37a b +=,故选:C .3.(2020·全国高一开学考试)已知向量a ,b 满足0a b ⋅=,1a =,3b =,则a b -=( )A .0B .2C .D【答案】D【解析】因为向量a ,b 满足0a b ⋅=,1a =,3b =则2a b a b -=-222a a b b =-⋅+==:D4.(2020·银川市·宁夏大学附属中学高一期末)已知向量a 、b 满足:3a =,4b =,41a b +=,则a b -=_________. 【答案】3. 【解析】()222222222232441a b a b a a b b a a b b a b +=+=+⋅+=+⋅+=+⋅+=,8a b ∴⋅=,()2222222233a b a b a a b b a a b b ∴-=-=-⋅+=-⋅+=-,因此,3a b -=,故答案为3.5.(2020·全国高一单元测试)若平面向量a ,b 满足2a b +=,6a b -=,则a b ⋅=__________,22a b +=__________.【答案】-1 4 【解析】由2a b +=,得2222a a b b +⋅+=,①由6a b -=,得2226a a b b -⋅+=,②①-②得:44a b ⋅=-,∴1a b ⋅=-.故224a b +=.故答案为:①-1;②4.6.(2020·全国高一)已知6a →=,8b →=,则a b →→+的最大值为______;若6a →=,8b →=,且10a b →→-=,则a b →→+=______. 【答案】14 10【解析】222222()22cos ,a b a b a a b b a a b a b b →→→→→→→→→→→→→→+=+=+⋅+=+<>+3664248cos ,a b →→=++⨯<>10096cos ,a b →→=+<>10096196≤+=,当且仅当,a b →→同向时等号成立,所以14a b →→+≤,即a b →→+的最大值为14,由10a b →→-=两边平方可得:2222()21002100a b a b a a b b a b →→→→→→→→→→-=-=-⋅+=-⋅=,所以0a b →→⋅=,所以2222()2100a b a b a a b b →→→→→→→→+=+=+⋅+=,即10a b →→+=. 故答案为:14;107.(2020·东北育才学校)已知向量a ,b 满足4a =,b 在a 上的投影(正射影的数量)为-2,则2a b -的最小值为 【答案】8【解析】因为b 在a 上的投影(正射影的数量)为2-, 所以||cos ,2b a b <>=-, 即2||cos ,b a b =-<>,而1cos ,0a b -≤<><,所以||2b ≥,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+22=1644(2)4||484||b b -⨯⨯-+=+所以22484464a b-≥+⨯=,即28a b-≥,故选D.9.(2020·四川广元市·高一期末)设非零向量a与b的夹角是23π,且a a b=+,则22a tbb+的最小值为()A.3B C .12D .1【答案】B【解析】对于a,b 和a b+的关系,根据平行四边形法则,如图a BA CD==,b BC=,a b BD+=,23ABCπ∠=,3DCBπ∴∠=,a a b=+,CD BD BC∴==,a b a b∴==+,2222222==222a tba tb a tbb bb+++,a b=,22222222244cos223=224a t ab t ba tba tbb b bπ++++=,22222222244cos4231244a t ab t b a t a a t a t tb aπ++-+==-+当且仅当1t =时,22a tbb+的最小值为2. 故选:B.10.(2020·浙江杭州市·高一期末)已知平面向量a 、b 满足23a a b =+=,则b a b ++的最大值为________. 【答案】【解析】22222443443a b a a b b a b b +=+⋅+=+⋅+=,则2a b b ⋅=-,设a 与b 的夹角为θ,则2cos a b b θ⋅=-,3cos b θ∴=-,0b ≥,0θπ≤≤,可得2θπ≤≤π, 22222233sin a b a a b b b θ+=+⋅+=-=,则3sin a b θ+=,3cos 3b a b πθθθ⎛⎫++=-+=- ⎪⎝⎭,2θπ≤≤π,则2633πππθ≤-≤,所以,当32ππθ-=b a b ++取最大值故答案为:11.(2020·沙坪坝区·重庆南开中学高一期末)已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-. (1)求b ;(2)若27a mb -=,求m . 【答案】(1)3b =;(2)13m =-或1m =. 【解析】(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=, ∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==,∴3b =. (2)∵27a mb -=,∴()222227244469a mba mab m b m m =-=-⋅+=-+,整理得:23210m m --=,解得:13m =-或1m =. 12.(2020·北京朝阳区·人大附中朝阳学校高一月考)已知平面向量,a b 满足:2a =,1b =|.(1)若()()21a b a b +⋅-=,求a b ⋅的值;(2)设向量,a b 的夹角为θ,若存在t R ∈,使得||1a tb +=,求cos θ的取值范围.【答案】(1)1-;(2)1,⎡⎤-⋃⎢⎥⎣⎦⎣⎦.【解析】(1)若()()21a b a b +⋅-=,则2221a a b b +⋅-=, 又因为2a =,1b =|,所以421a b +⋅-=,所以1a b ⋅=-; (2)若||1a tb +=,则22221a ta b t b +⋅+=,又因为2a =,1b =,所以2203ta b t +=+⋅即204cos 3t t θ++=,所以2=16120cos θ∆-≥,解得2cos θ≤-或cos 2θ≥,所以311cos ,,θ⎡⎡⎤∈-⎢⎢⎥⎣⎦⎣⎦. 13.(2020·全国高一单元测试)已知向量OA a =,OB b =,60AOB ∠=,且4a b ==. (1)求a b +,a b -;(2)求a b +与a 的夹角及a b -与a 的夹角.【答案】(1)43a b +=,4a b -=;(2)30,60.【解析】(1)因为向量OA a =,OB b =,60AOB ∠=,且4a b ==, 所以()22222222co 60s a ba ba ab b a a b b +=+=+⋅+=++11624416482=+⨯⨯⨯+=,所以43a b +=, 又()22222222co 60s a ba ba ab b a a b b -=-=-⋅+=-+11624416162=-⨯⨯⨯+=,所以4a b -=;(2)记a b +与a 的夹角为,0,180αα⎡⎤∈⎣⎦,a b -与a 的夹角为0,180,ββ⎡⎤∈⎣⎦,则()211644cos 43a b a a b aα+⨯⨯+⋅====⨯+,所以30α=.()21164412cos 44162a b a a a ba b aβ-⨯⨯-⋅-⋅====⨯-,所以60β=.【题组五 平面向量的综合运用】1.(2020·北京丰台区·高一期末)a ,b 是两个单位向量,则下列四个结论中正确的是( ) A .a b = B .1a b ⋅=C .22a b ≠D .22||||a b =【答案】D【解析】A .,a b 可能方向不同,故错误;B .cos ,cos ,a b a b a b a b ⋅=⋅⋅<>=<>,两向量夹角未知,故错误;C .22221,1a a a a b b b b =⋅===⋅==,所以22a b =,故错误; D .由C 知221a b ==,故正确,故选:D.2.(2020·全国高一单元测试)若a 是非零向量,b 是单位向量,①0a >,②1=b ,③ab a=,④()0a b λλ=≠,⑤0a b ⋅≠,其中正确的有( )A .①②③B .①②⑤C .①②④D .①②【答案】D【解析】∵0a ≠,∴0a >,①正确;b 为单位向量,故1=b ,②正确;aa表示与a 方向相同的单位向量,不一定与b 方向相同,故③错误; a 与b 不一定共线,故()0a b λλ=≠不成立,故④错误,若a 与b 垂直,则有0a b ⋅=,故⑤错误. 故选:D.3.(2021·重庆)设,a b 为向量,则“a b a b ⋅=”是“//a b ” ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】根据向量数量积运算,a b ⋅= a b cos θ 若a b a b ⋅=,即a b cos θ=a b 所以cos θ=± 1,即=0180θ︒︒或 所以//a b若//a b ,则a b 与的夹角为0°或180°,所以“0a b a b cos a b ⋅=︒= 或180a b a b cos a b ⋅=︒=-即a b a b cos θ⋅= 所以“a b a b ⋅=”是“//a b ”的充分必要条件 所以选C4.(2020·全国高一课时练习)若a ,b ,c 均为单位向量,且12a b =-,(,)c xa yb x y R =+∈,则x y +的最大值是( )A .2 BC D .1【答案】A 【解析】a ,b ,c 均为单位向量,且12a b =-,(,)c xa yb x y R =+∈,∴222222()21c xa yb x y xya b x y xy =+=++=+-=,设x y t +=,y t x =-,得:22()()10x t x x t x +----=, 223310x tx t ∴-+-=,方程223310x tx t -+-=有解,∴()2291210t t ∆=--,23120t -+,22t ∴-x y ∴+的最大值为2.