16种多环芳烃名称

16种多环芳烃名称
16种多环芳烃名称

PAHs主要包括16种同类物质:

16种常见多环芳香烃

1.NAP Naphthalene 萘

2 .ANY Acenaphthylene 苊烯

3.ANA Acenaphthene 苊

4.FLU Fluorene 芴

5.PHE Phenanthrene 菲

6.ANT Anthracene 蒽

7.FLT Fluoranthene 荧蒽

8.PYR Pyrene 芘

9.BaA Benzo(a)anthracene 苯并(a)蒽

10.CHR Chrysene 屈

11. BbF Benzo(b)fluoranthene 苯并(b)荧蒽

12. BKF Benzo(k)fluoranthene 苯并(k)荧蒽

13.BaP Benzo(a)pyrene 苯并(a)芘

14.IPY Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘

15.DBA Dibenzo(a,h)anthracene 二苯并(a, n)蒽

16.BPE Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯)

芳烃联合装置

芳烃联合装置

抽提蒸馏塔塔顶产品为非芳烃,作为非芳烃副产品送出装置,塔底产物为富含苯的溶剂,送溶剂回收塔作为进料。抽提蒸馏塔重沸器热源由中压蒸汽提供,通过控制加热蒸汽量来调节热负荷,加热蒸汽分成两股进行控制,主流股(约80%)由定流量控制,次流股流量(约20%)由灵敏板温度与流量串级控制。 溶剂回收塔的作用是实现苯产品与溶剂的分离。溶剂回收塔在减压下操作,塔顶残压由压力控制器控制回收塔蒸汽喷射泵的尾气返回量或氮气吸入量进行调节。溶剂回收塔塔顶产物为苯产品,经白土处理后送往苯检验罐,塔底贫溶剂大部分直接循环使用,少部分去溶剂再生罐进行减压蒸发再生后循环使用。溶剂回收塔重沸器热源由中压蒸汽提供,加热量由重沸器出口凝结水流量进行控制。 溶剂再生罐实际上是一个减压蒸发器,操作压力由压力控制器控制再生罐蒸汽喷射泵的尾气返回量或氮气吸入量进行调节。溶剂再生罐热量由内插式溶剂再生罐加热器提供,加热热源为中压蒸汽,加热量由蒸汽凝结水流量进行调节。再生后溶剂送至贫溶剂泵入口循环使用。溶剂再生罐罐底残渣采用不定期方式排出。 4、对二甲苯装置 对二甲苯装置采用美国UOP的专利工艺技术,主要生产纯度99.8%的对二甲苯(PX)产品,并富产苯、邻二甲苯(OX)、重芳烃等。包括甲苯歧化-烷基转移单元、二甲苯异构化单元、二甲苯精馏单元、吸附分离单元四部分。 甲苯歧化-烷基转移单元采用UOP的TATORAY工艺,选用活性、选择性及稳定性较高的新一代TA-4催化剂,在高温作用下,甲苯和C9A发生歧化和烷基转移反应,生成目的产品苯和二甲苯。可以通过调整甲苯和C9A的比例来实现苯和二甲苯产品的分布。2003年月份催化剂进行了国产化,使用上海石油化工科学研究院自主开发的HAT-97催化剂,该催化剂最大的特点是可以加工3-5%的C10A,并且具有更高的选择性和转化率。 二甲苯异构化单元采用UOP的ISOMAR工艺,选用乙苯异构型I-9K催化剂,在反应过程中建立限定性平衡,通过环烷烃中间体将乙苯最大限度地转化为二甲苯,采用这种催化剂可以从混合二甲苯中获取最高产率的对二甲苯。该催化剂稳定性好,反应压力和氢油比低,不需注氯,减少了系统腐蚀,改善了操作环境。 吸附分离单元采用UOP的PAREX工艺,通过多通道旋转阀实现连续逆流接触,利用分子筛选择吸附PX,再用解吸剂对二乙基苯将PX置换解吸,从而达到分离PX 的目的。选用最新分子筛吸附剂ADS-27,改进吸附系统设备和优化工艺参数,增大了吸附塔的处理能力,对二甲苯单程收率可提高到97%,纯度达到99.80%。 二甲苯精馏单元采用精密分馏工艺,将混合芳烃中的C8A、C9A分离出来,分别作为原料提供给吸附分离和歧化单元,从而将联合装置各单元有机的联合起来。二甲苯塔采用加压操作,操作压力为1.0Mpa(a),利用塔顶和塔底高温物流分别作为其它单元集中供热热源,多余的塔顶汽相通过蒸汽发生器发生1.0Mpa蒸汽,全塔的热量均被利用,节能效果显著。 5、中间原料及溶剂油罐区负责芳烃联合装置的原料、甲苯、溶剂油的收储工作。包括中间原料油罐区、溶剂油罐区、芳烃原料罐区三部分。

