简单数学建模100例

合集下载

matlab数学建模100例

matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。

在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。

1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。

2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。

3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。

4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。

5. 数值积分:使用Matlab计算函数的定积分。

6. 微分方程求解:使用Matlab求解常微分方程。

7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。

8. 线性规划:使用Matlab求解线性规划问题。

9. 非线性规划:使用Matlab求解非线性规划问题。

10. 整数规划:使用Matlab求解整数规划问题。

11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。

12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。

13. 动态规划:使用Matlab解决动态规划问题。

14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。

15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。

16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。

17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。

18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。

19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。

20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。

21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。

22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。

数学建模习题

数学建模习题

数学建模习题1.木材采购问题一个木材贮运公司,有很大的仓库,用于贮运出售木材。

由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分贮存起来以后出售。

已知:该公司仓库的最大贮藏量为20万立方米,贮藏费用为(a+bu)元/万立方米,其中:a=70,b=100,u为贮存时间(季度数)。

已知每季度的买进、卖出价及预计的销售量为:2.飞机投放炸弹问题某战略轰炸机群奉命摧毁敌人军事目标。

已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。

为完成此项任务的汽油耗量限制为48000公升,重型炸弹48枚、轻型炸弹32枚。

飞机携带重型炸弹时每公升汽油可飞行2 公里,带轻型炸弹时每公汽油可飞行3公里。

又知每架飞机一次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每公升汽油飞行4公里)外。

起飞和降落每次各消耗100公升。

有关数据如下表所示:为了使摧毁敌方军事目标的可能性最大,应如何确定飞机轰炸的方案。

3.三级火箭发射问题建立一个模型说明要用三级火箭发射人造卫星的道理。

(1)设卫星绕地球作匀速圆周运动,证明其速度为v= R^gr;, R为地球半径,r为卫星与地心距离,g为地球表面重力加速度。

要把卫星送上离地面600km 的轨道,火箭末速v应为多少。

(2)设火箭飞行中速度为v(t),质量为m(t),初速为零,初始质量m,火箭喷出的气体相对于火箭的速度为u,忽视重力和阻力对火箭的影响。

用动量守恒原理证明v(t)= u in j。

由此你认为要提高火箭的末速度应采取什么措m(t)施。

(3)火箭质量包括3部分:有效载荷(卫星)m;燃料m;结构(外壳、燃料仓等)m,其中m 在m + m中的比例记作九P一般九不小于10%。

证明若m p =0(即火箭不带卫星),则燃料用完时火箭达到的最大速度为v =-u in九. 已知,目前的u=3km/s,取九=10%,求v。

这个结果说明什么。

(4)假设火箭燃料燃烧的同时,不断丢弃无用的结构部分,即结构质量与燃料质量以和1-的比例同时减少,用动量守恒原理证明v(t)=(1-九)u in %。

简单数学建模100例

简单数学建模100例

“学”以致用-----简单数学建模应用问题100例数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。

但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。

为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。

数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。

一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。

模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

数学建模简单13个例子

数学建模简单13个例子

总距离为 n 1 ,
故有砖点n块 出向人右意可料时 叠。k1至, 2knk任1 2意1k远,n这1 一21n结果多少返回
10、寻找黑匣子
飞机失事时,黑匣子会自动打开,发射出某种 射线。为了搞清失事原因,人们必须尽快找回匣子。 确定黑匣子的位置,必须确定其所在的方向和距离, 试设计一些寻找黑匣子的方法。由于要确定两个参 数,至少要用仪器检测两次,除非你事先知道黑匣 子发射射线的强度。
分析:在这场“价格战”中,我们将站在乙加油站的立 场上为其制定价格对策.因此需要组建一个模型来描述 甲站汽油价格下调后乙加油站销售量的变化情况.
为描述价格和汽油销售量之间的关系,我们引入如下 一些指标:
影响乙加油站汽油销售量的因素 (1)甲加油站汽油降价的幅度; (2)乙加油站汽油降价的幅度; (3)两站之间汽油销售价格之差.
在这场“价格战”中,我们假设汽油的正常销售价格 保持定常不变,并且假定以上各因素对乙加油站汽油 销售量的影响是线性的.于是乙加油站的汽油销售量 可以由下式给出
返回
13、遗传模型
1.问题分析
所谓常染色体遗传,是指后代从每个亲体的基因 中各继承一个基因从而形成自己的基因型.
如果所考虑的遗传特征是由两个基因A和B控制的, 那么就有三种可能的基因型:AA,AB和BB.
换显一然种是想由法于,节问省题了就从迎 刃相而遇解点了到。会假合如点他,的又妻从子会遇合 到 点点故他,返,后那回故仍么相由似载这遇相乎着一点遇条他天这点件开他一到不往就段会够会不路合哦合会的点。地提缘需。 前开回5分家钟了。。而提此前人的提十前分了钟三时 间十从分何钟而到来达?会合点,故相遇 时他已步行了二十五分钟。
另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线