故选:A .5.(2020·甘肃兰州市·兰州一中高一期末)已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定【答案】C【解析】由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c .故选:C .6.(2020·浙江湖州市·高一期末)已知空间向量a ,b ,c 和实数λ,则下列说法正确的是( ) A .若0a b ⋅=,则0a =或0b = B .若0a λ=,则0λ=或0a = C .若()()22ab =,则a b =或a b =-D .若a b a c ⋅=⋅,则b c =【答案】B【解析】对于选项A ,若0a b ⋅=,则0a =或0b =或a b ⊥,故A 错误; 对于选项C ,由()()22ab =,得||||a b =,即可得其模相等,但方向不确定,故C 错误;对于选项D ,由a b a c ⋅=⋅,得()0⋅-=a b c ,则0a =或b c =或()a b c ⊥-,故D 错误;对于选项B ,由0a λ=,可得0λ=或0a =,故B 正确, 故选:B .7.(多选)(2021·江苏高一)若a 、b 、c 是空间的非零向量,则下列命题中的假命题是( ) A .()()a b c b c a ⋅⋅=⋅⋅B .若a b a b ⋅=-⋅,则//a bC .若a c b c ⋅=⋅,则//a bD .若a a b b ⋅=⋅,则a b = 【答案】ACD【解析】()a b c ⋅⋅是与c 共线的向量,()b c a ⋅⋅是与a 共线的向量,a 与c 不一定共线,A 错, 若a b a b ⋅=-⋅,则a 与b 方向相反,∴//a b ,B 对,若a c b c ⋅=⋅,则()0a b c -⋅=,即()a b c -⊥,不能推出//a b ,C 错, 若a a b b ⋅=⋅,则||||a b =,a 与b 方向不一定相同,不能推出a b =,D 错, 故选:ACD.8.(多选)(2020·山东临沂市·高一期末)已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭【答案】AC【解析】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确, 对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒=所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC.9.(2020·浙江高一期末)已知2a b a b ==⋅=,()24c a b λλ=-+,则()()c a c b -⋅-的最小值为__________. 【答案】4952- 【解析】()14c a a b λλ-=-+,()()241c b a b λλ-=-+-,()()()()()14241c b c a a b a b λλλλ⎡⎤⎡⎤-⋅-=⋅∴-+-+-⎣⎦⎣⎦ ()()()2222216122871a a b b λλλλλλ=-++-+-⋅+-,代入2a b a b ==⋅=, 原式252386λλ=-+,∴当1952λ=时,原式最小值为4952-. 故答案为:4952-10.(2020·湖北高一开学考试)在ABC 中,已知2AB =,||||CA CB CA CB +=-,2cos 22sin 12B CA ++=,则BA 在BC 方向上的投影为__________.【解析】因为CA CB CA CB +=-,所以()()22CA CB CA CB +=-所以0CA CB =,即2C π=因为2cos 22sin12B C A ++=,所以2cos 22sin 12A A π-+=即2cos 22sin 12AA +=,即cos2cos 0A A +=,所以22cos cos 10A A +-=解得cos 1A =-或1cos 2A =因为0,2A π⎛⎫∈ ⎪⎝⎭,所以1cos 2A =,即3A π=,所以6B π=,因为2AB =,所以2sin BC A ==所以BA 在BC 方向上的投影为3BC =【点睛】本题考查平面向量的几何意义,属于中档题.11.(2020·浙江杭州市·高一期末)已知平面向量,a b ,其中||2,||1a b ==,,a b 的夹角是3π,则2a b -=____________;若t 为任意实数,则a tb +的最小值为____________.【答案】2【解析】由题意,平面向量,a b ,其中||2,||1a b ==,,a b 的夹角是3π, 可得cos 21cos133a b a b ππ⋅=⋅=⨯⨯=,则22224444414a ba b a b -=+-⋅=+-⨯=,所以22a b -=,又由22222()22a ta b t b t t a t a tb b ==+⋅+++=+=,所以当1t =-时,a tb +的最小值为故答案为:212.(2020·天津市滨海新区大港太平村中学高一期末)在ABC 中,2AB =,3AC =,120BAC ∠=︒,D 是BC 中点,E 在边AC 上,AE AC λ=,12AD BE ⋅=,则||=AD ________,λ的值为________.13【解析】因为2AB =,3AC =,120BAC ∠=︒,所以cos1203AB AC AB AC ⋅=⋅=-, 由题意()12AD AB AC =+,BE BA AE AC AB λ=+-=, 所以()()222211224AD AB AC AB AB AC AC ⎡⎤=+=+⋅+⎢⎥⎣⎦()1746944=-+=,所以72AD =; 由12AD BE ⋅=可得()()()2211222211AB AC AB AC AB AC AB AC λλλ+-⋅-=+⋅- ()31122229123λλλ=---=-=, 解得13λ=.;13. 13.(2020·湖北黄冈市·高一期末)已知向量n 与向量m 的夹角为3π,且1n =,3m =,()0n n m λ⋅-=. (1)求λ的值(2)记向量n 与向量3n m -的夹角为θ,求cos2θ. 【答案】(1)23λ=;(2)12-. 【解析】(1)由()2131cos 03n n m n m n πλλλ⋅-=-⋅=-⨯⨯⨯=,所以23λ=. (2)因为()2133333122n n m n m n ⋅-=-⋅=-⨯⨯= ()2223396963n m n m n m n m -=-=-⋅+=-=所以()3312cos 3132n n m n n m θ⋅-===⋅-⨯所以2211cos 22cos 12122θθ⎛⎫=-=⨯-=- ⎪⎝⎭. 14.(2020·山东省五莲县第一中学高一月考)已知2a =,3b =,向量a 与向量b 夹角为45°,求使向量a λb +与a b λ+的夹角是锐角时,λ的取值范围.【答案】1185((,1)(1,)-+-∞+∞ 【解析】∵2a =,3b =,a 与b 夹角为45°,∴cos 453⋅=︒==b a a b ,而()()2222223393113a ab ba a b a b b λλλλλλλλλλ+++=++++=+=+⋅+,要使向量a λb +与a b λ+的夹角是锐角,则()()0a b a b λλ+⋅+>,且向量a λb +与a b λ+不共线,由()()0a b a b λλ+⋅+>得231130λλ++>,得λ<或λ>. 由向量a λb +与a b λ+不共线得211λλ≠∴≠±所以λ的取值范围为:1185((,1)(1,)-+-∞+∞ 15.(2020·全国高一课时练习)在ABC 中,2CA CB ==,记,a CA B CB ==,且||3||(ka b a kb k+=-为正实数),(1)求证:()()a b a b +⊥-;(2)将a 与b 的数量积表示为关于k 的函数()f k ; (3)求函数()f k 的最小值及此时角A 的大小. 【答案】(1)证明见解析;(2)1()f k k k =+;(3)2,3A π=. 【解析】(1)在ABC 中,2CA CB ==,可得2a b ==,所以2222()()440a b a b a b a b +-=-=-=-=,所以()()a b a b +⊥-. (2)由||3||ka b a kb +=-,可得22||3||ka b a kb +=-,即22222223(2)k a ka b b a ka b k b ++=-+,整理得2888ka b k ⋅=+, 所以1()f k a b k k=⋅=+. (3)由(2)知1()f k a b k k=⋅=+,因为k 为正实数,则12k k +≥=,当且仅当1k k 时,即1k =时,等号成立,所以()f k 的最小值为2,即2a b ⋅=, 此时21cos 42||||a b C a b ⋅===⋅,因为(0,)C π∈,可得3C π=,又因为CA CB =,此时ABC 为等边三角形,所以3A π=.16.(2020·全国高一单元测试)在如图所示的平面图形中,已知OA a =,OB b =,点A ,B 分别是线段CE ,ED 的中点.(1)试用a ,b 表示CD ;(2)若1a =,2b =,且a ,b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,试求CD 的取值范围.【答案】(1)()2CD b a =-;(2)||2CD ⎡∈⎣.【解析】(1)连接AB ,则AB OB OA b a =-=-, ∵A ,B 分别是线段CE ,ED 的中点, ∴12AB CD =,则()2CD b a =-. (2)222222CD b ab a a b =-=+-⋅2222cos b a a b θ=+-⋅,将1a =,2b =代入,则21CD == ∵2,33ππθ⎡⎤∈⎢⎥⎣⎦,∴11cos ,22θ⎡⎤∈-⎢⎥⎣⎦,则[]54cos 3,7θ-∈,故||2CD ⎡∈⎣.。

