PDC钻头技术新进展

合集下载

定向井PDC钻头的发展趋势

定向井PDC钻头的发展趋势

定向井PDC钻头的发展趋势摘要:定向井是按照设定方案,根据井斜和方位的变化轨道钻进的井,世界上第一口真正的有记录的定向井是在1932年美国人完的,为了促进企业的发展,我国最早使用定向井的是在1955年,随着科技的发展这种技术逐渐被广泛的接受,现在随着不同地区的需求不同也在不断的改进。

笔者就定向井PDC钻头的一些情况,简单的阐述如下。

关键词:定向井钻井技术趋势意识发展使用随着技术的发展,现在的定向工具和仪器已经很发达,现在定向钻井是用的是军事上的导弹导航技术,地面控制井下钻头往期望的方位钻进,也就是简单的可以理解为想在那里打井工程师都可以帮助你实现。

例如这块地方地下有油,但是地面是居民区不可能在居民区里钻井,那就从附近对环保要求不高的地方打井,定向工程师可以引导钻头准确钻到你所需要的油层靶点,顺利采油。

或者地下好几个临近的地方都有油,每个地方打一口井成本太高,定向工程师可以通过打一口水平井把这几个油层贯穿,同时采油。

又或者在大海边缘浅水大陆架地下有油,可是在水面上搭建钻井平台成本过高(通常以亿计算),定向工程师可以通过在附近的陆地打一口大位移水平井,实现海上油田陆地开采,大大节约成本。

技术的发达不仅给人们的生活带来了改变,更给掌握这门技术的工作人员带来了便利,不但可以节约开支,更可以给人们的生活带来了本质性的变革。

一、定向井的现状2012年6月,蛟龙号在太平洋成功下潜至7062米,让中国人在远洋探索中获得了新的成功。

2013年,在中石油西部钻探工程有限公司,一个号称“地下蛟龙号”的设备—“定向井仪器打捞送入装置及控制系统”,为我国石油钻探科技谱写了新的篇章。

二、钻头的发展和应用定向井技术是提高石油勘探开发效率有效的技术之一,而PDC钻头以其自身的性能优势,在定向井钻井中发挥着越来越重要的作用。

随着定向井PDC钻头的不断发展与应用,在提高定向井钻井的效率和质量方面作用明显。

但是PDC 钻头在定向井钻井过程中,方位的偏移严重,为了提高钻井的质量,需要提高定向井PDC钻头钻进趋势的研究,通过对影响定向井PDC钻头钻井的影响研究,提高定向井钻井的效率。

PDC钻头钻井条件下的地质录井技术探讨

PDC钻头钻井条件下的地质录井技术探讨

PDC钻头钻井条件下的地质录井技术探讨PDC钻头是一种常用于石油钻井的特殊钻头,它能够在复杂地质条件下高效地完成钻井作业。

地质录井技术则是用于记录和分析地层岩石特征、井壁稳定性和油气藏性质等信息的技术。

本文将针对PDC钻头钻井条件下的地质录井技术进行探讨,探讨PDC钻头对地质录井技术的影响和优化方法,以及应对PDC钻头钻井条件下的地质风险。

一、PDC钻头的特点及适用条件PDC(Polycrystalline Diamond Compact)钻头是一种利用工业合成金刚石切削岩层的钻头,其具有高硬度、耐磨损、良好的钻进速度和稳定的性能。

PDC钻头适用于钻探中硬、脆性差的地层,在钻探深度和速度上具有明显优势。

PDC钻头特点主要有以下几点:1. 高硬度。

PDC钻头具有硬度非常高的切削齿,可以快速穿过硬质地层,提高钻井效率。

2. 耐磨损。

PDC钻头的切削齿采用坚硬的金刚石,耐磨损性强,能够长时间保持切削效果。

4. 适用范围广。

PDC钻头适用于各种地质条件下的钻井作业,尤其在硬质地层和高速钻井条件下表现出色。

二、PDC钻头对地质录井技术的影响PDC钻头钻井条件下的地质录井技术面临着一些挑战和影响,主要表现在以下几个方面:1. 钻井速度快。

PDC钻头具有快速的钻井速度,地质录井过程受到了时间压力和快速变化的地层条件的影响,需要及时准确地记录和分析地质信息。

2. 井壁稳定性差。

PDC钻头在钻井过程中可能会出现井壁稳定性差的情况,需要及时调整录井技术和井壁加固措施。

3. 地层岩石特征记录不清。

PDC钻头对地层岩石进行破碎切削,有时会导致地质录井设备无法准确记录地层岩石特征,需要寻求记录技术的改进和优化。

4. 油气藏性质分析受到影响。

PDC钻头钻井可能会产生较多的岩屑,并对地层中的油气藏性质产生影响,需要对录井技术进行适当改进。

2. 适时进行录井操作。

鉴于PDC钻头的快速钻进速度,地质录井人员需要密切配合钻井工程师,适时进行记录和分析操作,确保录井数据的准确性和完整性。

国内外PDC钻头新进展与发展趋势展望

国内外PDC钻头新进展与发展趋势展望

国内外PDC钻头新进展与发展趋势展望
呼怀刚;黄洪春;汪海阁;李忠明;席传明;武强;刘力
【期刊名称】《石油机械》
【年(卷),期】2024(52)2
【摘要】PDC钻头近年来发展迅速。

为了能够及时掌握PDC钻头的最新进展,系统梳理了国内外油气井用PDC钻头新进展,介绍了中国石油在新型钻头研发与应用方面的工作,进一步阐述了国内PDC钻头研发面临的形势与挑战,展望了油气井用PDC钻头发展新趋势。

研究结果表明:在油气资源勘探向着万米深层进军的大背景下,仍然面临地层可钻性差导致钻头破岩效率低、砾石层引起钻头振动先期损坏、大尺寸井眼钻井周期长等严峻挑战,技术与材料革新型高效钻头、混合式钻头、自适应钻头等能够明显提高钻进效率延长钻头寿命;智慧钻头所能提供的丰富井下数据能够提高对于深部破岩机理、岩石物性的认知,对于进一步优化钻头结构、识别可能存在的油气储层等具有重要的意义。

应积极借鉴和移植这些成果,尽早研发出适用于深部油气勘探或深地科学钻探等领域的高端耐用钻头。

研究结果可为高端PDC钻头国产化、系列化工作和相关从业人员提供借鉴。

【总页数】10页(P1-10)
【作者】呼怀刚;黄洪春;汪海阁;李忠明;席传明;武强;刘力
【作者单位】中国石油集团工程技术研究院有限公司;油气钻完井技术国家工程研究中心;中国石油集团川庆钻探工程有限公司新疆分公司;新疆油田公司工程技术研究院
【正文语种】中文
【中图分类】TE921
【相关文献】
1.PDC钻头技术新进展
2.PDC钻头水力学研究最新进展
3.四川油气田PDC钻头应用新进展
4.PDC钻头的磨损机理及新进展
5.PDC钻头技术的新进展
因版权原因,仅展示原文概要,查看原文内容请购买。

PDC钻头使用技术措施

PDC钻头使用技术措施

PDC钻头使用技术措施
首先,选用适当的PDC钻头。

根据不同的地质条件和钻井需求,选择合适的PDC钻头参数,包括刀具尺寸、面矩形数、刀头密度等。

正确的选择可以提高钻头的钻进速度和钻井效率,降低故障率。

其次,对PDC钻头进行合理的刃角设计。

刃角是指刀具刃部与钻杆轴线的夹角,合理的刃角设计可以减少切削力,降低钻头的磨损。

根据不同的地层特性和钻井目标,选择合适的刃角,可以提高钻头的稳定性和服务寿命。

第三,进行适当的钻井参数控制。

钻井参数包括转速、进给速度以及泥浆性能等。

合理的钻井参数可以保证钻头在工作时以最佳状态运行,提高钻进速度,减少钻头的磨损和损坏。

根据不同的地质条件和钻井目标,进行钻井参数的优化,可以提高钻头的效率和钻井效果。

第四,加强钻头的维护保养。

定期检查PDC钻头的磨损情况,并及时更换损坏的刀具,可以延长钻头的使用寿命。

在钻进过程中,注意及时清理钻井废料,避免其在钻头上堆积,影响钻头的工作效果。

同时,定期对钻井工具进行清洗、检查和润滑,可以减少钻井工具的故障率,延长使用寿命。

第五,进行合理的钻井操作。

在使用PDC钻头时,需要注意避免钻头的过度震动和振动,避免过大的负荷和冲击力,以免导致钻头的损坏。

同时,需要根据地层特性和钻井目标,合理选择钻进速度和钻进方式,避免过高的转速和过大的进给速度,以免引起过高的温度和磨损。

pdc钻头4d切削齿技术新发展

pdc钻头4d切削齿技术新发展

79PDC切削齿技术一直在不断发展,近年来在石油行业得到大规模的应用,得益于切削齿生产技术的进步。

国名油井华高公司(NOV)在其ReedHycalog营业中心开发了一条二维和三维的切削齿生产线。

这2条生产线应用公司的PDC切削齿技术和最先进的萃取工艺,制造出了性能优良的切削齿。

二维切削齿设计用于页岩钻井作业,在切削齿非切削的这一面增加了一个大的倒角。

倒角减少了切削齿与钻屑的接触面积,作为流动通道,引导流体进入界面,以帮助破碎岩石。

而三维切削齿则相反,其齿端设计为凿子形,增强了作用于岩石的应力,促使裂缝生成和裂缝延伸。

1 四维切削齿技术的起步根据切削齿-岩石互动模拟经验,以及二维、三维切削齿在实验室和现场测试结果,NOV公司最近开发出造型特殊能适用于更复杂的钻井环境的ION4D系切削齿,见图1。