数学建模传染病模型例题

数学建模传染病模型例题

以下是一个简单的数学建模传染病模型的例题:
问题:假设有一个小岛上住着100个人,其中有1个是传染病源。

初始时,这个人不知道自己已经患病,所以没有采取隔离措施。

其他人也不知道有传染病源在岛上。

假设每天,每个健康的人都有可能接触并感染患病的人,感染的概率是p。

另外,健康的人每天也有1个单位的时间用于自我保护,减少被感染的风险。

假设在t天后,岛上有x个人被感染。

我们需要找出p和时间t的关系,以及如何通过调整p来控制传染病的传播。

假设:
1. 每个人每天只能接触一次患病的人。

2. 每个人每天有1个单位的时间用于自我保护。

3. 每个人接触患病的人后,有p的概率被感染。

4. 初始时,只有1个人是患病者。

5. 没有新的外来感染者进入岛上。

模型建立:
根据上述假设,我们可以建立如下的微分方程模型:
dx/dt = p * (100 - x) * (1/100) - x/100
其中,x表示被感染的人数,p表示感染概率,t表示时间。

求解模型:
通过求解这个微分方程模型,我们可以得到x与t的关系。

由于这个方程较为简单,我们可以直接求解它,找出x的解。

然后我们可以根据解的情况,讨论p对x的影响,从而找到控制传染病传播的方法。

通过上述模型和求解过程,我们可以了解传染病的传播情况以及如何通过调整感染概率p来控制其传播。

这个例题可以帮助我们理解数学建模在传染病控制中的应用,并为实际的传染病控制提供理论支持。

数学建模简单13个例子_2022年学习资料

数学建模简单13个例子_2022年学习资料

7、气象预报问题-在气象台A的正西方向300km处有一台风中心,它以-40km/h的速度向东北方向移动;根 台风的强度,在距-其中心250km以内的地方将受到影响,问多长时间后气象-台所在地区将遭受台风的影响?持续 间多长?-此问题是某气象台所遇到的实际问题,为了搞好气象-预报,现建立解析几何模型加以探-以气象台A为坐标 点建立-平而直角坐标系,设台风中心为B,-如图
某人第一天由A地去B地,第二天由B地沿原路-返回A地。问:在什么条件下,可以保证途中-至少存在一地,此人在 天中的同一时间到达该-假如我们换一种想法,把第二天的返回改变成另一-人在同一天由B去A,问题就化为在什么条 下,两-人至少在途中相遇一次,这样结论就很容易得出了:-只要任何一人的到达时间晚于另一人的出发时间,-两人 会在途中相遇。
1.皮的厚度一样2.汤圆(饺子)的形状-假设-R大皮的半径,r小皮的半-模型-S=ns-S=k R,V=k R3V=kS2-s=kr2,v=kr3 v=ks2-=n32v-应用-V=√nv≥vv是nv是√n倍-若1 0个汤圆(饺子包1公斤馅,-则50个汤圆(-问题杀羊方案-现有26只羊,要求7天杀完且每天必须杀奇数只,-问各天分别杀几只?-分析:-1 这是一个有限问题,解决此类问题的一-类方法是枚举,你可以试试。-建模:-2.依题意,设第i天杀2k,+1k 自然数只,-则所提问题变为在自然数集上求解方程-之2k,+10=26-i=1-于是,我们有了该问题的数学语 表达—数学模型-求解:-用反证法容易证明本问题的解不存在。-返回
x+y=l-y+z=m-x+7=n-由三元一次线性方程组解出x,y,z即得三根-电线的电阻。-说明:此问题 难,点也是可贵之处是用方程-“观点”、”立场”去分析,用活的数学思想使实-际问题转到新剑设的情景中去。-返