高中数学:第二章 第6课时 平面向量的数量积 Word版含答案

高中数学:第二章 第6课时 平面向量的数量积 Word版含答案

第6课时 平面向量的数量积基础达标(水平一)1.若|a|=2,|b|=3,a ,b 的夹角θ为120°,则a ·(4b )的值为( ).A.12B.-12C.12√3D.-12√3 【解析】由题意,得a ·(4b )=4(a ·b )=4|a||b |cos θ=4×2×3×cos 120°=-12.【★答案★】B2.已知a=(2,3),b=(-4,7),则a 在b 方向上的投影为( ).A .√13B .√135C .√655D .√65【解析】a 在b 方向上的投影为|a |cos θ=a ·b |b| =2×(-4)+3×7√(-4)+7=√655.【★答案★】C3.若平面向量a 与b 的夹角为60°,且a=(2,0),|b|=1,则|a+2b|等于( ).A.√3B.2√3C.4D.12【解析】由a=(2,0),则|a|=2,|a+2b|=√(a +2b)2=√|a|2+4a ·b +4|b|2.因为a ·b=|a||b |cos 60°=2×1×12=1,所以|a+2b |=√22+4×1+4×1=√4+4+4=2√3.【★答案★】B4.以A (2,5),B (5,2),C (10,7)为顶点的三角形的形状是( ).A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 【解析】由已知得BA⃗⃗⃗⃗⃗ =(-3,3),BC ⃗⃗⃗⃗⃗ =(5,5),∴BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =-3×5+3×5=0,∴∠B=90°. 又|BA⃗⃗⃗⃗⃗ |≠|BC ⃗⃗⃗⃗⃗ |,∴△ABC 为直角三角形.故选B . 【★答案★】B5.已知a ⊥b ,|a|=2,|b |=3,且3a+2b 与λa-b 垂直,则λ= .【解析】∵(3a+2b )⊥(λa-b ),∴(λa-b )·(3a+2b )=0,∴3λa 2+(2λ-3)a ·b-2b 2=0.∵|a|=2,|b|=3,a ⊥b ,∴12λ-18=0,∴λ=32.【★答案★】326.若等边△ABC 的边长为2√3,平面内一点M 满足CM ⃗⃗⃗⃗⃗⃗ =16CB ⃗⃗⃗⃗⃗ +23CA ⃗⃗⃗⃗⃗ ,则MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ = .【解析】如图所示,MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(CA ⃗⃗⃗⃗⃗ -CM ⃗⃗⃗⃗⃗⃗ )·(CB ⃗⃗⃗⃗⃗ -CM ⃗⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ -16CB ⃗⃗⃗⃗⃗ -23CA ⃗⃗⃗⃗⃗ ·(CB ⃗⃗⃗⃗⃗ -16CB ⃗⃗⃗⃗⃗ -23CA ⃗⃗⃗⃗⃗ ) =(13CA ⃗⃗⃗⃗⃗ -16CB ⃗⃗⃗⃗⃗ )·(56CB ⃗⃗⃗⃗⃗ -23CA ⃗⃗⃗⃗⃗ ) =718CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ -29CA ⃗⃗⃗⃗⃗ 2-536CB ⃗⃗⃗⃗⃗ 2 =718×(2√3)2×cos 60°-29×(2√3)2-536×(2√3)2=-2.【★答案★】-27.已知三个点A (2,1),B (3,2),D (-1,4).(1)求证:AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两条对角线所成锐角的余弦值.【解析】(1)因为A (2,1),B (3,2),D (-1,4),所以AB⃗⃗⃗⃗⃗ =(1,1),AD ⃗⃗⃗⃗⃗ =(-3,3). 又因为AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =1×(-3)+1×3=0,所以AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ .(2)因为四边形ABCD 为矩形,所以AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ .设点C 的坐标为(x ,y ),则(1,1)=(x+1,y-4).所以{x +1=1,y -4=1,解得{x =0,y =5,所以点C 的坐标为(0,5). 所以AC⃗⃗⃗⃗⃗ =(-2,4). 又因为BD⃗⃗⃗⃗⃗⃗ =(-4,2), 所以AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =8+8=16,|AC ⃗⃗⃗⃗⃗ |=2√5,|BD⃗⃗⃗⃗⃗⃗ |=2√5. 设AC⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗⃗ 的夹角为θ, 则cos θ=AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ ||BD ⃗⃗⃗⃗⃗⃗ |=1620=45>0, 即AC ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗⃗ 的夹角的余弦值为45. 故矩形ABCD 的两条对角线所成锐角的余弦值为45. 拓展提升(水平二)8.已知O 为坐标原点,点A ,B 的坐标分别为(a ,0),(0,a ),其中a ∈(0,+∞),点P 在AB 上且AP⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ (0≤t ≤1),则OA⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ 的最大值为( ).A .aB .2aC .3aD .a 2【解析】∵A (a ,0),B (0,a ),∴OA ⃗⃗⃗⃗⃗ =(a ,0),AB ⃗⃗⃗⃗⃗ =(-a ,a ).又∵AP⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ , ∴OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ =(a ,0)+t (-a ,a )=(a-ta ,ta ),∴OP ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ =a (a-ta )=a 2(1-t ).∵0≤t ≤1,∴0≤1-t ≤1,即OA⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ 的最大值为a 2. 【★答案★】D9.设m ,n 是两个非零向量,且m =(x 1,y 1),n =(x 2,y 2),则下列等式中与m ⊥n 等价的个数为( ). ①m ·n =0;②x 1x 2=-y 1y 2;③|m+n|=|m-n |;④|m+n |=√m 2+n 2.A .1B .2C .3D .4【解析】由两个非零向量垂直的条件可知,①②正确.由模的计算公式与向量垂直的条件可知,③④也正确.【★答案★】D10.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =4,BF ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =-1,则BE ⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ 的值是 .【解析】BA ⃗⃗⃗⃗⃗ ·CA⃗⃗⃗⃗⃗ =(DA ⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DA ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=(DA ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )·(DA ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=DA ⃗⃗⃗⃗⃗ 2-DC ⃗⃗⃗⃗⃗ 2=(3DF ⃗⃗⃗⃗⃗ )2-DC ⃗⃗⃗⃗⃗ 2=9DF ⃗⃗⃗⃗⃗ 2-DC ⃗⃗⃗⃗⃗ 2=4, ① BF ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =(DF ⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DF ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=(DF ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )·(DF ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=DF ⃗⃗⃗⃗⃗ 2-DC ⃗⃗⃗⃗⃗ 2=-1, ②联立①②解得DF ⃗⃗⃗⃗⃗ 2=58,DC ⃗⃗⃗⃗⃗ 2=138. ∴BE⃗⃗⃗⃗⃗ ·CE ⃗⃗⃗⃗⃗ =(DE ⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DE ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ ) =(DE ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )·(DE ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=DE ⃗⃗⃗⃗⃗ 2-DC ⃗⃗⃗⃗⃗ 2=(2DF ⃗⃗⃗⃗⃗ )2-DC ⃗⃗⃗⃗⃗ 2=4DF ⃗⃗⃗⃗⃗ 2-DC ⃗⃗⃗⃗⃗ 2=4×58-138=78.【★答案★】7811.已知在△ABC 中,非零向量AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 满足(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)·BC ⃗⃗⃗⃗⃗ =0,且AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |·AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=12,试判断△ABC 的形状. 【解析】因为AB⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |表示与AB ⃗⃗⃗⃗⃗ 共线的单位向量,所以向量AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ | +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |一定与△ABC 内角A 的平分线共线,所以(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)·BC ⃗⃗⃗⃗⃗ =0说明△ABC 中内角A 的平分线与BC 垂直,所以AB=AC.因为AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |·AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=12,所以cos A=12,所以A=π3,所以△ABC 为等边三角形.。

高中数学必修二 6 3 2 平面向量数量积的坐标表示(精练)(含答案)

高中数学必修二  6 3 2 平面向量数量积的坐标表示(精练)(含答案)