该系列的切削齿外形为非平面齿构造,齿端为凿子形,而后从齿端逐渐转化为非切割面上的大倒角。

这种切削齿复合了二维、三维切削齿的优势,但在造型上与他们也有相似之处。

如齿端有增强型的三维切削齿特点,在非切削面一侧有改进型二维切削齿的特点。

图1 ION切削齿产品系列在综合利用现有二维和三维切削齿技术优点的基础上 ,设计出的4D系切削齿能适用于更广更复杂的工作环境,比如可以在中等硬度 ~坚硬的易碎砂岩 、中等硬度~坚硬有韧性的灰岩、软而有韧性的盐层、软却韧性极大的页岩中钻井使用。

通过分析和数字化切削齿-岩石互动模拟、无限元分析、计算机模拟流体动态以及在不同岩石(包括灰岩、砂岩、页岩和盐层)上的加压钻井测试等,这款新型切削齿不仅可以大幅提高对岩石的切削效率,同时具有较强的抗磨性。

此外,还专门设计了全面的加压钻井测试(使用8 1/2”PDC 钻头),来评估切削齿对于模拟原始地应力环境下对岩石的破碎性能。

选择了Torrey Buff砂岩、Carthage 大理石、盐岩做测试对象,施加的钻井压力为1,500psi;对于Catoosa页岩,施加的钻井压力为1,800psi。

PDC钻头技术发展现状与展望

PDC钻头技术发展现状与展望

PDC钻头技术发展现状与展望摘要:从切削齿、钻头结构、钻头设计与制造、钻头优选及使用技术等方面,介绍了国内外PDC 钻头技术发展现状,指出目前PDC 钻头居市场主导地位,切削齿的改进和创新是钻头研发的主攻方向,钻头结构趋向多样化、集成化,更为强调个性化设计,强化参数钻井。

列举了包括水平井一趟钻在内的应用案例,PDC 钻头提速降本效果显著,助力非常规油气高效开发,深井钻井周期持续缩短,钻井记录不断刷新。

未来适时引入高新技术和高新材料,将带来钻头技术的重大突破,集成创新和颠覆性创新进一步加快,智能钻头不断提高储层钻遇率和机械钻速,新一代钻头将会促进水平井超级一趟钻的推广应用。

同时分析了中国石油集团PDC 钻头技术发展现状与差距,提出了有针对性的发展建议。

关键词:PDC 复合片;PDC 钻头;切削齿;钻头设计;钻头制造;发展趋势钻头性能直接关系到钻井的效率、质量、成本乃至安全。

钻头虽小,却是钻井提速降本的第一利器。

改进钻头往往能收到事半功倍的效果,对于水平井、深井、超深井来说尤为如此。

如少用一只钻头,不仅可以直接节省钻头成本,还可缩短钻井周期,效益十分可观。

因此,国内外石油公司和油服公司都高度重视钻头技术的改进与创新。

1PDC 钻头技术发展现状钻头技术的改进和创新可归纳为集成创新和颠覆性创新两大类。

1.1 PDC 钻头居市场主导地位PDC 钻头(Polycrystalline Dlamond Compact Bit,聚晶金刚石复合片钻头)早在10 年前成为破岩主力,逐步取代了牙轮钻头,在钻井提速降本中发挥着重要作用。

近年来,中国和美国85% 以上的钻井进尺由PDC钻头完成,PDC 钻头已在石油钻头市场占据主导地位。

1.2 切削齿成为钻头创新主攻方向切削齿的改进和创新是PDC 钻头技术改进和创新的主攻方向,容易收到事半功倍的效果。

1.2.1 持续改进材质,提升切削齿性能钴元素是压制PDC 复合片时加入的结合剂,在人造金刚石内呈现宏观均匀分布状态。

看世界PDC钻头的最新进展(一)

钻井过程中的技术创新,看世界PDC钻头的最新进展(一)研磨性页岩地层驱使着新钻头的设计,以应对坚硬岩石及高温井的钻探。

在金刚石切削齿与碳化物基岩面相互作用期间,贝克休斯的休斯克里斯滕森Quantec Force强力PDC钻头获得了最佳效果,表现出更高的耐用性和热稳定性,通过获得的有限的切削齿分析,切削刃上的残余应力被迁移。

随着北美油气井页岩层的不断出现,钻头公司迫切地公关,以应对这些地层钻探的挑战并不让人惊讶,对于具体的应用,随之而来的是新钻头的设计,或是改进现有钻头的设计。

一些近期的设计,包括一些应对研磨性地层或高温地层钻井的新切削材料,也有一些8刀翼钻头的外形设计,这些设计都吸收了新切削齿技术和新材料技术,还有一些更新的钻头体材料技术,这些技术都是为了增强钻头的耐用性和提高钻头的性能表现,唯一的目的就是为了降低作业者的钻井成本。

一位服务于Varel国际公司西半球的现场工程经理卡尔罗斯(Karl Rose)说:“在开发钻头切削齿方面,许多钻头技术基本上都是材料技术,使钻头能够承受钻极硬的研磨性地层,切削齿能够在钻硬地层、软地层和夹层地层的变化中不会损坏”。

在钻头本身的材料特性方面也有了新的进展,为了使钻头更加结实和耐用,促使设计者设计出应对更硬地层类型的PDC钻头,罗斯先生说:“随着更坚硬材料的出现,切削齿材料的密度也会增加,使钻头从根本上更加坚韧耐用,这会让作业者在钻硬地层和研磨性地层时,用一只钻头打更多的进尺”。

一位史密斯国际公司的技术支持经理弗莱明克雷格同意说:“切削齿越好,钻头在井里滞留的时间就越长,就能打更多的硬地层和研磨性地层,作业者花费的成本就会越少”。

弗莱明先生说:“我们首先要能让一个切削齿应对更硬和更高研磨性地层,以便能使整个PDC钻头切削齿吃入这些地层,另一方面,钻头的刀翼越多,触到井底的金刚石体就越多”。

然而,弗莱明先生接着又说:“当钻头处于动态稳定的状态时,我们将会停止增加刀翼的数量,史密斯钻头目前就是这样做的,接下来把精力集中在切削齿技术上,不一定要增加更多的刀翼数量”。

27294715_PDC_钻头异形切削齿研究进展

2022年第51卷第4期第76页石油矿场机械犗犐犔 犉犐犈犔犇 犈犙犝犐犘犕犈犖犜2022,51(4):76 83文章编号:1001 3482(2022)04 0076 08犘犇犆钻头异形切削齿研究进展王光明1,李 达2,倪骁骅3(1.江苏油田矿业开发有限公司,江苏扬州225012;2.盐城市金巨石油机械制造有限公司,江苏盐城224052;3.盐城工学院汽车工程学院,江苏盐城224007)①摘要:为满足不同硬度、强研磨性及非均质地层岩石的需要,提高钻井效率,国外一些公司在PDC钻头常规圆柱状切削齿的基础上持续创新,研发了一系列创新型几何设计的新型PDC钻头异形切削齿。

介绍了脊形切削齿、楔(V)形切削齿、凿形切削齿和其他异形齿的结构和性能。

个性化异形切削齿是未来发展的主要方向,深入开展常规圆柱状切削齿和各种异形切削齿混合式个性化PDC钻头的研发,对钻头的切削结构进行优化,合理布置各种切削齿,充分发挥各自的优势,以解决深部地层可钻性差导致的机械钻速慢、钻井效率低的难题。

关键词:PDC钻头;异形切削齿;研究进展中图分类号:TE921.1 文献标识码:A 犱狅犻:10.3969/j.issn.1001 3482.2022.04.011犗狏犲狉狊犲犪狊犚犲狊犲犪狉犮犺犘狉狅犵狉犲狊狊狅犳犛狆犲犮犻犪犾 犛犺犪狆犲犱犆狌狋狋犲狉狊犳狅狉犘犇犆犅犻狋WANGGuangming1,LIDa2,NIXiaohua3(1.犑犻犪狀犵狊狌犗犻犾犳犻犲犾犱犕犻狀犻狀犵犇犲狏犲犾狅狆犿犲狀狋犆狅.,犔狋犱.,犢犪狀犵狕犺狅狌225012,犆犺犻狀犪;2.犢犪狀犮犺犲狀犵犑犻狀犼狌犘犲狋狉狅犾犲狌犿犕犪犮犺犻狀犲狉狔犕犪狀狌犳犪犮狋狌狉犻狀犵犆狅.,犔狋犱.,犢犪狀犮犺犲狀224052,犆犺犻狀犪;3.犛犮犺狅狅犾狅犳犃狌狋狅犿狅狋犻狏犲犈狀犵犻狀犲犲狉犻狀犵,犢犪狀犮犺犲狀犵犐狀狊狋犻狋狌狋犲狅犳犜犲犮犺狀狅犾狅犵狔,犢犪狀犮犺犲狀224007,犆犺犻狀犪)犃犫狊狋狉犪犮狋:Inordertomeettheneedsofrockswithdifferenthardness,strongabrasiveness,andheterogeneousformation,andtoimprovedrillingefficiency,someforeigncompanieshaveinnova tedonthebasisofconventionalcylindricalcuttersofPDCbits,anddevelopedaseriesofinnova tivegeometricdesignofnewPDCbitspecial shapedcutters.Theridgedcutters,thescribe(V)cutters,thechisel shapedcuttersandtheothercutterswereintroduced.Individualizedspecial shapedcutteristhemaindirectionoffuturedevelopment.Inordertosolvetheproblemsofslowdrillingspeedandlowdrillingefficiencycausedbypoordrillabilityofdeepformation,theresearchanddevelopmentofindividualizedPDCbitswithconventionalcylindricalcuttersandvariousspecial shapedcutterswerecarriedout,andthecuttingstructureofbitswasoptimized.犓犲狔狑狅狉犱狊:PDCbit;special shapedcutter;researchprogress 切削齿是PDC钻头的基本切削单元,其性能极大影响着PDC钻头的机械钻速和使用寿命。