数学建模例题和答案卖饮料

数学建模例题和答案卖饮料在超市里面有很多饮料卖,下面我们就一起来看一看他们的“出价”吧。

有两种不同的出价方法。

1、直接卖商品,如果你不直接卖你最喜欢的商品,那这个出价会让你感到失望,你可以在出了一个固定价位之后再进行加法,比如加到最低价,但也需要你给出其他的更高的底价。

2、根据“先升后降”原理:如果你卖一个饮料或者是有很多饮料可以一起卖,那么这个价格可以调整到最合适。

但是如果一个销售人员不能同时按“先升后降”原则来卖商品也是不合适的行为,所以可以将“先升后降”按照公式来进行计算。

如果顾客选择了“先升后降”规则来喝饮料时可以购买更多的商品。

比如1瓶100 ml (售价8元)装;2瓶50 ml (售价25元)装;3瓶100 ml×10袋=100 L (售价5元);4瓶50+10只需要3个工作人员进行售卖。

如果我们直接按公式进行计算,会得出“我们不需要1个工作人员进行售卖”或者“我们只需要1个售货员进行销售即可”这样的结论。

所以你是不需要对“先升后降价”规则有任何了解的。

1.根据“先升后降”原理,一个售货员只需要卖出100 ml的商品,那么这个价格是一个固定的8元;2.每卖出1个50 ml的商品,需要卖出3个50+10瓶装的商品才可以。

3.售货员只需要给该商品加上一元钱就可以了,那么这个价格应该是一元5元。

例:某超市出售的某种饮料共40箱,售价25元。

那么每箱需要卖多少钱呢?我们可以按这个公式计算:因为我们卖40箱需要20个售货员才能完成1箱的售卖,所以我们只需要卖出20箱饮料就可以了。

4.如果顾客需要买5箱50+10瓶装饮料就可以了吗?不可以,要想满足顾客需要,只能买5箱50+10瓶装。

2.根据“先升后降价”原理,一个售货员只需要在喝饮料时消费100 ml,那么这个价格是5元;而一个售货员需要在喝完饮料时再消费100 ml,那么这个价格是12元。

此时该售货员喝完100 ml饮料总的售价为12元。

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题假设每个宿舍的委员数与该宿舍的学生数成比例,即每个宿舍的委员数为该宿舍学生数除以总学生数的比例乘以10.则A宿舍应分配的委员数为235/1000×10=2.35,但委员数必须为整数,所以可以向上取整,即A宿舍分配3个委员。

同理,B宿舍应分配的委员数为333/1000×10=3.33,向上取整为4个委员;C宿舍应分配的委员数为432/1000×10=4.32,向下取整为4个委员。

因此,A宿舍分配3个委员,B宿舍分配4个委员,C宿舍分配3个委员,剩下的委员数(10-3-4-3=0)为0.按照各宿舍人数占总人数的比例分配各宿舍的委员数。

设A宿舍、B宿舍、C宿舍的委员数分别为x、y、z人。

根据题意,我们可以列出以下方程组:x + y + z = 10x/10 = 235/1000y/10 = 333/1000z/10 = 432/1000其中,小数部分最大的整数进1,其余取整数部分。