6.3.2 平面向量数量积的坐标表示(精练)【题组一 数量积的坐标运算】1.(2021·深圳市龙岗区)已知向量()1,3a =-,()5,4b =-,则⋅=a b ( ) A .15 B .16C .17D .18【答案】C【解析】因为向量()1,3a =-,()5,4b =-,所以()()153417a b ⋅=-⨯-+⨯=,故选:C 2.(2020·广东高一期末)若(1,2),(2,3)=-=a b 则(2b)b a -⋅=( ) A .-5 B .5C .-6D .6【答案】A【解析】因为(1,2),(2,3)=-=a b ,所以(2b)b a -⋅=(4,1)(2,3)42135-⋅=-⨯+⨯=-.故选:A.3.(2020·湖北高一期末)已知向量()4,5a =,()22,11a b -=-,则向量a 在向量b 方向上的投影为( )A .1B .2-C .2D .-1【答案】B【解析】由题意,()4,5a =,()22,11a b -=-,可得()26,6b -=-,则()3,3b =-,所以43353a b ⋅=⨯-⨯=-,()233b =+-=所以向量a 在向量b 方向上的投影为3232a b b⋅-==-.故选:B.4.(2020·湖北武汉市·高一期末)已知()1,2A -,()4,1B-,()3,2C ,则cos BAC ∠=( )A .10-B .10C .2-D .2【答案】D【解析】由已知得()3,1AB =,()2,4AC =,∴cos cos ,23AB AC BAC AB AC AB AC⋅∠====.故选:D. 5.(2020·安徽合肥市·高一期末)已知点()1,1A -,()1,2B ,()2,1C --,()3,4D ,则向量CD →在BA→方向上的投影是( ) A.- B.2-C.D.2【答案】A【解析】由题可知,(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,所以(2,1)BA →=--,(5,5)CD →=, 则向量CD →在BA →方向上的投影是||BA CD BA →→→⋅==-故选:A.6.(2020·四川内江市)已知向量(1,2)a =,(,4)b x =,(2,)c y =,若//a b ,a c ⊥,则()b a c ⋅-=( ) A .14 B .-14C .10D .6【答案】C【解析】向量(1,2)a =,(,4)b x =,(2,)c y =,//a b ,可得142x ⨯=,解得2x =,(2,4)b =,a c ⊥,可得1220y ⨯+=,解得1y =-,(1,3)a c -=-,则()21210b a c -=-+=.故选:C .7.(2020·山东聊城市·高一期末)向量(1,3)a =,(3,1)b =,则向量a b +与a b -的夹角为( ) A .12πB .6πC .3π D .2π 【答案】D【解析】设θ为a b +与a b -的夹角,(1,3)a =,(3,1)b =,则1+31+a b +=(,,131a b -=(-,)||=6a b ++||6a b -=-又()()0cos 04a b a b a b a bθ+⋅-===+-,0,2πθπθ≤≤∴=. 故选:D .8.(2020·尤溪县第五中学高一期末)已知向量(1,2)a =,(,4)a b m +=,若a b ⊥ ,则m =( ) A .3- B .2-C .2D .3【答案】A【解析】()()(,4)1,2(1,2)b a b a m m =+-=-=-,因为a b ⊥,所以()112230a b m m ⋅=-⨯+⨯=+=,解得:3m =-,故选:A9.(2020·全国高一课时练习)设(3,4)a =,a b ⊥且b 在x 轴上的投影为2,则b =( ) A .8(2,)3B .3(2,)2-C .8(2,)3-D .3(2,)2-【答案】B【解析】由题意,向量b 在x 轴上的投影为2,可设(2,)b y =, 因为a b ⊥,可得2340a b y ⋅=⨯+=,解得32y =-,所以3(2,)2b =-.故选:B. 10.(2021·江苏高一)已知平面向量(1,)a m =,()0,2b =,若(3)b a mb ⊥-,则实数m =( ) A .1- B .0C .1D .2【答案】B【解析】因为(3)b a mb ⊥-,所以(3)0b a mb ⋅-=,即23a b mb ⋅=,又(1,)a m =,()0,2b =,故324m m ⨯=,解得0m =.故选:B.11.(2020·全国高一)已知向量()()126,,3,2e e λ==-,若12,e e 为钝角,则λ的范围是( ) A .(,9)-∞ B .(9,)+∞C .(,4)(4,9)-∞⋃D .(,4)(4,9)-∞-⋃-【答案】D【解析】12,e e 为钝角,∴12·0e e <且12,e e 不共线,∴18201230λλ-+<⎧⎨+≠⎩,解得9λ<且4λ≠-, λ∴的范围是(-∞,4)(4-⋃-,9).故选:D.12.(多选)(2021·江苏高一)已知向量(),3a m =,()2,4b =-,若()a b a +⊥,则( ) A .1m =或3m =- B .1m =-或3m = C .2a b +=或10a b += D .2a b +=或26a b +=【答案】AC【解析】因为向量(),3a m =,()2,4b =-,所以()2,1b m a +=+-,若()a b a +⊥,则()()2130m m +⨯+-⨯=,即2230m m +-=,解得1m =或3m =-, 故A 正确,B 错;当3m =-时,(b m a +=+=当1m =时,(a b m +=+=故C 正确,D 错.故选:AC.13.(多选)(2020·全国高一)设向量()2,0a =,()1,1b =,则( ) A .a b = B .()//a b b - C .()a b b -⊥ D .a 与b 的夹角为π4【答案】CD【解析】因为()2,0a =,()1,1b =, 所以2,2a b ==,所以a b ≠,故A 错误; 因为()2,0a =,()1,1b =,所以()()=1,1a b --,又()1,1b =, 则1111⨯≠-⨯,所以()a b -与b 不平行,故B 错误; 又()110a b b -⋅=-=,故C 正确;又2cos ,222a b a b a b⋅<>===⋅, 又a 与b 的夹角范围是[]0,π, 所以a 与b 的夹角为π4,故D 正确. 故选:CD.14.(2020·全国高一)已知向量()1,2a =-,()4,3b =,22c =.若a 与()b c -垂直,则向量a 与c 的夹角的余弦值是______.【答案】10-【解析】由已知14(2)32a b ⋅=⨯+-⨯=-,5a =,∵a 与()b c -垂直,∴()0a b c a b a c ⋅-=⋅-⋅=,∴2a c a b ⋅=⋅=-,∴2cos 105a c a c a c⋅-<⋅>===-⨯.15.(2020·绵阳市·四川省绵阳江油中学)已知向量()1,2a =,与向量(),1b x = (1)当x 为何值时,a b ⊥;(2)当3x =为何值时,求向量a 与向量b 的夹角; (3)求2b a -的最小值以及取得最小值时向量b 的坐标. 【答案】(1)2x =-;(2)4π;(3)最小值3,(2,1)=b . 【解析】(1)20a b x ⋅=+=,2x =-,所以2x =-时,a b ⊥;(2)由题意(3,1)b =,3cos ,25a b a b a b⋅+<>===⨯,4a b π<>=;(3)由已知2(2,3)b a x -=--, 所以2(2)b a x -=-2x =时,2b a -取得最小值3,此时(2,1)=b .【题组二 巧建坐标解数量积】1.(2020·安徽省亳州市第十八中学高一期中)如图,在矩形ABCD 中,4AB =,3AD =,点P 为CD 的中点,点Q 在BC 上,且2BQ =.(1)求AP AQ ⋅;(2)若AC AP AQ λμ=+(λ,μ∈R ),求λμ的值.【答案】(1)14;(2)23λμ=. 【解析】如图,分别以边AB ,AD 所在的直线为x 轴,y 轴, 点A 为坐标原点,建立平面直角坐标系,则()0,0A ,()2,3P ,()4,0B ,()4,3C ,()4,2Q .(1)∵()2,3AP =,()4,2AQ =,∴243214AP AQ ⋅=⨯+⨯=. (2)∵()4,3AC =,()2,3AP =,()4,2AQ =,由AC AP AQ λμ=+,得()()4,324,32λμλμ=++,∴244,323,λμλμ+=⎧⎨+=⎩解得1,23,4λμ⎧=⎪⎪⎨⎪=⎪⎩∴23λμ=.2.(2020·江西高一期末)如图,在ABC 中,已知2AB =,4AC =,60BAC ∠=︒,D 为线段BC 中点,E 为线段AD 中点.(1)求AD BC ⋅的值;(2)求EB ,EC 夹角的余弦值.【答案】(1)6;(2. 【解析】(1)依题意可知ABC为直角三角形,BC =则(0,0)B ,(0,2)A,C , 因为D 为BC的中点,故D ,∴()3,2AD =-,()2BC =,∴36AD BC ⋅=⨯=.(2)由E 为线段AD 中点可知2E ⎛⎫ ⎪⎪⎝⎭,∴12EB ⎛⎫=-- ⎪ ⎪⎝⎭,312EC ⎛⎫=- ⎪ ⎪⎝⎭,∴cos ,||||EB ECEB EC EB EC ⋅<>=11-⨯+⨯==3.(2020·河北邢台市·高一期中)如图,扇形OAB的圆心角为90︒,2OA =,点M 为线段OA 的中点,点N 为弧AB 上任意一点.(1)若30BON ∠=︒,试用向量OA ,OB 表示向量ON ; (2)求MB ON ⋅的取值范围. 【答案】(1)1322ON OA OB =+;(2)[]2,4-. 【解析】(1)如图,以O 为坐标原点,建立直角坐标系xOy , 则()0,0O ,()0,2A ,()2,0B ,)N,所以()0,2OA =,()2,0OB =,()3,1ON =.设ON xOA yOB=+,则212x y =⎧⎪⎨=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩所以1322ON OA OB =+. (2)设()0θ90BON θ∠=︒≤≤︒,则()2cos ,2sin N θθ,()0,1M , 则()2,1MB =-,()2cos ,2sin ON θθ=, 所以()4cos 2sin MB ON θθθϕ⋅=-=+, 其中cos 5ϕ=,sin 5ϕ=(ϕ为锐角). 