PDC钻头泥页岩地层钻进泥包机理及对策研究进展

PDC钻头泥页岩地层钻进泥包机理及对策研究进展摘要:在钻井工业中,PDC钻头泥页岩地层钻进泥包的现象经常出现。

本文分析其泥包机理,总结形成钻头泥包的影响因素,进而提出三个方面的防止PDC钻头泥页岩地层钻进泥包的对策。

关键词:PDC钻头;PDC钻头泥页岩地层钻进泥包机理;影响因素;对策1.PDC钻头泥页岩地层钻进泥包机理PDC钻头泥包是指在下钻过程或者钻进过程中在钻头的切削齿和钻头体上粘附大量的泥页岩切屑,形成泥包。

PDC钻头泥页岩地层钻进泥包是一个复杂的过程,泥包的形成对于PDC钻头的使用效率具有重大的影响,一方面使钻机的下钻的速度减慢,钻头切入地层的功能不能得到有效的发挥,严重还会产生活塞现象,下钻时造成压力变化,从而在起钻时诱发非常危险的井喷。

另一方面钻头泥包的形成也会导致钻头的切削齿寿命下降。

钻头工作中切削齿会产生大量的热损耗,但是由于泥包的形成对于钻头起到包裹的作用,因此钻井液不能很快渗进去对切削齿进行有效得冷却,从而缩短切削齿的使用寿命。

造成钻头泥包的原因有很多,主要跟下钻的操作方法和软地层送钻不均匀有关。

2.PDC钻头泥页岩地层钻进泥包影响因素通过对PDC钻头泥页岩地层钻进泥包的机理进行分析,影响PDC钻头泥页岩地层钻进泥包的因素主要有5个方面:①地层性质。

地层性质在影响PDC钻头泥页岩地层钻进泥包过程中属于不可控因素,地层结构组成如矿物的组成、黏土的含量、水含量以及颗粒大小对岩层的黏附性能产生重要的影响,其次泥岩层的水化也会形成钻头泥包。