解方程组得到x=3,y=3,z=4.因此,A宿舍、B宿舍、C宿舍的委员数分别为3、3、4人。

一家饲养场每天投入5元资金用于饲料、设备、人力,预计每天可使一头80公斤重的生猪增加2公斤。

假设生猪出售的市场价格为每公斤8元,每天会降低0.1元。

我们设在第t天出售这样的生猪(初始重80公斤的猪)可以获得的利润为z元。

根据题意,我们可以列出以下方程:每头猪投入:5t元产出:(8-0.1t)(80+2t)元利润:Z = 5t +(8-0.1t)(80+2t)=-0.2 t^2 + 13t +640我们可以求得二次函数的顶点,即t=32.5时,Z取得最大值851.25元。

因此,该饲养场应该在第33天出售这样的生猪,以获得最大利润。

一家奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2.市场需求量与生产量相等,每公斤A1获利24元,每公斤A2获利16元。

数学建模例题及解析

.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。

经典的数学建模例子

一、摘要SARSSARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。

当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。

那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。

1二、正文1、模型的背景问题描述SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。

(2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能3建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

表中提供的数据供参考。

(3)说明建立传染病数学模型的重要性。

2、模型假设(一)答;从上列图表可知道在4月20到5月7日期已确诊的发病人总数呈指数增长趋势5月20到6月1日增长缓慢,6月1日到6月12日总数几乎不变。

其形式与生物学中真菌繁殖总数相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“学”以致用-----简单数学建模步骤数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。

但是在生活中又有多少实际问题是可以直接套用公式的呢?数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备。

二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。

三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等)。

四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为.第一关:接触数学建模【 1 】一副扑克牌有54张,从中任取多少张,可以保证一定有5张牌的花色是一样的?分析除去大、小鬼还有52张牌,其中4种花色各13张.运气最好的情况下所取的5张牌都是同一花色的,哪运气不佳时至少要取多少张牌,才能保证一定有5张牌的花色是一样的呢?假设假定至少要取N张,才能保证一定有5张牌的花色是一样的.模型逆向地思维解析在运气最不好的情况下,每种花色各4张,再加大、小鬼2张,共取18张是保证一定没有5张牌的花色一样的最大可能。

所以442119N=⨯++=张就可以保证一定有5张牌的花色是一样的.检验在很多情况下采用逆向地思维,可以使解题思路清晰、便捷.练习题公园里准备对300棵珍稀树木依次从1—300进行编号,问所有的编号中“1”共会出现的几次?【2】一只猫发现离它10步远的前方有一只老鼠在奔跑,猫便紧追。

猫的步子大,它跑5步的路程,老鼠要跑9步。

但是老鼠的动作频率快,猫跑2步的时间,老鼠能跑3步。

请问:按照这种速度,猫能追得上老鼠吗?如果能,它要跑多少步才能追到。

假设 此题两问可归结为一个问题:假定猫跑x 步就能追上老鼠模型 猫与老鼠之间频率的最小公倍数解析 由频率关系可知,老鼠跑339⨯=步时,猫跑了236⨯=步.根据路程关系知,猫跑6步其中有1步是追上老鼠的路程可得本题的数学模型为1006x -= 解得60x =(步) 检验 由此可见,按照现有速度,猫要跑60步才能追得上老鼠.练习题现有玩具模型20个,交给小黄加工,规定加工合格一个可得5元,不合格一个扣2元,未完成的不得不扣.最后小黄共得到56元.问小黄在加工玩具模型中不合格的共有几个?【3】在小傅家门口有一个十字型的交通路口(如图所示),小傅就想了,警察叔叔需要指挥多少种情况的汽车运行线路?分析此问题需要分是否可以原路调头的情况来讨论.假设(1)每条线路都有往返双向线(2)设4条路分别为A,B,C,D;(3)以A为起始,A A AB AC A D①如允许原路调头,则有,,,,A B A C A D②如不允许原路调头,则有,,,模型分步乘法计数原理解析第一步:始线路条数;第二步:终线路条数。

N(种可能)①如允许原路调头:则44=16N(种可能)②如不允许原路调头,则43=12检验如果允许汽车原路调头,那么在此交通路口共有16种不同的行车情况;如果不允许汽车原路调头,那么在此交通路口共有12种不同的行车情况。