16种常见多环芳烃的物理性质

16种常见多环芳烃的 物理性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

萘英文名称NAP Naphthalene分子量 128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密 度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C

16种多环芳烃的结构式

SIGMA-ALDRICH 16种多环芳烃 中文名英文名结构式分子式分子量CAS号价格(元) 萘 Naphthalene (NAP)C10H8 128.17 91-20-3 148.59元/0.25g 484.59元/1g analytical standard (Fluka) 553.41元 5000 μg/L Analytical standard (Supelco) 苊烯Acenaphthyle ne (ANY)C12H8 152.19 208-96- 8 544.05元 5000 μg/mL i n methanol, analytical standard (Supelco) 苊Acenaphthene ? C12H10 154.21 83-32-9276.12元 200 μg/mL i n methanol, analytical standard (Supelco) 芴Fluorene (FLU)C13H10 166.22 86-73-7 544.05元 5000 μg/mL in methanol,analytical standard (Supelco) 菲Phenanthren e (PHE)C14H10 178.23 85-01-8 544.05元 5000 μg/mLin methanol,analytical standard (Supelco) 蒽 Anthracene (ANT)C14H10 178.23 120-12- 7 221.13元/0.25g analytical standard (Cerilliant) 荧蒽Fluoranthen e C16H10 202.25206-44 -0 544.05元 5000 μg/mLin methanol,analytical standard (Supelco)

轻芳烃装置工艺流程简述

辽宁亿方石油化工有限公司 10万吨/年轻芳烃装置工艺流程简述来自罐区原料油经泵加压后,送至原料预处理单元进行换热、加热后进入原料精馏塔进行精馏分离。分离出的重组分作为燃料油产品送至产品罐区;分离出的轻组分作为凝稀油送至改质单元,进入改质原料缓冲罐D-101,凝稀油用泵经加压后与来自罐区的碳四混合后进入原料/反应产物换热器(E-101A)换热,然后进入反应进料加热炉(F-101A)加热至280~415℃进入反应器(R-101A)反应。反应产物与反应原料经原料/反应产物换热器(E-101A)换热后,经反应产物空冷器(A-101A)和反应产物水冷器(E-102A)进一步冷却至40℃左右,进入产品分离罐(D-102)进行气液分离。 分离后的气相物流进入富气压缩机入口分液罐(D-103),然后经富气压缩机(K-101)增压,进入吸收解吸塔(T-101),以回收干气中携带的液化气等;液相物流用稳定塔进料泵(P-102A/B)加压,经塔进出料换热器(E-105A/B)和稳定塔底汽油换热,与吸收解吸塔底的富吸收液混合进入稳定塔(T-102)。 液化气和汽油产品在稳定塔中进行分离。塔顶液化气经塔回流泵(P-105A/B)增压后,一部分返回塔顶用作回流,一部分经碱洗、水洗脱硫化氢后送出装置;塔底汽油产品和塔进料换热后,再经稳定汽油冷却器(E-108)冷却至40℃后,一部分作为汽油产品送出装置,一部分经吸收油泵(P-104A/B)增压,返回吸收解吸塔塔顶作为吸收油。 随着反应的进行,催化剂上的结焦量会逐步增加,当一条反应系统的催化剂失活后,需将此反应系统切入再生系统,进行催化剂的烧焦再生处理。将另一条反应线切入系统进行正常生产。