②有效围压。

有效围压也属于不可控因素,它是指下钻过程中岩石层给予钻头的有效压力,一般来说,有效围压越大,越容易使PDC 钻头泥页岩地层钻进泥包。

③钻头结构。

钻头泥包的形成跟切削齿和钻头体的黏附有关,PDC钻头的结构中,钻头的类型和冠部形状与泥包的形成有关,一般来说,脊柱式PDC钻头更容易形成泥包。

其次钻头结构中的水力结构和切削齿结构参数也会影响泥包的形成。

国内外PDC_钻头新进展与发展趋势展望

◀钻井技术与装备▶国内外PDC钻头新进展与发展趋势展望∗呼怀刚1ꎬ2㊀黄洪春1ꎬ2㊀汪海阁1ꎬ2㊀李忠明3㊀席传明4㊀武强1ꎬ2㊀刘力1ꎬ2(1 中国石油集团工程技术研究院有限公司㊀2 油气钻完井技术国家工程研究中心3 中国石油集团川庆钻探工程有限公司新疆分公司㊀4 新疆油田公司工程技术研究院)呼怀刚ꎬ黄洪春ꎬ汪海阁ꎬ等.国内外PDC钻头新进展与发展趋势展望[J].石油机械ꎬ2024ꎬ52(2):1-10.HuHuaigangꎬHuangHongchunꎬWangHaigeꎬetal.NewprogressanddevelopmenttrendsofPDCbitsinChinaandabroad[J].ChinaPetroleumMachineryꎬ2024ꎬ52(2):1-10.摘要:PDC钻头近年来发展迅速ꎮ为了能够及时掌握PDC钻头的最新进展ꎬ系统梳理了国内外油气井用PDC钻头新进展ꎬ介绍了中国石油在新型钻头研发与应用方面的工作ꎬ进一步阐述了国内PDC钻头研发面临的形势与挑战ꎬ展望了油气井用PDC钻头发展新趋势ꎮ研究结果表明:在油气资源勘探向着万米深层进军的大背景下ꎬ仍然面临地层可钻性差导致钻头破岩效率低㊁砾石层引起钻头振动先期损坏㊁大尺寸井眼钻井周期长等严峻挑战ꎬ技术与材料革新型高效钻头㊁混合式钻头㊁自适应钻头等能够明显提高钻进效率延长钻头寿命ꎻ智慧钻头所能提供的丰富井下数据能够提高对于深部破岩机理㊁岩石物性的认知ꎬ对于进一步优化钻头结构㊁识别可能存在的油气储层等具有重要的意义ꎮ应积极借鉴和移植这些成果ꎬ尽早研发出适用于深部油气勘探或深地科学钻探等领域的高端耐用钻头ꎮ研究结果可为高端PDC钻头国产化㊁系列化工作和相关从业人员提供借鉴ꎮ关键词:PDC钻头ꎻPDC复合片ꎻ混合式钻头ꎻ自适应钻头ꎻ智能钻头ꎻ国产化中图分类号:TE921㊀文献标识码:A㊀DOI:10 16082/j cnki issn 1001-4578 2024 02 001NewProgressandDevelopmentTrendsofPDCBitsinChinaandAbroadHuHuaigang1ꎬ2㊀HuangHongchun1ꎬ2㊀WangHaige1ꎬ2㊀LiZhongming3XiChuanming4㊀WuQiang1ꎬ2㊀LiuLi1ꎬ2(1 CNPCEngineeringTechnologyR&DCompanyLimitedꎻ2 NationalEngineeringResearchCenterofOil&GasDrillingandCompletionTechnologyꎻ3 CCDCXinjiangBranchCompanyꎻ4 ResearchInstituteofEngineeringTechnologyꎬPetroChinaXinjiangOilfieldCompany)Abstract:PDCbitshavedevelopedrapidlyinrecentyears.ThenewprogressofPDCbitsusedinoilandgaswellsinChinaandabroadwasreviewedꎬandCNPC seffortsintheresearchandapplicationofnewbitswereintro ̄duced.FurthermoreꎬthesituationandchallengesforPDCbitresearchanddevelopmentinChinawereelaboratedꎬandthenewtrendsinthedevelopmentofPDCbitswereforecasted.Theresultsshowthatunderthebackgroundofoilandgasresourceexplorationadvancingtowardsadepthoftensofthousandsofmetersꎬtherearestillseriouschallengessuchaslowrock ̄breakingefficiencyofbitsduetopoorformationdrillabilityꎬearlydamageofbitscauseditsshakingbygravellayersandlongdrillingcyclesoflarge ̄sizedwellbores.Technologyandmaterialinno ̄1 ㊀2024年㊀第52卷㊀第2期石㊀油㊀机㊀械CHINAPETROLEUMMACHINERY㊀㊀㊀∗基金项目:中国石油天然气集团有限公司前瞻性基础性技术攻关项目 深井超深井优快钻井技术研究 (2021DJ4101)ꎻ中国石油天然气集团有限公司关键核心技术攻关项目 万米超深层油气资源钻完井关键技术与装备研究 (2022ZG06)ꎻ油气钻完井技术国家工程研究中心基金项目 基于破岩过程扭矩自适应控制的井下减振提速机理研究 ꎻ中国石油集团直属院所项目 高温高压下PDC钻头切削齿破岩系统研制 (CPET2022-10S)ꎮvationtypeefficientbitsꎬhybridbitsandadaptivebitscansignificantlyimprovedrillingefficiencyandbitlife.Theabundantdownholedataprovidedbysmartbitscanenhanceunderstandingofdeeprock ̄breakingmechanismsandrockpropertiesꎬandisofgreatsignificanceforfurtheroptimizingbitstructuresandidentifyingpotentialoilandgasreservoirs.Theresultsofhybridꎬadaptiveandintelligentbitsshouldbeactivelyusedforreferenceandtransplan ̄tedꎬsoastosuccessfullydevelophigh ̄enddurablebitssuitablefordeepoilandgasexplorationordeepgeologicalscientificdrillingassoonaspossible.Theresearchfindingsprovidereferenceforthelocalizationandserializationofhigh ̄endPDCbitsaswellasrelatedresearchers.Keywords:PDCbitꎻPDCcompactꎻhybridbitꎻadaptivebitꎻintelligentbitꎻhomemade0㊀引㊀言油气钻井自PDC钻头成功应用以来发生了 天翻地覆 的变化ꎬ尤其是经过诸如能显著提高抗研磨性和抗冲击性的聚晶金刚石复合层㊁增强金刚石层与硬质基底黏结强度的非平面界面技术ꎬ减轻扭转冲击的抗回旋技术ꎬ提高复合片热稳定性的滤钴工艺㊁基于计算流体力学的水力学优化㊁计算机辅助建模㊁基于大数据的钻头选型和个性化设计㊁智能制造技术等的创新技术[1-4]ꎮ近年来PDC钻头发展极其迅速ꎬ其钻进性能和类型品种等已基本满足油气钻井的需求ꎬ且已占近80%的世界油气市场份额ꎬ世界钻井总进尺数占比更是超过了90%ꎬ但其仍有进一步改进提高的空间[5]ꎮ为了满足现代油气大位移井㊁长水平段水平井以及超深井的需求ꎬ各石油公司与科研院所都积极在诸如PDC切削齿的材质㊁形状㊁加工工艺及其在钻头上的配置ꎬ钻头结构㊁水力学㊁切削原理和制造工艺等方面深入探索ꎮPDC钻头因在材料和切削原理上的局限性ꎬ对于深井中坚硬地层㊁强研磨性地层㊁软硬互层及砾石层㊁地热井钻进终归不能完全胜任ꎮ对上述难钻地层ꎬ除应用金刚石钻头外ꎬ近年来诞生的技术和材料革新型钻头㊁混合式钻头以及智能化钻头等都是重要的选择和开拓[6-8]ꎮ笔者从国内国外两方面梳理了近年来出现的新型钻头ꎬ介绍了新型钻头的结构特征㊁工作原理和应用状况等ꎬ分析了国内油气井用PDC钻头研发所面临的挑战ꎬ进而对油气井用PDC钻头的研发趋势进行了展望ꎬ以期为高端PDC钻头的国产化㊁系列化工作和相关从业人员提供借鉴ꎮ1㊀国外油气井用PDC钻头发展概况1 1㊀技术㊁材料革新型高效钻头近年来ꎬNOV公司推出了HeliosImpact(见图1a)与ION+Alpha切削齿技术(见图1b)ꎬ将上述切削齿配置于不同的钻头并且针对不同区域进行相应的技术升级ꎬ形成了诸如用于地热钻井Phoenix钻头系列(见图2a)㊁与水力剪切喷嘴配合用于强化岩石剪切损伤的Tektonic钻头系列(见图2b)㊁用于美国市场的Pursuit钻头系列(见图2c)等ꎮ上述钻头在钻进硬岩与研磨性地层时热稳定性㊁抗研磨性㊁抗冲击性及导向性等方面有明显提升ꎬ成功应用于美国㊁拉丁美洲㊁印度尼西亚等地区的油气田ꎮSchlumberger公司通过本身的技术积淀及收购SmithBit公司积累了大量的切削齿㊁新材料和钻头的专利技术ꎬ例如ONYX360Rolling㊁AxeBladeElement㊁StingerElement㊁HyperBlade切削齿专利(见图1c~图1f)㊁增强切削齿强度及攻击性的Ae ̄gis超级涂层技术(见图1g)ꎮ采用上述先进切削齿技术的FireStorm/SHARC/Aegis/Spear系列钻头(见图1㊁图2d~图2f)㊁扩孔钻头和空气锤等特殊用途钻头ꎬ在油气钻井中得到了广泛的应用ꎬ能够以较高的钻进效率和工作寿命钻进某些硬岩和研磨性地层等[9-13]ꎮHalliburton在2017年推出了2款新型切削齿ꎬCruzer旋转吃深控制单元用于常规固定齿钻头ꎬ降低破岩扭矩和钻头摩阻㊁减少钻进过程中热量的产生㊁强化钻进性能ꎬ在长水平段S形井眼轨迹中展现了较好的效果[14](见图2g)ꎻGeometrix4DCut ̄ters通过对切削齿结构进行优化设计ꎬ使其在降低摩阻㊁促进岩屑排出㊁降低切削齿热降解方面具有较大的优势(见图1h)ꎮ应用在墨西哥湾花岗岩-页岩地层中ꎬ机械钻速翻倍ꎬ同时最大化降低了金刚石材料的热降解ꎮBakerHughes基于所研发的能够适用于砾石层㊁夹层中的StayTure切削元件和抗磨损且保持自锐的StayCool切削齿(见图1i㊁图1j)ꎬ推出了Dynamus抗涡动钻头系列(见图2h)ꎬ能够明显缩短定向井滑动钻进时间ꎬ提高整体机械钻速和井身质量ꎬ实现较少的起下钻次数ꎬ提高钻头机械能量2 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期利用率ꎮ为了满足特殊工艺井㊁特殊区域㊁特殊层位的要求ꎬ特别在大位移井㊁水平井㊁非常规油气井㊁地热井等发挥钻头的最大效能ꎬ减少钻头失效情况的发生ꎬ延长钻头寿命并降低钻井成本ꎬ各石油公司推出了诸多个性化定制的新型钻头ꎬ并形成了各自的产品系列ꎮ如能提高水力能量利用率的Split ̄Blade钻头(见图2i)㊁减轻横向振动的Counter ̄Force钻头(见图2j)㊁用于定向井造斜的EVOSPDC钻头(见图2k)㊁适用于旋转导向钻井的LyngPDC钻头㊁SeekerPDC钻头(见图2l)等ꎬ均取得了良好的效果[15-18]ꎮ图1㊀新型切削齿技术Fig 1㊀Newcutterstechnology图2㊀基于技术&材料革新的新型钻头Fig 2㊀Newbitsbasedontechnologyandmaterialinnovation3 2024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀1 