练习题铁路京广线(北京—广州)共有36个大站,问用电脑上购票时需要有多少种不同的火车票?【4的汽车牌照共有多少块?分析由条件知,问题为三个中各可以填入多少种数字或字母假设假定按要求的汽车牌照共有N种可能,且在第i个中共有(1,2,3)n i种字符可以填写.i根据汽车牌照的特点,在每个中可以填入1~0共10个阿n i拉伯数字和A,B,C,D……,26个英语字母,即36(1,2,3)i模型分步乘法计数原理.解析因为各中填入的字符数符合N n n n123N=46656故363636检验的汽车牌照共有46656块。

不难发现,无论B和5在何位置,所得结论不变.练习题出租车在开始10千米以内收费10.4元,以后每走1千米,收费1.6元,问走20千米需收多少钱?第二关:初识数学建模把20个苹果全部分给小明、小惠、小曼三人,要求每人最少分3个,可以有多少种不同的分法?假设先取9个苹果,平均每人3个,剩下的11个再按不同情况讨论.模型排列数公式解析可以有:(11,0,0),(10,1,0),(9,2,0),(9,1,1),(8,3,0),(8,2,1),(7,4,0),(7,3,1),(7,2,2),(6,5,0),(6,4,1),(6,3,2),(5,5,1),(5,4,2),(5,3,3),15种不同种类,对每一种类再考虑小明、小惠、小曼的不同次序,用排列数公式nA即可求解.m①对(11,0,0),(9,1,1),(7,2,2),(5,5,1),(5,3,3)五类,各类可以有3种次序排法,故共有15种分发法.A)种次序排法,故共有60种分发法②对其余的10类,各类可以有6(33检验所以按要求可以有75种不同的分法.练习题水果店进了十筐苹果,每筐10个,共100个,每筐里的苹果重量都一样,其中有九筐每个苹果的重量都是1斤,另一筐中每个苹果的重量都是0.9斤,但是外表完全一样,用眼看或用手摸无法分辨。

现在要你用一台普通的大秤一次把这筐重量轻的找出来。

你可以办到么?【6】有243颗外形一模一样的珠子,其中有一颗稍重一点。

用一架没有砝码的天平,至少称几次才能找出这颗珠子来?分析与假设①将243颗珠子平均分成3份,每份81颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另1份中;若不平衡则稍重的一颗在天平下沉的1份中.②在找出含有稍重珠子的一份中(含81颗),再将其81颗珠子平均分成3份,每份27颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另1份中;若不平衡则稍重的一颗在天平下沉的1份中.③在找出含有稍重珠子的一份中(含27颗),再将其27颗珠子平均分成3份,每份3颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另1份中;若不平衡则稍重的一颗在天平下沉的1份中.④在找出含有稍重珠子的一份中(含1颗),再将其3颗珠子平均分成3份,每份1颗,任取其2颗放置在天平两边,若平衡则另1颗稍重的一颗;若不平衡则稍重的一颗为天平下沉的1颗.模型“三分法”解析按“分析与假设”所述可知,至少称4次才能找出这颗珠子来.检验此题的关键是珠子的颗数243,可以平均分成3份,每份81颗,而81又可以平均分成3份,每份27颗,而27又可以平均分成3份,每份3颗,而3可以平均分成3份,每份1颗,最后找出异样的珠子.练习题小敏把100只彩色小灯泡串联起彩灯,用来布置教室,可是其中有只小灯泡坏了,这可急坏了小敏。

你能用最速捷的方法很快地找出了那只损坏的小灯泡吗?【7】水果店进了十筐苹果,每筐10个,共100个,每筐里的苹果重量都一样,其中有九筐每个苹果的重量都是1斤,另一筐中每个苹果的重量都是0.9斤,但是外表完全一样,用眼看或用手摸无法分辨。