因为090θ︒≤≤︒,所以90ϕθϕϕ≤+=+︒, 则()maxcos cos 5θϕϕ+==,()()mincos cos 90sin 5θϕϕϕ+=︒+=-=-,所以MBON ⋅的取值范围为[]2,4-.【题组三 数量积与三角函数综合运用】1.(2020·河南安阳市·林州一中高一月考)已知向量(4sin ,1cos ),(1,2)a b αα=-=-,若2a b ⋅=-,则22sin cos 2sin cos αααα=-( ) A .1 B .1-C .27-D .12-【答案】A【解析】由2a b ⋅=-,得4sin 2(1cos )2αα--=-,整理得1tan 2α=-,所以2221sin cos tan 2112sin cos 2tan 112αααααα-===---,故选:A . 2.(2020·辽宁高一期末)已知向量()1,cos2a x =,(sin 2b x =,将函数()f x a b =⋅的图象沿x 轴向左平移ϕ()0ϕ>个单位后,得到的图象关于原点对称,则ϕ的最小值为( )A .12πB .6πC .512π D .3π 【答案】D【解析】()sin 222sin 23f x a b x x x π=⋅⎛⎫==+⎪⎝⎭, 将函数()f x 的图象向左平移ϕ个单位,得到()2sin 22sin 2233y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭, 该函数的图象关于原点对称,∴该函数是奇函数,23k πϕπ∴+=,k Z ∈,62k ππϕ∴=-+,k Z ∈,又0ϕ>,min 3πϕ∴=.故选:D .3.(2020·陕西宝鸡市·高一期末)已知α是锐角,3(,sin )2a α=,1(,2cos )3b α=-,且a b ⊥,则α为( ) A .15° B .45°C .75°D .15°或75°【答案】D【解析】a b ⊥,3(,sin )2a α=,1(,2cos )3b α=-,112sin cos 0sin 222a b ααα∴⋅=-=⇒=,又()0,90α∈,则20,180α,230α∴=或150,解得α=15°或75°.故选:D4.(2020·辽宁大连市·)已知向量1,tan 3a α⎛⎫= ⎪⎝⎭,()1,cos b α=,若a b ⊥,则3cos 2πα⎛⎫+= ⎪⎝⎭( )A .13- B .13C .D 【答案】A【解析】若a b ⊥,则1tan cos 03a b αα⋅=+⋅=,即1sin 3α=-, 所以31cos sin 23παα⎛⎫+==- ⎪⎝⎭.故选:A 5.(2020·陕西宝鸡市·高一期末)已知向量(sin 70,cos 70)a =,(cos80,sin 80)b =,则a b +的值为( )A .1 BC .2D .4【答案】B 【解析】(sin 70,cos 70)a =,(cos80,sin 80)b =(sin 701a ∴==,(cos801b ==,1sin 70cos80cos70sin80sin1502a b , ()22223a b a b a a b b ∴+=+=+⋅+=.故选:B.6.(2020·泰兴市第二高级中学高一期末)已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求向量a b +与a b -所成的夹角; (2)若k a b +与a k b -的模相等,求2αβ-的值(k 为非零的常数).【答案】(1)90;(2)4π-. 【解析】(1)由已知得:1a b ==,则:()()22·0a b a b a b +-=-=,因此:()()a b a b +⊥-,因此,向量a b +与a b -所成的夹角为90;(2)由(cos ,sin )a αα=,(cos ,sin )b ββ=,可得()cos cos ,sin sin k a b k k αβαβ+=++,()cos cos ,sin sin a k b k k αβαβ-=--,(cos ka b k +=,(cos a kb α-=∴=整理可得:()()222cos 112cos k k k k βαβα+-+=--+,即:()4cos 0k βα-=,0k ≠ , ()cos 0βα∴-=,即()cos 0αβ-=,00αβππαβ<<<∴-<-<,因此:2παβ-=-,即:24αβπ-=-.7.(2020·株洲市南方中学高一期末)已知向量()2sin ,1a α=,()1,cos b α=. (1)若角α的终边过点()3,4,求a b ⋅的值; (2)//a b ,且角α为锐角,求角α的大小; 【答案】(1)115;(2)4π.【解析】(1)角α的终边过点()3,4,点(3,4)到原点距离为5r ==,∴4sin 5α,3cos 5α=, ∴43112sin cos 2555a b αα⋅=+=⨯+=; (2)∵//a b ,∴2sin cos 10αα-=,sin21α=,又α为锐角,∴22πα=,∴4πα=.8.(2020·林芝市第二高级中学高一期末)在平面直角坐标系xoy中,已知向量2(,22m =-,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【答案】(1)tan 1x =(2)512π. 【解析】(1)∵m n ⊥,∴0mn ⋅=0x x -=,∴tan 1x =. (2)∵m 与n 的夹角为3π,∴2cos 122cos ,112x x m n m n m n -⋅<>===⨯||||,故1sin()42x π-=, 又(0,)2x π∈,∴(,)444πππ-∈-x ,46x ππ∴-=,即512x π=.故x 的值为512π. 9.(2020·广西桂林市·高一期末)已知向量(sin ,1)m x =-,向量13cos ,2n x ⎛⎫= ⎪⎭,函数()()f x m n m =+⋅.(1)求()f x 的最小正周期T 及其图象的对称轴的方程; (2)若方程()0f x t -=在,42ππ⎡⎤⎢⎥⎣⎦上有解,求实数t 的取值范围.【答案】(1)π,23k x ππ=+,k z ∈;(2)3,22⎡⎤⎢⎥⎣⎦. 【解析】(1)∵(sin ,1)m x =-,13cos ,2n x ⎛⎫= ⎪⎭,∴1sin ,2m n x x ⎛⎫+=+- ⎪⎝⎭,可得1()()sin (sin )2f x m n m x x x =+⋅=+21sin cos 2x x x =+∵21sin (1cos 2)2x x =-,1sin cos sin 22x x x =∴11()(1cos 2)2sin 212226f x x x x π⎛⎫=-++=-+ ⎪⎝⎭ 因此,()f x 的最小正周期22T ππ==. ∵262x k πππ-=+,k z ∈,∴对称轴方程为23k x ππ=+,k z ∈. (2)∵,42x ππ⎡⎤∈⎢⎥⎣⎦,可得52,636x πππ⎡⎤-∈⎢⎥⎣⎦,∴1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,得()sin 216f x x π⎛⎫=-+ ⎪⎝⎭的值域为3,22⎡⎤⎢⎥⎣⎦. ∵方程()0f x t -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解, ∴()f x t =在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,即得实数t 的取值范围为3,22⎡⎤⎢⎥⎣⎦. 10.(2020·甘肃白银市·高一期末)设向量()3cos ,2sin a θθ=-. (1)当43θπ=时,求a 的值: (2)若()3,1b =-,且//a b,求22cos 124θπθ-⎛⎫+ ⎪⎝⎭的值.【答案】(1;(2)23.【解析】(1)43θπ=,所以4433cos ,2sin ,332a ππ⎛⎫⎛=-= ⎪ ⎝⎭⎝,所以2322a ⎛⎫==⎪; (2)//a b ,则3cos 32sin 0θθ-+⨯=,所以1tan 2θ=,故22cos 1cos 122sin cos tan 134θθπθθθθ-===++⎛⎫+ ⎪⎝⎭.11.(2020·湖北荆门外语学校高一期中)已知向量()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-,,02x π⎛⎫∈- ⎪⎝⎭.(1)若//a b ,tan 2x =-,求实数m 的值;(2)记()f x a b =⋅,若()1f x ≤恒成立,求实数m 的取值范围.【答案】(1)±(2)(,1]-∞. 【解析】(1)∵//a b ,∴ 228sin cos (sin cos )m x x x x -=+,整理得:228tan tan 1m x x =-- ∵tan 2x =-,2321m =,解得:m = (2)∵()f x a b =⋅,()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-, ∴()2sin (sin cos )4sin cos f x m x x x x x =+-22sin 2sin cos m x m x x =- (1cos 2)sin 2m x m x =-- (sin 2cos2)m m x x =-+sin(2)4m x π=+∵(,0)2x π∈-,∴32444x πππ-<+<,∴1sin(2)42x π-≤+<,∴01)14x π<+≤若()sin(2)14f x m x π=+≤恒成立,则11)4m x π≤+恒成立,又∵111)4x π≥=+,∴1m ≤,故实数m的取值范围为(,1]-∞.12.(2020·山西朔州市·应县一中高一期中(理))已知()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=-,()0,4ω∈,若()2f x a b =⋅其图像关于点,08M π⎛⎫⎪⎝⎭对称(1)求()f x 的解析式; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间; (3)当a b ⊥时,求x 的值. 