16种常见多环芳烃的物理性质

萘英文名称NAP Naphthalene分子量128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C 菲PHE Phenanthrene 分子量:178.23性状描述:类白色粉状结晶体。物理参数密度:1.179 g/mL(25°C) 熔点:101°C 沸点:340°C 折射率:1.59427 蒽ANT Anthracene 分子量178.22物理性状带有淡蓝色荧光的白色片状晶体或浅黄色针状结晶。(纯品为白色带紫色荧光) 相对密度 1.25(27℃);1.283(25℃),熔点217,沸点342,闪点196.1,121.1(闭式)(以上均为℃),蒸汽压[1] 0.13kPa/145℃不溶于水、难溶于

16种多环芳烃的结构式教学文案

16种多环芳烃的结构 式

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 SIGMA-ALDRICH 16种多环芳烃 中文名 英文名 结构式 分子式 分子量 CAS 号 价格(元) 萘 Naphthalen e (NAP) C10H8 128.17 91-20-3 148.59元/0.25g 484.59元/1g analytical standard (Fluka) 553.41元 5000 μg/L Analytical standard (Supelco) 苊烯 Acenaphthy lene (ANY ) C12H8 152.19 208-96-8 544.05元 5000 μg/mL i n methanol, analytical standard (Supelco) 苊 Acenaphthene ? C12H10 154.2 1 83-32-9 276.12元 200 μg/mL i n methanol, analytical standard (Supelco) 芴 Fluorene (FLU ) C13H10 166.22 86-73-7 544.05元 5000 μg/mL in methanol,analytical standard (Supelco) 菲 Phenanthre ne (PHE ) C14H10 178.23 85-01-8 544.05元 5000 μg/mLin methanol,analytical standard (Supelco) 蒽 Anthracene (ANT) C14H10 178.23 120-12-7 221.13元/0.25g analytical standard (Cerilliant) 荧蒽 Fluoranthen e C16H10 202.2 5 206- 44-0 544.05元 5000 μg/mLin methanol,analytical standard (Supelco) 苯并(a ) 芘 Benzo(a)py rene (BaP) C20H12 252.3 50-32-8 1,838.07元/1g 662.22元/0.1g analytical standard (Cerilliant) 544.05元 5000 μg/mLin methanol,analy tical standard (Supelco)

芳烃工艺说明

芳烃工艺说明书 1.1 主要原料 40万吨/年芳烃抽提装置,所用原料有两部分,一部分为新建80万吨/年乙烯装置的副产品加氢裂解汽油33.75万吨/年;另一部分为原20万吨/年乙烯装置生产的4#苯5.3万吨/年,共计39.05万吨/年。装置操作采用六个工况,工况1A/B:100%贫芳烃的加氢裂解汽油进料;工况2A/B:贫芳烃的加氢裂解汽油:4#苯=33.75:5.3;工况3A/B:富芳烃的加氢裂解汽油进料。工况1A、2A、3A进料中不含C+11以上的重烃,工况1B、2B、3B进料中含有C+11以上的重烃,主要原料的名称、处理量、来源、运输方式见表1.3-1~3. 表1.3-1 工况1A/B主要原料汇总表 序号原料 名称 数量原料来源输送方式及去向备注t/h 104t/a 1 贫裂解 汽油50 40 新建80万吨/年 乙烯装置 管输至抽提原料 罐 合计50 40 表1.3-2 工况 2A/B主要原料汇总表 序号原料 名称 数量原料来源输送方式及去 向 备注t/h 104t/a 1 贫裂解 汽油43.214 34.5711 新建80万吨/ 年乙烯装置 管输至抽提原 料罐