2㊀混合式钻头针对ø311mm及更大直径井段增多致使全井钻井周期和钻井成本增加这一问题ꎬ胜利钻井工艺研究院曾进行了双级PDC钻头的相关理论与试验研究(见图3a)ꎬ但限于切削齿材料㊁加工工艺㊁钻头寿命等限制并未大规模推广ꎮ2011年BakerHughes推出了PDC钻头与牙轮钻头组合的KymeraMach和KymeraXtreme混合式钻头(见图3b)ꎬ主要针对深井硬地层㊁砾石层和软硬互层等可能产生严重黏滑振动的地层ꎬ借助于牙轮钻头侵入能力和PDC钻头高效剪切作用ꎬ提高钻头破岩效率㊁降低可能出现的PDC复合片的冲击损伤㊁提高定向井中钻头的定向能力等ꎬ在中国㊁美国㊁加拿大等地的油田应用ꎬ均取得了良好的效果[19-20]ꎮ2012年NOV公司针对坚硬火成岩地层井段研发了SpeedDrill同心双径PDC钻头(见图3c)ꎬ与低速高扭动力钻具配合使用ꎬ钻进包含火成岩地层在内的整个井段ꎬ能够明显提高钻进效率ꎬ定向钻进过程中轨迹控制较为理想ꎬ达到了预期效果[21]ꎮ2013年NOV公司推出FuseTek混合式钻头(见图3d)ꎬ针对中硬-坚硬和强研磨性地层ꎬ结合PDC切削齿的高剪切性能与孕镶块的强抗研磨性ꎬ在中国㊁非洲㊁北美等地进行了大量应用ꎬ与常规PDC钻头或牙轮钻头相比ꎬ能够明显提高钻进效率ꎬ钻头进尺也增加了1~3倍[22]ꎮ2014年ShearBits公司推出Pexus混合式钻头(见图3e)ꎬ将硬质合金齿与PDC复合片有机结合ꎬ当钻遇井段上部砾石层时利用可转动硬质合金齿侵入地层形成破碎坑ꎬ降低后排PDC切削齿剪切破岩的难度ꎻ在钻遇下部较软的砂岩和页岩时ꎬ则主要依靠PDC复合片进行大体积剪切破碎ꎮ在加拿大冰川冰碛物中应用ꎬPexus混合式钻头完整钻穿冰碛物地层[23-24]ꎮ2019年Halliburton公司推出了Crush&Shear混合式钻头(见图3f)ꎬ将传统PDC钻头高效破岩的能力与滚动元件降低破岩扭矩的特点有机结合ꎬ2种切削结构显著增强了钻头在软硬互层或过渡性地层中的破岩稳定性ꎬ钻进效率大幅提升ꎮ钻头在白俄罗斯某定向井中成功钻穿塑性页岩地层ꎬ一趟钻实现进尺1841mꎬ平均机械钻速23 7m/h[25]ꎮ图3㊀新型混合式钻头Fig 3㊀Newhybridbits1 3㊀智能化钻头2017年BHGE油气公司发布的TerrAdapt智能钻头可根据持续变化的地层特征自动调节钻头的切削深度(DOC)ꎬ在提高机械钻速的同时减缓黏滑现象ꎬ克服了常规PDC钻头切削深度控制的局限性(见图4a)ꎮ可调节的DOC控制单元收缩特性避免了切削齿对地层的过度切削ꎬ从而防止黏滑现象导致的钻头过早失效ꎮø215 9mmTerrAdapt智能钻头的现场试验结果证实该钻头可以有效抑制黏滑振动ꎬ拓宽了钻头稳定钻进的使用参数范围ꎬ提高了钻进效率[26-27]ꎮ2018年Halliburton公司推出了概念产品Cere ̄broForce自动感知钻头(见图4b)ꎬ通过在钻头内部设置多种传感器实现钻头工况数据的实时采集ꎬ以减少地面数据测量的不确定性ꎮ该钻头井下所能获取的数据包括:振动㊁钻压㊁扭矩及液体压力4 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期等ꎬ使得地面操作人员可以对钻头在井下的实际工况进行充分的掌握ꎬ从而对钻进参数等进行实时调节ꎬ最大化钻进效率[28]ꎮ2020年NOV提出了通过水力参数来实现钻头切削结构或者吃入深度控制单元对地层特征的 智能适应 ꎬ并初步研发出Smart ̄adaptive钻头(见图4c)ꎮ该钻头的设想是在钻进上下不同地层时可以实现刀翼数量的自动或人为控制ꎬ从而减少不必要的起下钻次数ꎬ为此NOV公司设计出了工业样品ꎬ其实际效果有待进一步现场验证[28]ꎮ2021年NOV公司推出了一款BitIQ钻头传感器ꎬ通过将传感器安装在PDC钻头接头处(见图4d)ꎬ可以实现对钻头振动(包括轴向㊁横向和切向振动ꎬ量程为ʃ120G)㊁井底温度(0~125ħ)及钻头转速(ʃ666r/min)在内的信息进行高频率(采样频率128Hz)测量㊁存储和数据统计ꎬ安装与操作较为简单ꎬ无需再经常安排额外操作人员ꎮ起钻后ꎬ使用专用手机应用对传感器存储数据进行下载并上传至云端系统进行数据处理ꎬ通过自动生成的分析报告ꎬ可以获得钻头磨损情况与井下振动之间的相关性ꎬ为后续钻头优化设计㊁提高钻头性能提供数据支撑ꎮ图4㊀智能化钻头Fig 4㊀Intelligentbits2㊀国内油气井用PDC钻头发展概况国内新型钻头的研发路线如下ꎮ①基于改变钻头井底的射流形式进而提高辅助破岩效果ꎬ有自激共振式钻头㊁空化射流钻头㊁脉冲空化多孔射流钻头㊁自旋式喷嘴射流钻头等ꎮ②通过设计并改变常规PDC钻头的切削结构ꎬ使钻头在井底的破岩方式发生变化ꎻ或者通过钻进过程中改变井底应力状况ꎬ降低岩石的抗钻特性ꎬ进而达到提高破岩效率的目的ꎮ有差压步进式钻头㊁微心钻头㊁旋切模块式钻头和环脊式PDC钻头等ꎮ③集井下数据采集和钻头动态行为监测为一体的智能钻头ꎬ将 黑匣子 (传感器)布置在钻头本体上ꎬ用于实时监测钻头的钻压㊁扭矩㊁转速㊁加速度㊁冲击载荷以及井底温度等信息ꎬ国内中石油工程院㊁胜利钻井工艺研究院等单位均开展了相关研究ꎬ开发的样机已初步进行了现场试验ꎬ达到了预期的目的ꎮ2 1㊀新型射流式PDC钻头国内部分研究团队在自激振荡(水力脉冲空化射流)理论与应用方面做了大量的工作[29-30]ꎬ空化射流的产生是基于在钻头上部(内部)添加自激振荡工具或结构ꎬ使用空化射流喷嘴或者脉冲空化射流耦合发生器ꎬ利用瞬态流和水声学原理调制射流流场ꎬ使射流剪切涡脱落㊁演化ꎬ发展成为大尺度涡环结构ꎬ诱导空化的发生ꎮ现阶段所研发的空化射流PDC钻头㊁脉冲空化多孔射流钻头也是基于上述原理ꎬ当流场中的空化气泡发生溃灭时会释放高温高压冲击波ꎬ进而提高空化射流的冲蚀性能ꎬ现场应用机械钻速平均提高30%~40%ꎮ2 2㊀结构创新型PDC钻头近年来ꎬ国内石油高校㊁企业加大了对于新型结构钻头的创新力度ꎬ从破岩方法㊁破岩机理[31-33]上做了诸多有益的探索ꎮ中国石油大学(华东)与中石油工程院在深井大尺寸井眼段长度增加㊁可钻性变差㊁常规PDC钻头钻速低㊁提速难的背景下ꎬ从降低深井岩石抗钻强度㊁增强钻头攻击能量2个角度出发ꎬ共同研发了一种自适应同心双径的PDC钻头(命名为差压步进式钻头)[34](见图5a)ꎮ室内试验与理论计算结果均表明ꎬ该钻头能够明显提高机械钻速(提速幅度为68%~330%)ꎬ在较小的破岩扭矩增加(增加69%)的情况下实现钻速的大幅度提升(提高280%)ꎮ同时弹性元件的存在使得钻压在领扩眼钻头之间可以自适应分配ꎬ提高了破岩能量利用率ꎬ进而最大化钻头的破岩效率[35]ꎮ为了使常规PDC钻头在深部难钻地层中的机械钻速有进一步的提升ꎬ中石油工程院研发了一种5 2024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀含亥姆霍兹共振腔的自激共振式钻头(见图5b)ꎬ该钻头水力激振腔引发的超高频振动能够使钻头与所钻地层之间发生共振ꎬ进而降低岩石强度㊁提高破岩效率ꎮ室内试验中平均机械钻速较常规PDC钻头提高80%以上ꎮ为解决普通PDC钻头形成的岩屑细碎㊁无法满足岩屑录井要求ꎬ胜利钻井工艺研究院㊁西南石油大学分别研发了一款微心PDC钻头[36-37]ꎮ此类微取心PDC钻头取消了常规PDC钻头心部的主切削齿ꎬ设置特殊的水力结构ꎬ使钻头心部在钻进过程中形成一定直径的竖直岩心并适时折断ꎬ通过负压抽吸作用将断的微岩心从钻头体内部流道带离井底ꎮ室内及现场试验结果表明ꎬ该钻头采集的岩心以柱状为主ꎬ岩性的完整性和采集率较高ꎬ可以代替牙轮钻头在岩屑录井井段使用ꎮ中国石油大学㊁西南石油大学等相关学者从破岩方式上对常规PDC钻头做了有益的探索与改进ꎬ研发了刮刀轮式[38]㊁旋转模块式[39]㊁旋切式[40]㊁环脊式[41]PDC钻头ꎮ此类钻头在常规PDC钻头的基础上加装了旋转切削模块(见图5c)ꎬ与固定式PDC切削齿 交叉刮切 破碎岩石ꎬ期望旋转切削模块中切削单元轮流工作方式能够提高钻头的整体破岩效率ꎮ环脊式PDC钻头(见图5d)则是在钻头的布齿区域内ꎬ至少有一个不设置主切削齿的环形空白带(简称 环带 )ꎬ且在刀翼的环带相应位置处开设周向贯通的凹槽ꎬ在凹槽底面或侧面可设置二级切削齿ꎮ目前ꎬ该类钻头多处于概念设计㊁室内测试阶段ꎬ距现场应用尚有较大距离ꎮ图5㊀结构创新型PDC钻头Fig 5㊀StructuralinnovativePDCbits2 3㊀中石油新型PDC钻头的应用情况依托中石油工程院休斯顿研发中心ꎬ在宝石机械㊁渤海中成㊁川庆钻探㊁长城钻探等生产单位的大力协作下ꎬ通过 十三五 持续攻关ꎬ中石油形成了从复合片材料及加工工艺㊁PDC钻头设计加工及应用一体化的专有技术[42]ꎮ为解决砂砾岩㊁火山岩㊁灰岩㊁云岩㊁燧石等难钻地层提速瓶颈问题ꎬ中石油休斯顿研究中心突破金刚石复合片选粉处理工艺㊁粉料封装工艺以及深度脱钴工艺ꎬ形成了硬质合金基体(见图6a㊁图6b)设计与试验评价方法ꎬ并首创三维凸脊形非平面齿(见图6c)ꎬ抗冲击性由300J提升至400J以上ꎬ较常规平面PDC切削齿抗冲击性能提高9倍以上㊁断裂韧性提高40%ꎻ脱钴深度由400~600μm提升至800~1200μmꎬ通过全角度脱钴ꎬ切削齿的抗研磨性和热稳定性得到了全面提升ꎬ延长钻头使用寿命ꎮ基于性能优异的非平面切削齿研发了3个系列11种尺寸22个型号的PDC钻头产品(见图6d)ꎬ在新疆㊁塔里木㊁西南㊁大庆等油田复杂难钻地层现场应用1000余井次ꎬ平均进尺和机械钻速提高29%和57%以上ꎬ屡创国内五大盆地多项新的钻井纪录ꎮ图6㊀中石油研发的高效异形PDC切削齿及Tridon系列PDC钻头Fig 6㊀Highefficiencyspecial ̄shapedPDCcuttersandTridonPDCbitsofCNPC 6 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期㊀㊀中国石油针对不同区块㊁不同井型㊁不同地层㊁不同井段实施 一井一策ꎬ一层一策 的个性化钻头设计与应用方案ꎮ中石油工程院与渤海装备联合研制的川渝页岩气㊁玛湖致密油水平段专用PDC钻头(见图7a㊁图7b)ꎬ通过复合片深度脱钴与优选㊁刀翼和布齿优化等设计ꎬ显著提高了钻头的攻击和导向性能ꎮ现场应用30余井次ꎬ在川渝页岩气井钻进ꎬ平均单趟进尺1000m以上ꎻ在玛湖区块玛XXX井乌尔禾组地层钻进ꎬ单趟进尺325mꎬ平均机械钻速5m/hꎬ与进口PDC钻头相当ꎮ川庆钻探公司针对川渝页岩气三开可钻性差的难题ꎬ研发了混合布齿㊁常规螺杆专用和旋转导向专用的系列个性化PDC钻头(见图7c㊁图7d)ꎬ其中常规螺杆专用钻头的平均机械钻速和单趟进尺分别为7 7m/h和510mꎬ同比提高11 4%和18 5%ꎬ单只钻头的最高进尺达1288mꎻ旋转导向专用钻头的平均机械钻速和单趟进尺分别为11 6m/h和1093mꎬ同比提高43%和48%ꎬ单只钻头的最高进尺1586mꎮ宝鸡石油机械有限责任公司研制的PDC-牙轮复合钻头ꎬ规格在ø149 2~ø444 5mm(ø5 ~ø17⅟ in)之间ꎬ在川渝㊁松辽盆地等难钻地层累计应用286只ꎬ与PDC钻头相比ꎬ钻头进尺和平均机械钻速分别提高20%~108%和10%~75%ꎮ图7㊀中石油部分专打PDC钻头Fig 7㊀PDCbitsforspecializeddrillingofCNPC3㊀国内PDC钻头研发面临挑战3 1㊀油气勘探所面临的形势随着塔里木盆地大北㊁博孜㊁克深㊁顺北超深层ꎬ准噶尔盆地南缘深层超深层㊁玛湖吉木萨尔页岩油气ꎬ四川盆地川东㊁川西北㊁川中古隆起北斜坡ꎬ大庆古龙页岩油气等一大批大油田的发现ꎬ 十四五 及今后若干年增储上产的重点仍然是深层超深层ꎮ而在上述地层中钻进依然面临地层可钻性差导致的破岩效率低㊁砾石层及软硬交互地层引起钻头振动造成先期损坏㊁深井大尺寸井眼钻井周期长㊁钻头用量大等严峻挑战ꎮ例如川西地区的须家河组㊁二叠系等地层可钻性差8~10级㊁研磨性强8~10级ꎬ金宝石组石英含量高达90%以上ꎬ钻头破岩效率较低ꎬ吴家坪组-栖霞组机械钻速仅1 