【答案】(1)()24f x x π⎛⎫=- ⎪⎝⎭;(2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦;(3)28k x ππ=+,k Z ∈. 【解析】(1)()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=- ∴()2222sin4sin cos 2cos f x a b x x x x ωωωω=⋅=+-2sin22cos2x x ωω=-24x πω⎛⎫=-⎪⎝⎭∵()f x 的图象关于点,08M π⎛⎫⎪⎝⎭对称 ∴284k ππωπ⋅-=,k Z ∈即41k ω=+,k Z ∈∵()0,4ω∈ ∴1ω=∴()24f x x π⎛⎫=-⎪⎝⎭.(2)()24f x x π⎛⎫=-⎪⎝⎭的单调递增区间为: ()()322224288k x k k Z k x k k Z πππππππππ-≤-≤+∈⇒-≤≤+∈; 单调递减区间为:()()33722224288k x k k Z k x k k Z πππππππππ+≤-≤+∈⇒+≤≤+∈; 所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦; (3)∵a b ⊥∴()222sin 204f x a b x π⎛⎫=⋅=-= ⎪⎝⎭即24x k ππ-=,k Z ∈ 解得28k x ππ=+,k Z ∈13.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b ,则函数f (x )的值域.【答案】(1(2)【解析】(1)因为//a b ,所以cos 0x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan63x π==.(2)()f x a b =⋅=2cos 2x x x x+⨯=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以sin(),1]42x π+∈,所以()f x ∈.14.(2021·广东湛江)已知向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,且0.2x π⎡⎤∈⎢⎥⎣⎦,(1)求a b 及a b +的值;(2)若()·2f x a b a b λ=-+的最小值是32-,求实数λ的值. 【答案】(1)·cos 2a b x =,2cos a b x +=,(2)12λ= 【解析】(1)因为向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,所以33·cos cos sin sin cos 22222x x x xa b x =-=, 33cos cos ,sin sin 2222x x x x a b ⎛⎫+=+- ⎪⎝⎭,所以(cosa b +===因为02x π⎡⎤∈⎢⎥⎣⎦,,所以cos 0x >, 所以2cos a b x +=,(2)由(1)可得()2·2cos 24cos 2cos 4cos 1f x a b a b x x x x λλλ=-+=-=--, 令cos t x =,则[0,1]t ∈,令2()241g t t t λ=--,其图像的对称轴为直线44t λλ-=-=, 则问题转化为当λ为何值时,函数2()241g t t t λ=--在[0,1]t ∈上有最小值32-, ①当0λ≤时,则函数()g t 在[0,1]上递增,最小值为3(0)12g =-≠-,不合题意,舍去, ②01λ<<时,则函数()g t 在[0,]λ上递减,在[,1]λ上递增,则最小值为23()212g λλ=--=-,解得12λ=或12λ=-(舍去), ③当1λ≥时,则函数()g t 在[0,1]上递减,最小值为3(1)142g λ=-=-,解得58λ=,不合题意,舍去,综上,12λ=【题组四 数量积与几何综合运用】1.(2020·全国高一课时练习)一个平行四边形的三个顶点坐标分别是()5,7、()3,5-、()3,4,则第四个顶点的坐标不可能是( ) A .()1,8- B .()5,2-C .()11,6D .()5,2【答案】D【解析】设点()5,7A 、()3,5B -、()3,4C ,设第四个顶点为(),D x y ,分以下三种情况讨论: ①若四边形ABDC 为平行四边形,则AC BD =,即()()2,33,5x y --=+-,即3253x y +=-⎧⎨-=-⎩,解得52x y =-⎧⎨=⎩,此时,点D 的坐标为()5,2-;②若四边形ABCD 是平行四边形,则AD BC =,则()()5,76,1x y --=-, 即5671x y -=⎧⎨-=-⎩,解得116x y =⎧⎨=⎩,此时,点D 的坐标为()11,6;③若四边形ACBD 为平行四边形,则AD CB =,即()()5,76,1x y --=-,即5671x y -=-⎧⎨-=⎩,解得18x y =-⎧⎨=⎩,此时,点D 的坐标为()1,8-.综上所述,第四个顶点的坐标为()11,6或()5,2-或()1,8-,所以不可能是()5,2,故选:D. 2.(2020·辽宁)已知向量.(1)若ΔABC 为直角三角形,且∠B 为直角,求实数λ的值. (2)若点A 、B 、C 能构成三角形,求实数λ应满足的条件 . 【答案】(1)λ=2;(2)λ≠−2. 【解析】∵即:−7(6−λ)+7(3λ−2)=0,∴λ=2(2)∵若点A 、B 、C 能构成三角形,则A 、B 、C 不共线 ∴−7(3λ−2)≠7(6−λ) ∴实数λ应满足的条件 是λ≠−23.(2021·重庆市)已知向量(3,4),(6,3),(5,3)OA OB OC x y =-=-=---,(4,1)OD =. (1)若四边形ABCD 是平行四边形,求,x y 的值;(2)若ABC ∆为等腰直角三角形,且B ∠为直角,求,x y 的值. 【答案】(1)2,5x y =-=-;(2)0{3x y ==-或2{3x y =-=.【解析】(1)(1,5)AD =,(1,)BC x y =---,由AD BC =得x=-2,y=-5. (2)(3,1),AB =(1,)BC x y =---,若B ∠为直角,则AB BC ⊥, ∴3(1)0x y ---=,又AB BC =,∴22(1)10x y ++=,再由3(1)y x =--,解得0{3x y ==-或2{3x y =-=.4.(2020·浙江温州市·高一期末)已知平面上三点,,A B C ,()2,3BC k =-,()2,4AC =. (1)若BC AC =,求实数k 的值.(2)若ABC ∆是以BC 为斜边的直角三角形,求实数k 的值.【答案】(1)2k =(2)2k =-【解析】(1)由于BC AC =,则=解得2k =.(2)(),1AB AC BC k =-= 由题意得A 为直角,则•0AB AC =. 即240k +=,故2k =-.5.(2020·山西朔州市·应县一中高一期中(文))已知向量OA =()3,4-,OB =()6,3-,OC =()5,3m m ---,O 为坐标原点.(1)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值; (2)若点A 、B 、C 能构成三角形,求实数m 应满足的条件. 【答案】(1)74m =;(2)12m ≠ 【解析】(1)因为OA =()3,4-,OB =()6,3-,OC =()5,3m m ---, 所以(3,1)AB OB OA =-=,(2,1)AC OC OA m m =-=--, 若△ABC 为直角三角形,且∠A 为直角,则AB AC ⊥, ∴3(2﹣m )+(1﹣m )=0,解得74m =. (2)若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线, 得3(1﹣m )≠2﹣m ,∴实数12m ≠时,满足条件. 6.(2020·广东云浮市·高一期末)(1)已知向量a ,b 满足5a =,()1,2b =,且//a b ,求a 的坐标. (2)已知()1,4A --、()5,2B 、()3,4C ,判断并证明以A ,B ,C 为顶点的三角形是否为直角三角形,若是,请指出哪个角是直角.【答案】(1)()1,2a =或()1,2a =--;(2)ABC 为直角三角形,B 为直角,证明见解析. 【解析】(1)设(),a x y =,则225x y +=,又//a b ,所以20x y -=,联立2252x y y x ⎧+=⎪⎨=⎪⎩,解得12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩. 于是()1,2a =或()1,2a =--.(2)ABC 是直角三角形,B 为直角.证明如下:∵()()()1,45,26,6BA =---=--,()()()3,45,22,2BC =-=-,∴()()62620BA BC ⋅=-⨯-+-⨯=,∴BA BC ⊥,即ABC 为直角三角形,B 为直角.7.(2020·湖北襄阳市·襄阳五中高一月考)已知向量(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,(4,1)OD =--.(Ⅰ)若四边形ABCD 是平行四边形,求x ,y 的值;(Ⅱ)若ABC ∆为等腰直角三角形,且B 为直角,求x ,y 的值.【答案】(Ⅰ)2,5--;(Ⅱ)03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩. 【解析】(Ⅰ)(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,∴(1,5)AD =--,(1,)BC x y =+,由AD BC =,2x =-,5y =-; (Ⅱ)(3,1)AB =--,(1,)BC x y =+,B ∠为直角,则AB BC ⊥,3(1)0x y ∴-+-=,又||||AB BC =,22(1)10x y ∴++=,再由3(1)y x =-+,解得:03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩.。