2 4#苯 6.786 5.4289 原20万吨年乙 烯装置和裂解汽油一起管输 合计50 40 表1.3-3 工况 3A/B主要原料汇总表 序号原料 名称 数量原料来源输送方式及去向备注t/h 104t/a 1 富裂解 汽油50 40 新建80万吨/年 乙烯装置 管输至抽提原料 罐 合计50 40 1.2 生产方法及生产过程 1.2.1生产方法 本设计采用际特(北京)技术有限公司开发的GT-BTX SM芳烃抽提蒸馏技术已经成功地工业化,在芳烃抽提领域中,相比于其他工艺,GT-BTX SM芳烃抽提蒸馏技术有着十分重要的意义。际特公司技术的主要特点是:其专利溶剂有着高的选择性;装置生产能力高,操作更优化,所用的设备更少。这使得工艺具有低投资,低能耗及低操作费用的特点。 1.2.2生产过程 乙烯装置来的C6-C8馏分进料用贫溶剂预热,热进料被送到抽提蒸馏塔(EDC)的中部,同时,贫溶剂到靠近EDC塔顶部的位置。在气液两相的操作中,溶剂将芳烃萃取到EDC塔釜,同时未溶解的非芳烃去塔顶部成为抽余油。抽余油蒸汽在塔顶冷凝器中冷凝。然后

芳烃联合装置

第二章芳烃联合装置 第一节芳烃联合装置的工艺组成及工艺原理 一、概述 芳烃联合装置由PSA制氢装置、芳烃抽提装置、苯抽提蒸馏装置、对二甲苯(PX)装置、中间原料及溶剂油罐区、化学药剂站六大部分组成。 1、PSA 制氢装置 PSA制氢装置采用西南化工研究院的PSA专利技术,利用炼油厂催化裂化干气、PX 装置释放气为原料,生产纯度99.99%的氢气。包括变温吸附单元(100#、TSA)、变压吸附单元(200#、PSA)、脱氧干燥单元(300#)三部分。 预处理单元采用变温吸附(TSA)技术,从PX释放气中脱除C5以上高碳烃、甲苯、乙苯等杂质,以获得净化的PX 释放气。基本原理是利用吸附剂对不同的吸附质的选择特性和吸附能力随温度的变化而呈现差异的特性,实现气体混合物的分离和吸附剂的再生。变压吸附技术是以吸附剂内部表面对气体分子的物理吸附为基础,利用吸附剂在相同压力下对不同组分的吸附能力不同和在不同压力下对同一组分的吸附能力不同的特性进行气体分离的。 2、芳烃抽提装置 芳烃抽提装置采用美国UOP环丁砜工艺技术,以炼油厂重整生成油为原料,主要产品为苯、甲苯、6#溶剂油、橡胶工业用溶剂油。包括重整生成油预分馏单元、环丁砜抽提单元、 B/T 精馏单元、溶剂油加氢单元四部分。 重整油中的C6、C7馏分进入抽提塔中部,与塔顶流下的溶剂(第一溶剂)进行逆向接触,抽提溶剂经抽提段和返洗段从塔底部排出,此时溶剂中已经将进料中的芳烃和少量非芳烃溶解下来(该溶剂称为富溶剂)。为了将溶解在富溶剂中的非芳烃除去,设置了汽提塔,利用组分间相对挥发度不同,非芳烃在汽提塔顶部蒸出,并循环回到抽提塔返洗段进行返洗,以除去溶解在溶剂中的重质非芳烃,减轻在后面芳烃与非芳烃的分离难度,因此可以提高产品纯度。为了保证芳烃的纯度,在汽提塔顶部引入了一股补充溶剂(第二溶剂),由于这股溶剂在较高温度下进入汽提塔,因此在塔内不消耗热量,这种方法提高了相对挥发度,也提高了芳烃与非芳烃分离的效果。 3、苯抽提蒸馏装置 苯抽提蒸馏装置采用中国石化集团公司北京石油化工科学研究院(RIPP)的萃 取蒸馏技术,生产高纯度的苯产品。包括预分馏单元、抽提蒸馏单元两部分。 预分馏塔的目的是对原料进行预处理,除去C7以上重馏分,为抽提蒸馏提供合格的C6 馏分进料。预分馏塔塔顶产品为C6馏分,送抽提蒸馏塔作为进料,塔底为C7 +重馏分,经换热 冷却后送出装置。预分馏塔重沸器热源由低压蒸汽提供,加热量由重沸器出口凝结水流量进行控制。 抽提蒸馏塔的作用是在溶剂(环丁砜和助溶剂)作用下,实现芳烃与非芳烃分离。抽提蒸馏塔塔顶产品为非芳烃,作为非芳烃副产品送出装置,塔底产物为富含苯的溶剂,送溶剂回收塔作为进料。抽提蒸馏塔重沸器热源由中压蒸汽提供,通过控制加热蒸汽量来调节热负荷,加热蒸汽