现在要你用一台普通的大秤一次把这筐重量轻的找出来。

你可以办到么?分析与假设普通的大秤上是有刻度,可以称得具体重量.从这点考虑不妨将十筐苹果进行标号(1,2,3,4,5,6,7,8,9,10)A ii并取与标号对应的苹果数——1,2,3,4,5,6,7,8,9,10,共计55个,再用所给的大枰称得这55个苹果的总重量若此55个苹果重量均为1斤(理想状态),则总重量应为55斤,由题目条件知其中某一框苹果重量均为0.9斤,假定为第j框时,那么所取苹果数为j个,大枰称得总重量就要比55斤少j两.模型等差数列的求和解析利用框数与所取苹果数的对应关系,考虑大枰称得总重量与理想状态55个苹果的总重量之间的差A的这框苹果重量为0.9斤.按“分析与假设”所述可解得.若大枰称得总重量为54斤3两,比55斤差7两,即得框号为7练习题某单位某月1~12日安排甲、乙、丙三人值夜班,每人值班4天.要求三个人各自值班日期数字之和相等。

已知甲头两天值夜班,乙9、10日值夜班,问丙在自己第一天与最后一天值夜班之间,最多有几天不用值夜班?【8】甲、乙两人去沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可带一个人4天的食物和水。

如果允许将部分食物存放于途中,其中1人最远可深入沙漠多少千米?(要求最后两人返回出发点)分析与假设要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和水?⨯=千米,但回程就没有食物和水了),需要乙在适当的地点留小足够的食物和水.①经过商议让甲走得更远(最远走44080②第1天乙在10千米处留下1份食物和水,到20千米处吃1份留下1份,第2天走到30千米处留下1份食物和水后马上往回返,到20千米处再吃1份,第3天走20千米回出发点.③第1天甲20千米处吃1份,第2天走到40千米处吃1份,第3天走到60千米处吃1份,第4天走到65千米处然后往回返,到50千米处吃1份(到此为止甲自带的食物和水已吃完),第5天走到30千米处吃1份(此处食物和水是乙留下的),第6天走到10千米处吃1份,然后回出发点模型错位推进法解析所谓“错位推进法”对于本题来说,关键点为“乙在30千米和10千米处给甲留下食物和水”,根据分析与假设推知结论——其中的1位沙漠探险家最多可深入沙漠65千米.检验从“第6天走到10千米处吃1份,然后回出发点”,感觉似乎还有10千米可以走,但已经回出发点了. 考虑一下甲是否还可以再往前推进5千米呢?练习题在一排10个花盆中种植3种不同的花卉,要求每3个相邻的花盆中所种的花的品种各不相同,问共可有多少种不同的种植方法?【9】家里有两个容积分别为5升和6升的空水壶.问大明怎样用这两个水壶得到3升的水.分析从5升的满水壶倒出2升即可得到3升的水,问题是如何使6升的水壶空出2升的空间(即得到4升水),问题是如何使5升的水壶空出1升的空间(即得到4升水),问题是如何使6升的水壶空出1升的空间(即得到5升水),此问题不难解决.假设由上分析可以如下操作:①将5升的满水壶的水全部倒出6升的空水壶中,在6升的水壶中得到1升的空间.②用5升水壶取满水,倒满6升水壶中的1升空间,此时的5升水壶空出了1升的空间.③将5升水壶中的4升水倒进6升的空水壶,在6升水壶中的得到2升的空间.④用5升水壶取满水,倒满6升水壶中的2升空间,.此时在5升的水壶里剩下的就是3升的水了.模型逆向推理综合法解析按分析及假设即可将问题解决,得到3升的水.检验逆向推理综合法是一种非常有用的数学思维方法,用途非常广泛.练习题某盐溶液的浓度为20%,加水后溶液的浓度稀释为15%.如果再加同样多的水,问溶液的浓度为多少?【10】箱子里放着一箱梨,第一个人拿了梨总数的一半又多半只,第二个人拿了剩下梨的一半又多半只,第三个人拿了第二次剩下的一半又多半只,第四个人3拿了第三次剩下的一半又多半只,第五个人拿了第四次剩下的一半又多半只。

相关文档
最新文档