第03讲 平面向量的数量积 (精练)(教师版)

第03讲 平面向量的数量积 (精练)(教师版)

第03讲 平面向量的数量积 (精练)一、单选题1.(2022·河北·高一期中)已知向量()1,a m =-,()1,2b m =+,且a b ⊥,则m =( ) A .2 B .2-C .1D .1-【答案】C由题意得120a b m m ⋅=--+=,解得1m = 故选:C .2.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a a a b a a +⋅+⋅+===;故选:C.3.(2022·山西太原·三模(理))设非零向量a b ,满足a b a b +=-,则( ) A .a b = B .a b ⊥ C .//a b D .a b >【答案】B由a b a b +=-,平方得222222a a b b a a b b +⋅+=-⋅+, 即0a b ⋅=,则a b ⊥. 故选:B.4.(2022·山东菏泽·高一期中)已知2a =,1b =,a 与b 的夹角为π3,那么a b -=( )A .4B .3C .2 D【答案】Da b -=()2a b-22||2||a a b b =-⋅+==故选:D.5.(2022·河南·唐河县第一高级中学高一阶段练习)已知(1,2)=-a ,(1,)b λ=,且a 与b 的夹角θ为锐角,则实数λ的取值范围是( ) A .1,2⎛⎫+∞ ⎪⎝⎭B .112,,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1(,2)2,2⎛⎫-∞-⋃- ⎪⎝⎭【答案】D由a 与b 的夹角θ为锐角知0a b ⋅>且a 与b 不共线,即120λ->且2λ≠-,即12λ<且2λ≠-. 故选:D.6.(2022·湖南·高一阶段练习)已知P 是等边三角形ABC 所在平面内一点,且AB =1BP =,则AP CP ⋅的最小值是( )A .1 BC D .2【答案】A设AC 中点为O ,连接OB ,则OB =3,因为1BP =,所以P 点在以B 为圆心,1为半径的圆上,所以AP CP PA PC ⋅=⋅221()()4PA PC PA PC ⎡⎤=+--⎣⎦224AC PO =-23PO =-, 显然,当B ,P ,O 三点共线时,PO 取得最小值2,min ()431AP CP ∴⋅=-=.故选:A 二、多选题7.(2022·山西运城·高一阶段练习)已知向量()3,1a =,()1,3b =,则下列说法正确的是( ) A .()()a b a b +⊥-B .a ,b 的夹角为60C .a 在b 上的投影向量为35bD .b 在a 上的投影向量为45a【答案】AC由()3,1a =,()1,3b =,可知10a b ==,31136a b ⋅=⨯+⨯=,对于A 选项,()()222210100a b a b a b a b +⋅-=-=+=-=,故()()a b a b +⊥-,故A 正确;对于B 选项,设θ为a ,b 的夹角,则31cos 52a b a bθ⋅==≠⋅,故B 错误;对于C 选项,a 在b 上的投影向量为3cos 5b a b b θ⋅=,故C 正确;对于D 选项,b 在a 上的投影向量为3cos 5a b a a θ⋅=,故D 错误. 故选:AC.8.(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A 20OB OE OG ++= B .22OA OD ⋅=-C .4AH EH +=D .4+=+AH GH 【答案】ABC由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.9.(2022·河北保定·高一阶段练习)如图,点D 位于以AB 为直径的半圆上(含端点A ,B ),ABC 是边长为2的等边三角形,则AD CB ⋅的取值可能是( )A .1-B .0C .1D .4【答案】BC如图所示,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则()1,0A -,()10B ,,(0,C .令()cos ,sin D θθ,其中0θπ≤≤,则()cos 1,sin AD θθ=+,(1,CB =,所以cos 12sin 16AD CB πθθθ⎛⎫⋅=+=++ ⎪⎝⎭.因为0θπ≤≤,所以7666πππθ≤+≤,所以1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭,所以[]2sin 10,36AD CB πθ⎛⎫⋅=++∈ ⎪⎝⎭.故选:BC.10.(2022·江苏·南京师范大学附属中学江宁分校高一期中)关于平面向量,有下列四个命题,其中说法正确的是( ) A .若a b b c ⋅=⋅,则a c =B .若向量()2,1a =,()3,1b =-,则向量a 在向量b 上的投影向量为12b -C .非零向量a 和b 满足a b a b ==-,则a 与a b +的夹角为60︒D .点()1,3A ,()4,1B -,与向量AB 同方向的单位向量为34,55⎛⎫- ⎪⎝⎭【答案】BDA 选项:若··,a b b c =即有()·0c b a -=, 则0b =或0a c -=,或()b ac ⊥-,故A 错;B 选项:()2,1a =,()3,1b =-,则·5a b =-,()23b =-=所以向量a 在向量b 上的投影向量为2·51102b a b b b b -==-,故B 正确. C 选项:非零向量a 和b 满足a a b b ==-,以a ,b 为边对应的四边形为菱形,且a ,b 夹角为60︒ 则a 与a b +的夹角为30,故C 错;D 选项:点()1,3A ,()4,1B -,()3,4AB =-, 可得与向量AB 同方向的单位向量为34,55ABAB ⎛⎫=- ⎪⎝⎭,故D 正确. 故选:BD . 三、填空题11.(2022·江苏·模拟预测)已知向量()2,1a =,()3,4b =,若()a b b λ-⊥,则λ=___________.【答案】52##2.5因为()a b b λ-⊥,所以()0a b b λ-⋅=,即20a b b λ⋅-=, 又231410a b ⋅=⨯+⨯=,2223425b =+=, 所以10250λ-=,解得52λ=, 故答案为:52.12.(2022·四川省南充市白塔中学高一阶段练习(理))已知在ABC 中,E 为AC 上一点,且13AE EC =,P 为BE 上一点,且满足AP mAB nAC =+()0,0m n >>,则11m n+取最小值时,向量(),a m n =的模为__________.∵13AE EC =,AP mAB nAC =+,∴AP mAB nAC =+=m AB +4n AE , 又∵P 为BE 上一点, 所以41m n +=,∴()111144559n m m n m n m n n m +=⎛⎫+=++ ⎝+⎭≥⎪+, 当且仅当4n m m n =即13m =且16n =时,取等号,∴向量(),a m n =四、解答题13.(2022·辽宁·东北育才学校高一期中)如图,在平行四边形ABCD 中,2AB =,3AD =,3BAD π∠=,E 为CD 中点,AF AD λ=,()01λ≤≤.(1)若AE BF ⊥,求实数λ的值; (2)求BF FE ⋅的取值范围. 【答案】(1)1021;(2)5,611⎡⎤-⎢⎥⎣⎦.【解析】(1)在平行四边形ABCD 中,2AB =,3BC AD ==,3BAD π∠=, ∴建立如图坐标系,则(0,0)A ,(3,0)D ,B ,C ,E 为CD 中点,故72E ⎛ ⎝⎭,AF AD λ=,故(3,0)F λ,∴72AE ⎛= ⎝⎭,(31,BF λ=-,AE BF ⊥,∴0AE BF ⋅=,所以07(31)(2λ⨯-=, ∴1021λ=;(2)由(1)可知,B ,(3,0)F λ,72E ⎛ ⎝⎭,所以(31,BF λ=-,327FE λ⎛=- ⎝⎭, 2327(31)3957222BF FE λλλλ⎛⎫⋅=---=-+- ⎪⎝⎭,对称轴为3=4λ.01λ,当34λ=时,BF FE ⋅的最大值为116, 当0λ=时,最小值为5-, 所以5,116BF FE ⎡⎤⋅∈-⎢⎥⎣⎦. 14.(2022·江苏南京·高一期中)在直角梯形ABCD 中,已知//AB CD ,90DAB ∠=︒,224AB AD CD ===,点F 是BC 边上的中点,点E 是CD 边上一个动点.(1)若12DE DC =,求AC EF ⋅的值; (2)求EA EF ⋅的取值范围. 【答案】(1)2;(2)1[,2]4-.(1)由图知:AC AD DC =+,CB AB AC AB AD DC =-=--, 所以111()222EF EC CF DC CB AB AD =+=+=-, 所以1()(21)(2AD DC AB AD AD AB DC AB AC EF +-=-⋅=⋅+⋅⋅2)AD DC AD -⋅,又224AB AD CD ===,//AB CD ,90DAB ∠=︒, 所以21(02420)22AC EF ⋅=⨯+⨯--=.(2)由(1)知:11()22EF EC CF EC CB EC AB AD DC =+=+=+--,令EC DC λ=且01λ≤≤,则(1)EA DA DE DA DC λ=-=--,11()()22EF DC AB AD λ=-+-,所以22111()(1)()()222EA EF DA DC DC DA AB AD λλλ⋅=-⋅---+⋅+1()2DC AB DC AD λ--⋅-⋅=21114(1)()24()244λλλ-++=--.则1[,2]4EA EF ⋅∈-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF.若AE→·AF→=1,则λ的值为________.