29m/hꎬ钻头进尺小于60mꎻ大庆深部地层的流纹岩㊁花岗岩㊁砾岩等难钻地层ꎬ可钻性达8~10级ꎬ钻头钻进过程振动剧烈且频繁ꎬ平均进尺56mꎬ机械钻速1 30m/hꎬ单井钻头用量大(水平井平均用量36只ꎬ直井10只)ꎻ库车山前地区的砾石层平均段长超5200mꎬ砾石含量高㊁粒径大ꎬ机械钻速平均仅为2m/hꎬ巴什基奇克组等复杂地层厚度占全井4%~21%ꎬ钻时占全井25%~51%ꎬ钻头用量占全井40%~62%ꎮ3 2㊀高端钻头研发所面临的瓶颈问题首先是基础学科领域有待进一步突破ꎬ其中新型钻头基体的材料研发㊁金刚石材料与基底的黏结工艺㊁深部高温高压复杂地层钻头与岩石相互作用机理亟需科研攻关ꎮ其次是PDC钻头设计㊁模拟㊁加工㊁后评价一体化的智能设计制造技术有待进一步集成升级ꎬ具有特殊工况㊁地层适应性的个性化钻头模块化设计软件㊁性能模拟与磨损预测软件㊁五轴数控加工与自动化检测平台等方面亟待优化升级和功能开发ꎮ再次是钻头创新研发与应用进度尚不匹配ꎬ国内石油高校在新型结构钻头创新㊁理论计算与数值模拟上具有先天性优势ꎬ而国内相关企业则在PDC钻头加工生产㊁科学试验㊁产业化应用方面具有得天独厚的有利条件ꎬ两者之间的联通渠道有待进一步加速拓宽ꎬ以发挥各自的比较优势ꎮ最后是国内钻头研发尚需一条或多条明确的开发线路ꎬ多为单点创新性研发ꎬ系统性㊁系列性㊁特殊地层适用性较国外知名钻头公司还有一定的差距ꎮ7 2024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀4㊀结论与展望(1)将PDC切削齿与其他类型切削元件进行有机结合㊁在结构参数和材料等方面进行不同组合的混合式钻头已成为国际上油气井钻头发展的重要趋势之一ꎮ(2)以BHGE油气公司TerrAdapt智能钻头为代表ꎬ通过对切削结构或吃深控制单元进行自动控制ꎬ在抑制黏滑振动和减小钻头冲击损坏方面表现出色ꎬ也逐渐成为油气井用钻头的研发方向之一ꎮ(3)以Halliburton公司的CerebroForce自动感知钻头为代表ꎬ将信息采集传感器集成于钻头内ꎬ实现井下工况的实时监测与反馈ꎮ随着科技与材料科学的进一步发展ꎬ智能感知钻头终将普遍用于油气行业ꎬ实现基于测量信息的钻进过程实时优化㊁信息存储用于钻后分析ꎮ钻头供应商需要与钻井承包商深度合作ꎬ甄别井底所获取的信息哪些具有较大的价值ꎬ并将上述数据以最快的速度发挥其最大的价值ꎮ(4)钻头的个性化设计始终是深部复杂地层提高破岩效率㊁长水平段水平井实现 一趟钻 目标的必然选择与要求ꎮ针对细化的区块㊁工况㊁地层等大力实施 一井一策ꎬ一层一策 的个性化钻头设计与应用方案ꎻ同时ꎬPDC钻头研发也应与配套钻井工艺㊁钻井工具㊁导向工具集成化服务相结合ꎬ以最大化钻头与底部钻具的组合潜能ꎬ尽可能实现不同复杂地层中的一趟钻完钻ꎮ参㊀考㊀文㊀献[1]㊀左汝强.国际油气井钻头进展概述(一):Kymera组合式(Hybrid)钻头系列[J].探矿工程(岩土钻掘工程)ꎬ2016ꎬ43(1):4-6.ZUORQ.Internationaladvancementofdrillingbitsforoilandgaswell(1)-kymerahybridbit[J].Explo ̄rationEngineering(Rock&SoilDrillingandTunne ̄ling)ꎬ2016ꎬ43(1):4-6[2]㊀左汝强.国际油气井钻头进展概述(三):PDC钻头发展进程及当今态势(上)[J].探矿工程(岩土钻掘工程)ꎬ2016ꎬ43(3):1-8.ZUORQ.Internationaladvancementofdrillingbitsforoilandgaswell(3)-PDCbitsprogressandpresenttrend(Ⅰ)[J].ExplorationEngineering(Rock&SoilDrillingandTunneling)ꎬ2016ꎬ43(3):1-8 [3]㊀左汝强.国际油气井钻头进展概述(四):PDC钻头发展进程及当今态势(下)[J].探矿工程(岩土钻掘工程)ꎬ2016ꎬ43(4):40-48.ZUORQ.Internationaladvancementofdrillingbitsforoilandgaswell(4)-PDCbitsprogressandpresenttrend(Ⅱ)[J].ExplorationEngineering(Rock&SoilDrillingandTunneling)ꎬ2016ꎬ43(4):40-48 [4]㊀万夫磊ꎬ韩烈祥ꎬ姚建林.个性化钻头技术研究与展望[J].钻采工艺ꎬ2020ꎬ43(4):16-19.WANFLꎬHANLXꎬYAOJL.Researchandpros ̄pectofpersonalizedbittechnology[J].Drilling&Pro ̄ductionTechnologyꎬ2020ꎬ43(4):16-19 [5]㊀SCOTTDꎬHUGHESB.Abitofhistory:overcomingearlysetbacksꎬPDCbitsnowdrill90%-plusofworld ̄widefootage[EB/OL].(2015-07-07)[2016-05-24].http:ʊwww.drillingcontractor.org/a-bit-of-history-overcoming-early-setbacks-pdc-bits-now-drill-90-plus-of-worldwide-footage-35932 [6]㊀刘丁源ꎬ李军ꎬ高德伟ꎬ等.PDC钻头在砾岩地层中的破岩机理与适应性分析[J].石油机械ꎬ2023ꎬ51(7):51-58ꎬ67.LIUDYꎬLIJꎬGAODWꎬetal.AnalysisonrockbreakingmechanismandadaptabilityofPDCbitincon ̄glomerateformation[J].ChinaPetroleumMachineryꎬ2023ꎬ51(7):51-58ꎬ67[7]㊀AL ̄AJMIKꎬAL ̄HAMADIEꎬBAQERYꎬetal.Newconcentricdual ̄diameterfixed ̄cuttertechnologybitdrills35%fasterandsavesoperatordrillingtimethroughchallengingabrasivesandstoneinoneofthelargestres ̄ervoirsinthemiddleeast[C]ʊSPE/IADCMiddleEastDrillingTechnologyConferenceandExhibition.AbuDhabi:SPEꎬ2016:SPE178208-MS. [8]㊀龙伟ꎬ况雨春ꎬ何璟彬ꎬ等.水平井PDC钻头黏滑振动规律试验研究[J].石油机械ꎬ2023ꎬ51(9):18-25.LONGWꎬKUANGYCꎬHEJBꎬetal.Testonstick ̄slipvibrationofPDCbitinhorizontalwells[J].ChinaPetroleumMachineryꎬ2023ꎬ51(9):18-25 [9]㊀ZHANGYHꎬBAKERRꎬBURHANYꎬetal.Inno ̄vativerollingPDCcutterincreasesdrillingefficiencyim ̄provingbitperformanceinchallengingapplications[C]ʊSPE/IADCDrillingConference.Amsterdam:SPEꎬ2013:SPE163536-MS.[10]㊀PLATTJꎬVALLIYAPPANSꎬKARUPPIAHV.In ̄novativerollingcuttertechnologysignificantlyimprovedfootageandROPinlateralandverticalgasapplicationsinSaudiArabia[C]ʊSPE/IADCMiddleEastDrill ̄ingTechnologyConferenceandExhibition.AbuDha ̄bi:SPEꎬ2016:SPE178201-MS.[11]㊀FAROUKHꎬELWEKEELWꎬSHOKRYAEꎬetal.InnovativePDCbitdesignincreasesdrillingefficiency8 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期inEgypt snotoriouslydifficultwesterndesertdeepli ̄thologycolumn[C]ʊSPENorthAfricaTechnicalConferenceandExhibition.Cairo:SPEꎬ2015:SPE175756-MS.[12]㊀SANCHEZJLꎬCARRIZOHꎬSALGADOJꎬetal.AdvanceddrillingandloggingtechnologiesgivenewlifetoagingfieldsinEcuadorbyenablingreentrydrill ̄ing[C]ʊSPELatinAmericanandCaribbeanPetro ̄leumEngineeringConference.Quito:SPEꎬ2015:SPE177087-MS.[13]㊀VANHEEKERENHꎬSTORMRꎬKRAANAVꎬetal.Conicaldiamondelementbitsetsnewperformancebenchmarksdrillinghardandabrasiveformationsꎬoff ̄shoreNetherlands[C]ʊSPENorthAfricaTechnicalConferenceandExhibition.Cairo:SPEꎬ2015:SPE175859-MS.[14]㊀HalliburtonInc.OperatorsetsbenchmarkdrillinglonglateralS ̄shapewell[EB/OL].(2019-10-06)[2020-03-24].https:ʊwww.halliburton.com/en/resources/operator-sets-new-benchmark-drilling-long-lateral-s-shaped-well.[15]㊀MELIRꎬSALASCꎬMARTINRꎬetal.IntegratedBHAsystemdrillscurve/lateralinonerunatrecordROPsavingsevendaysrigtime[C]ʊIADC/SPEDrillingConferenceandExhibition.FortWorth:SPEꎬ2014:SPE167920-MS.[16]㊀HANNACꎬDOUGLASCꎬASRHꎬetal.Applica ̄tionspecificsteelbodyPDCbittechnologyreducesdrillingcostsinunconventionalNorthAmericashaleplays[C]ʊSPEAnnualTechnicalConferenceandExhibition.Denver:SPEꎬ2011:SPE144456-MS. [17]㊀COCKRAMMꎬRITCHIEAꎬNORGEBGꎬetal.MultidisciplinaryapproachandengineeredsolutionsetsnewNorthseaperformancebenchmarks[C]ʊSPEDeepwaterDrillingandCompletionsConference.Galveston:SPEꎬ2012:SPE155475-MS. [18]㊀WUXPꎬKARUPPIAHVꎬNAGARAJMꎬetal.I ̄dentifyingtherootcauseofdrillingvibrationandstick ̄slipenablesfit ̄for ̄purposesolutions[C]ʊIADC/SPEDrillingConferenceandExhibition.SanDiego:SPEꎬ2012:SPE151347-MS.