(2)已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为切点,那么PA→·PB→的最小值为( ) A.-4+2 B.-3+2 C.-4+22 D.-3+22 变式训练1 (2015·湖北)已知向量OA→⊥AB→,|OA→|=3,则OA→·OB→=________.

题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a,b满足|a|=223|b|,且(a-b)⊥(3a+2b),则a与b的夹角为( )

A.π4 B.π2 C.3π4 D.π (2)若平面向量a与平面向量b的夹角等于π3,|a|=2,|b|=3,则2a-b与a+2b的夹角的余弦值等于( ) A.126 B.-126 C.112 D.-112 变式训练2 (2014·课标全国Ⅰ)已知A,B,C为圆O上的三点,若AO→=12(AB→+AC→),则AB→与AC→的夹角为________.

题型三 利用数量积求向量的模 例3 (1)已知平面向量a和b,|a|=1,|b|=2,且a与b的夹角为120°,则|2a+b|等于( ) A.2 B.4 C.25 D.6 (2)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|PA→+3PB→|的最小值为________.

变式训练3 (2015·浙江)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2

=1,则|b|=________. 高考题型精练 1.(2015·山东)已知菱形ABCD 的边长为a,∠ABC=60°,则BD→·CD→等于( ) A.-32a2 B.-34a2 C.34a2 D.32a2 2.(2014·浙江)记max{x,y}= x,x≥y,y,xA.min{|a+b|,|a-b|}≤min{|a|,|b|} B.min{|a+b|,|a-b|}≥min{|a|,|b|} C.max{|a+b|2,|a-b|2}≤|a|2+|b|2 D.max{|a+b|2,|a-b|2}≥|a|2+|b|2

3.(2015·湖南)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC.若点P的坐标为(2,0),则|PA→+PB→+PC→|的最大值为( ) A.6 B.7 C.8 D.9 4.如图,在等腰直角△ABO中,OA=OB=1,C为AB上靠近点A的四等分点,过C作AB的垂线l,P为垂线上任一点,设OA→=a,OB→=b,OP→=p,则p·(b-a)等于( )

A.-12 B.12 C.-32 D.32 5.在平面上,AB1→⊥AB2→,|OB1→|=|OB2→|=1,AP→=AB1→+AB2→.若|OP→|<12,则|OA→|的取值范围是( ) A.(0,52] B.(52,72] C.(52,2] D.(72,2] 6.如图所示,△ABC中,∠ACB=90°且AC=BC=4,点M满足BM→=3MA→,则CM→·CB→等于( )

A.2 B.3 C.4 D.6 7.(2014·安徽)设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值为4|a|2,则a与b的夹角为( )

A.2π3 B.π3 C.π6 D.0 8.(2014·江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,CP→=3PD→,AP→·BP→=2,则AB→·AD→的值是________.

9.设非零向量a,b的夹角为θ,记f(a,b)=acos θ-bsin θ.若e1,e2均为单位向量,且e1·e2

=32,则向量f(e1,e2)与f(e2,-e1)的夹角为________.

10.如图,在△ABC中,O为BC中点,若AB=1,AC=3,〈AB→,AC→〉=60°,则|OA→|=________.

11.已知向量a=(sin x,34),b=(cos x,-1).当a∥b时,求cos2x-sin 2x的值;

12.在△ABC中,AC=10,过顶点C作AB的垂线,垂足为D,AD=5,且满足AD→=511DB→. (1)求|AB→-AC→|; (2)存在实数t≥1,使得向量x=AB→+tAC→,y=tAB→+AC→,令k=x·y,求k的最小值. 平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF.若AE→·AF→=1,则λ的值为________.

(2)已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为切点,那么PA→·PB→的最小值为( ) A.-4+2 B.-3+2 C.-4+22 D.-3+22 答案 (1)2 (2)D 解析 (1)如图,

AE→·AF→=(AB→+BE→)·(AD→+DF→)=(AB→+13BC→)·(AD→+1λDC→)=AB→·AD→+1λAB→·DC→+13BC→·AD→+13λ

BC→·DC→

=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23, 又∵AE→·AF→=1, ∴103λ-23=1,∴λ=2. (2)方法一 设|PA→|=|PB→|=x,∠APB=θ, 则tan θ2=1x,

从而cos θ=1-tan2θ21+tan2θ2=x2-1x2+1. PA→·PB→=|PA→|·|PB→|·cos θ =x2·x2-1x2+1=x4-x2x2+1 =x2+12-3x2+1+2x2+1 =x2+1+2x2+1-3≥22-3, 当且仅当x2+1=2, 即x2=2-1时取等号,故PA→·PB→的最小值为22-3. 方法二 设∠APB=θ,0则|PA→|=|PB→|=1tan θ2.

PA→·PB→=|PA→||PB→|cos θ =(1tan θ2)2cos θ =cos2θ2sin2θ2·(1-2sin2θ2) =1-sin2θ21-2sin2θ2sin2θ2. 令x=sin2θ2,0则PA→·PB→=1-x1-2xx =2x+1x-3≥22-3, 当且仅当2x=1x,即x=22时取等号. 故PA→·PB→的最小值为22-3. 方法三 以O为坐标原点,建立平面直角坐标系xOy, 则圆O的方程为x2+y2=1, 设A(x1,y1),B(x1,-y1),P(x0,0),

则PA→·PB→=(x1-x0,y1)·(x1-x0,-y1)=x21-2x1x0+x20-y21. 由OA⊥PA⇒OA→·PA→=(x1,y1)·(x1-x0,y1)=0 ⇒x21-x1x0+y21=0, 又x21+y21=1, 所以x1x0=1.

从而PA→·PB→=x21-2x1x0+x20-y21 =x21-2+x20-(1-x21) =2x21+x20-3≥22-3. 故PA→·PB→的最小值为22-3. 点评 (1)平面向量数量积的运算有两种形式:一是依据长度和夹角,二是利用坐标运算,具体应用哪种形式由已知条件的特征来选择.注意两向量a,b的数量积a·b与代数中a,b的乘积写法不同,不应该漏掉其中的“·”.

(2)向量的数量积运算需要注意的问题:a·b=0时得不到a=0或b=0,根据平面向量数量积的性质有|a|2=a2,但|a·b|≤|a|·|b|.

变式训练1 (2015·湖北)已知向量OA→⊥AB→,|OA→|=3,则OA→·OB→=________. 答案 9 解析 因为OA→⊥AB→,所以OA→·AB→=0.所以OA→·OB→=OA→·(OA→+AB→)=OA→2+OA→·AB→=|OA→|2+0=32=9.

题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a,b满足|a|=223|b|,且(a-b)⊥(3a+2b),则a与b的夹角为( )

A.π4 B.π2 C.3π4 D.π (2)若平面向量a与平面向量b的夹角等于π3,|a|=2,|b|=3,则2a-b与a+2b的夹角的余弦值等于( )

A.126 B.-126 C.112 D.-112 答案 (1)A (2)B 解析 (1)由(a-b)⊥(3a+2b)得(a-b)·(3a+2b)=0,即3a2-a·b-2b2=0.又∵|a|=223|b|,设〈a,b〉=θ,

即3|a|2-|a|·|b|·cos θ-2|b|2=0, ∴83|b|2-223|b|2·cos θ-2|b|2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)记向量2a-b与a+2b的夹角为θ, 又(2a-b)2 =4×22+32-4×2×3×cos π3=13, (a+2b)2=22+4×32+4×2×3×cos π3=52, (2a-b)·(a+2b)=2a2-2b2+3a·b =8-18+9=-1, 故cos θ=2a-b·a+2b|2a-b|·|a+2b|=-126, 即2a-b与a+2b的夹角的余弦值是-126. 点评 求向量的夹角时要注意:(1)向量的数量积不满足结合律,(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角为钝角.

变式训练2 (2014·课标全国Ⅰ)已知A,B,C为圆O上的三点,若AO→=12(AB→+AC→),则AB→与AC→的夹角为________. 答案 90° 解析 ∵AO→=12(AB→+AC→),

相关文档
最新文档