[19]㊀DOLEZALTꎬFELDERHOFFFꎬHOLLIDAYAꎬetal.Expansionoffieldtestingandapplicationofnewhybriddrillbit[C]ʊSPEAnnualTechnicalConfer ̄enceandExhibition.Denver:SPEꎬ2011:SPE146737-MS.[20]㊀OMARMꎬAGAWANIWꎬABDELHAMIDAꎬetal.MultipledeploymentsofhybriddrillbitswithoptimizeddrillingsystemsproveenhancedefficiencyinNorthKu ̄waitdevelopmentwells[C]ʊSPEMiddleEastOil&GasShowandConference.Manama:SPEꎬ2017:SPE184026-MS.[21]㊀HELLVIKSꎬNYGAARDRꎬHOELEꎬetal.PDCcutterandbitdevelopmentforchallengingconglomer ̄atedrillingintheLunoField ̄OffshoreNorway[C]ʊIADC/SPEDrillingConferenceandExhibition.SanDiego:SPEꎬ2012:SPE151456-MS.[22]㊀GARCIAAꎬBAROCIOHꎬNICHOLLDꎬetal.No ̄veldrillbitmaterialstechnologyfusiondeliversper ̄formancestepchangeinhardanddifficultformations[C]ʊSPE/IADCDrillingConference.Amsterdam:SPEꎬ2013:SPE163458-MS.[23]㊀HSIEHLꎬEDITORMꎬENDRESSAꎬetal.Betterandbetterꎬbitbybit/newdrillbitsutilizeuniquecut ̄tingstructuresꎬcutterelementshapesꎬadvancedmodelingsoftwaretoincreaseROPꎬcontrolꎬdurabili ̄ty[EB/OL].(2015-07-09)[2023-08-07].ht ̄tps:ʊdrillingcontractor.org/better-and-better-bit-by-bit-35780[24]㊀WONGAꎬDENOUDENBꎬHERMANJJꎬetal.Newhybridbittechnologyprovidesimprovedperform ̄anceinconventionalintervals[C]ʊSPEAnnualTechnicalConferenceandExhibition.Dubai:SPEꎬ2016:SPE181668-MS.[25]㊀HalliburtonInc.Crush&ShearTMhybriddrillbits[EB/OL].(2019-10-12)[2021-02-15].https:ʊwww.halliburton.com/en/products/crush-shear-hy ̄brid-drill-bits.[26]㊀DAVISJEꎬSMYTHGFꎬBOLIVARNꎬetal.E ̄liminatingstick-slipbymanagingbitdepthofcutandminimizingvariabletorqueinthedrillstring[C]ʊIADC/SPEDrillingConferenceandExhibition.SanDiego:SPEꎬ2012:SPE151133-MS.[27]㊀JAINJRꎬRICKSGꎬBAXTERBꎬetal.Astepchangeindrillbittechnologywithself-adjustingPDCbits[C]ʊIADC/SPEDrillingConferenceandExhi ̄bition.FortWorth:SPEꎬ2016:SPE178815-MS. [28]㊀NOVInc.Safeꎬefficientdrillingsolutions[EB/OL].(2020-10-12)[2021-02-15].https:ʊwww.nov.com/products-and-services/capabilities/drilling. [29]㊀王委ꎬ程智勇ꎬ陈小元ꎬ等.脉冲空化PDC钻头的研究及应用[J].石油机械ꎬ2021ꎬ49(11):24-30ꎬ38.WANGWꎬCHENGZYꎬCHENXYꎬetal.DesignandapplicationofpulsecavitationPDCbit[J].Chi ̄naPetroleumMachineryꎬ2021ꎬ49(11):24-30ꎬ38[30]㊀彭可文ꎬ田守嶒ꎬ李根生ꎬ等.自振空化射流空泡92024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀动力学特征及溃灭强度影响因素[J].石油勘探与开发ꎬ2018ꎬ45(2):326-332.PENGKWꎬTIANSCꎬLIGSꎬetal.Bubbledy ̄namicscharacteristicsandinfluencingfactorsonthecavitationcollapseintensityforself-resonatingcavitat ̄ingjets[J].PetroleumExplorationandDevelop ̄mentꎬ2018ꎬ45(2):326-332[31]㊀彭齐ꎬ杨雄文ꎬ任海涛ꎬ等.扇形齿PDC钻头破岩机理及工作性能仿真分析[J].石油机械ꎬ2023ꎬ51(7):28-35.PENGQꎬYANGXWꎬRENHTꎬetal.Simulationanalysisofrockbreakingmechanismandworkingper ̄formanceofPDCbitwithfan-shapedcutter[J].Chi ̄naPetroleumMachineryꎬ2023ꎬ51(7):28-35 [32]㊀张文波ꎬ史怀忠ꎬ席传明ꎬ等.锥形PDC齿和常规PDC齿混合切削破岩试验研究[J].石油机械ꎬ2023ꎬ51(3):33-39.ZHANGWBꎬSHIHZꎬXICMꎬetal.Experimen ̄talstudyonrockcuttingwiththecombinationofconi ̄caldiamondelementsandconventionalPDCcutters[J].ChinaPetroleumMachineryꎬ2023ꎬ51(3):33-39[33]㊀龚均云ꎬ吴文秀ꎬ周宗赣.斧形齿破岩机理数值模拟研究[J].石油机械ꎬ2022ꎬ50(9):44-51.GONGJYꎬWUWXꎬZHOUZG.Numericalsimu ̄lationonrock-breakingmechanismofaxe-shapedcut ̄ter[J].ChinaPetroleumMachineryꎬ2022ꎬ50(9):44-51[34]㊀管志川ꎬ刘永旺ꎬ李敬皎ꎬ等.差压式钻头:CN201510789231 X[P].2015-11-17.GAUNZCꎬLIUYWꎬLIJJꎬetal.Weight-on-bitself-adjustbit:CN201510789231 X[P].2015-11-17[35]㊀HUHGꎬGUANZCꎬZHANGBꎬetal.Structuredesignofweight ̄on ̄bitself ̄adjustingPDCbitbasedonstressfieldanalysisandexperimentevaluation[J].JournalofPetroleumScienceandEngineeringꎬ2021ꎬ196:107692[36]㊀田京燕ꎬ徐玉超.微心PDC钻头设计及现场试验[J].石油钻探技术ꎬ2019ꎬ47(1):65-68.TIANJYꎬXUYC.Designandfieldapplicationofamicro ̄coringPDCbit[J].PetroleumDrillingTech ̄niquesꎬ2019ꎬ47(1):65-68[37]㊀况雨春ꎬ罗金武ꎬ王利ꎬ等.抽吸式微取心PDC钻头的研究与应用[J].石油学报ꎬ2017ꎬ38(9):1073-1081.KUANGYCꎬLUOJWꎬWANGLꎬetal.Researchandapplicationofsuction ̄typemicrocoringPDCdrillbit[J].ActaPetroleiSinicaꎬ2017ꎬ38(9):1073-1081[38]㊀CHENLꎬYANGYXꎬLIUYꎬetal.Theoperationaltheoryandexperimentalstudyofscraping ̄wheeldia ̄mondbit[J].JournalofPetroleumScienceandEngi ̄neeringꎬ2017ꎬ156:152-159[39]㊀钟云鹏ꎬ杨迎新ꎬ于洪波ꎬ等.旋转模块式PDC钻头破岩机理研究[J].地下空间与工程学报ꎬ2019ꎬ15(6):1741-1748.ZHONGYPꎬYANGYXꎬYUHBꎬetal.Studyonrock ̄breakingmechanismofrotarymodularPDCbit[J].ChineseJournalofUndergroundSpaceandEngi ̄neeringꎬ2019ꎬ15(6):1741-1748[40]㊀曹扬ꎬ王海涛.旋切式PDC钻头切削结构设计研究[J].石油机械ꎬ2020ꎬ48(7):42-48.CAOYꎬWANGHT.DesignandstudyonthecuttingstructureofrotarycuttingPDCbit[J].ChinaPetro ̄leumMachineryꎬ2020ꎬ48(7):42-48 [41]㊀杨迎新ꎬ胡浩然ꎬ黄奎林ꎬ等.环脊式PDC钻头破岩机理试验研究[J].地下空间与工程学报ꎬ2019ꎬ15(5):1451-1460.YANGYXꎬHUHRꎬHUANGKLꎬetal.Experi ̄mentalresearchontherock ̄breakingmechanismofan ̄nular ̄ridgePDCbit[J].ChineseJournalofUnder ̄groundSpaceandEngineeringꎬ2019ꎬ15(5):1451-1460[42]㊀汪海阁ꎬ黄洪春ꎬ毕文欣ꎬ等.深井超深井油气钻井技术进展与展望[J].天然气工业ꎬ2021ꎬ41(8):163-177.WANGHGꎬHUANGHCꎬBIWXꎬetal.Deepandultra ̄deepoil/gaswelldrillingtechnologies:pro ̄gressandprospect[J].NaturalGasIndustryꎬ2021ꎬ41(8):163-177㊀㊀第一作者简介:呼怀刚ꎬ高级工程师ꎬ生于1988年ꎬ2021年毕业于中国石油大学(华东)油气井工程专业ꎬ现从事高效破岩㊁钻井提速㊁钻井工程规划与技术支持方面的研究工作ꎮ地址:(102206)北京市昌平区ꎮ电话:(010)80162237ꎮemail:huhg0536@126 comꎮ通信作者:汪海阁ꎬemail:wanghaigedri@cnpc com cnꎮ㊀收稿日期:2023-10-10(本文编辑㊀南丽华)01 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

态 。 目前PV I 技术 经成 为实验流 体力学的重要研 究手段;
在 一 维 设 计 方 面 , 摹 于 Po E PC 头 三 维 优 化 设 计 取 得 了 r/的 D钻 很 人 进 步 ,在 A t C D 台 上进 行 而 开 发 , 丌 发 出 了P C 头 u oA D钻
中国西 部科技 2 1 J0 月 ( 0 O ̄ 6 - 上旬 )第0 卷第 1 期总 第2 3 9 6 1 期
杨 明 合
( 国石 油 天 然 气集 团公 司钻 井 工 程 重 点 实验 室 长 江 大 学 分 室 ,湖 北 荆 州 4 4 2 ) 中 5 0 5

要:P c 头是 用人 造 聚晶金刚石 切削块嵌 于钻头胎体而成 的一种新 型切削 型钻头。极 大地提 高钻 井工作 效率和 降 D钻
现 场试 验 的费用 、时 『和 风 险 。如在PC 头水 力结 构方面 ,采 u J D钻 用CD 值 分析 软 件 ;PV (atcergV lcm ty F数 I Prilla eeo ier )速 度测 a
国各 主 要 油 田 在 适 应 地 层 巾大 力 推 广 使 用 P C 头 , 使 国 D钻 内PC 头 的用 量 和 在 钻井 总 进 尺 中所 占 比例 逐 年上 升 。 D钻
统 的 设计 思 想 是 等 切 削 原理 或 等 磨 损 原 理 。 曰l PC 头 i D钻  ̄ J 的设 计 理 论 主 要包 括 破 岩 机 理 研 究 、 切 削 力 学研 究 、钻 进 过 程 中的 振动 和 涡 动 现 象 动 力 学 研 究 、 水 力 学研 究 以及 有 限元 强度 分 析和 工作 性 能 预测 研 究 。 在 布 置切 削 齿 方 面 ,一 般 的 设 计 原 则是 “ 剀 削 、 等 等 功 率 、等 磨 损 ” 。 最近 提 出 的P C 头 等 体 积 布 齿 设 计 的 D钻 数值 计 算 方 法 具 有代 表性 。这 种 方 法 在 综 合 考 虑 了 钻 头冠 部形 状 、切 削 齿 的布 置 、切 削 齿 尺 寸 、 切 钊 齿 的相 作 用 等 固 素 的 影 响 下 , 建 立 了切 削 齿 等 体 积 设 汁数 学 计 算 模 型 ,对 切 削 齿 的工 作 角 进 行 了优 化 发计算 并将 其 结 果应 用
即 聚 晶 金 刚 石 复 合 片 钻 头 )是 随 着 P C 复 合 材 料 的发 展 1 ) 而发 展 起 来 的 一类 新 型钻 井 工 具 。 国外 七 1年 代 中 期 开 始 一 研 究 , 八 十 年 代 初 投 入 工 业 使 片 ,P C 头 已在 油 钻 井 j D钻 工 具 中 占有 十 分重 要 的地 位 。我 围从 八 年 代初 才 开始 了
P C 头 ( o y r s a l n i m n o p c i , D钻 P lc y t l ie D a o d C ma tB t
P C 头 的 设 计 实 现 真 正 意 义 上 的 计 算 机 辅 助 设 计 和 计 D钻 算 机 优 化 设 计 , 进 一 步 发 展 钻 头 的 实体 仿 真 和 工 作 状 态 仿 真
解 P c 头 ,现 在 国 内生产 P c 头 的 厂 家 已有 十几 家 ,全 D钻 D钻
技术 。对现 有钻头 或虚拟钻 头进 行力 学分析和工 作状态 分
析 , 进 行 使 用 效 果 预测 和提 供 数 据 ,进 行 改进 和 优 化 设 计 。
避 免 由于 设计 上 的差 距造 成 实物 损 失和 时 间浪 费,极 大地 减少
低 钻 井 成 本 。 本 文着 重 介 绍 了近 几年 国 内#P C 头 设 计 的 新 进 展 和P C 头制 造 的新 工 艺技 术 。 FD 钻 D钻
关 键 词 :P C 头 ;设 计 ;制 造ቤተ መጻሕፍቲ ባይዱ工 艺 ;进 展 D钻
D h .9 9 js .6 1 6 9 . 0 0 1 .0 O 1 3 6 / .s 1 7 — 5 62 .60 5 0 in 1
设 计 三 维 计算 模 。P C 头 设 计 手 段 的 不 断 更 新 ,大 大 地 D钻 加快 了设 计速 度 、捉 高 了设 计 质 量 。
1 3 PC . D 钻头结构 设计新进展
P C 头 设 计 结 构 的 更 新 在 不 问 断 地 进 行 着 , 目的 就 是 D钻 寻 求 一 种 更 为 合 理 的 结 构 , 以期 获 得 更 高 的机 械 性 能和 更 长 的 使 用 寿 命 , 以及 对 地 层 的 更 广 泛 的 适 应 能 力 。 布 齿 方 式 上, 从钢 体式 到胎 体式 :从 点式 到 螺 旋 水 槽 式 ,再 到 超 深 宽 水槽 刮 刀 式 。布 结构 上 ,从 标 准 片 到 火 片 ,再 到 大 小 片 混
用 。 该 方 法 就 是 当P C 头 冠 部 曲 线 按 一 定 的 方 式 设 计 D钻
都住 探 索 的过 程 之 巾 。设 计 结 构 史 新 的 另 一 重 要 内 容 是针 对 不 同 的地 层 和 钻 头 的 不 同工 作 状 态 以 及 钻 头 的 不 同工 作 部 位 采 用 不 同 的 切 削 元 件 , 可 以 更 好地 发挥 切 削元 件 的性 能和 提 高 钻 头 的针 对 性 。 2 PC D 钻头 的制 造 新 工 艺
布 ; 从 单 排 到 排 等 等 , 以 及 所 谓 的抗 夹 层 PC 头 等 D钻
于该模型 中。这种 方法这为P c 头的设计和件 能模 拟分 D钻
析 提 供 了一 种 可 行 方法 。 除 了 等 体 积 设 计 方 法 之 外 , 沿 冠 部轮 廓 曲线 均 匀 和 非均 匀布 齿 的 方法 在 实 际 也 得 到 了应
量技术近年来获得了迅速发展,它利用粒子成像技术对整个或
局 部 流场 时 记 录测 量 ,从 而 获得 流 场 的 瞬 时 动 力 学 流 动 状
1 PC D 钻头的设计新进展 11 P C . D 钻头设计 理论新进展
金 刚石 复 合 片 钻 头 设计 的核 心 内容 是 布 置 切 削 齿 。传
相关文档
最新文档