高效液相色谱测定16种多环芳烃

湖南省环境监测中心站 分析方法验证报告 方法名称:高效液相色谱法测定土壤中16种多环芳烃 研究人员:黄东勤 二○○七年六月十日

高效液相色谱法测定土壤中16种多环芳烃 1.前言 多环芳烃(简称PAHs)主要是有机物在高温下不完全燃烧而产生,广泛存在于土壤、水等自然环境和各种食品中。其中萘、芘等16种PAHs因具有致畸、致癌和致突变作用而被视为最严重的有机污染物类型之一。国家环保总局推荐用高效液相色谱法(HPLC)测定饮用水、地下水、湖水、河水及工业废水中的PAHs,但对土壤中PAHs 的测定方法未作介绍。由于土壤样品基体复杂,PAHs的浓度很低且稳定性差,因此需要对样品进行预处理以富集待测组分,提高检测的灵敏度并降低检测限。 目前国内对PAHs土壤样品的处理多用索氏提取法或微波萃取法,本文研究用加速溶剂萃取土壤中的16种PAHs,提出最佳技术参数,并对实际土壤样品进行测定。 2.方法原理及适用范围 2.1原理 2.1.1萃取:加速溶剂萃取仪是一台可从各种固体或半固体样品中萃取有机组分的自动系统。该方法通过提高溶剂温度加速传统的萃取处理。在萃取池中加压以使萃取过程中萃取池中填充的溶剂始终处于液体状态。加热后,提取物从样品池中冲到收集瓶中以备分析使用。 2.1.2过柱淋洗:用加速溶剂提取获得的土壤提取液为黄褐色粘稠液体,基体复杂,在用HPLC测定前必须净化。本研究选用硅胶柱进

行净化,以溶剂正己烷:二氯甲烷= 3:2进行洗脱。 2.1.3氮吹:氮吹进行溶剂转化。 2.1.4色谱分离原理:HPLC是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数次的交换和分配而达到分离的过程。 2.2 适用范围 本方法测定16种多环芳烃,适用于土壤等复杂基体物质。对于饮用水、地下水和地表水以及生活污水和工业污水。第一步前处理条件有待实验,其余过程均可适用。 2.2.1仪器适用范围:0.08-100 m g /L。每小时能测定1个样品。 3.试剂和材料 乙睛、二氯甲烷、正己烷、丙酮、甲醇均为色谱纯;16种多环芳烃混合标准液:美国Supelco公司;实验用水为二次蒸馏水,0.45μm 膜过滤;商用硅胶柱(1g,6mL);水系过滤头;1mL一次性注射器。 4.仪器设备 4.1高效液相色谱仪:LC-10AVP型,日本岛津公司。 4.2加速溶剂提取仪:戴安ASE200。 4.3氮吹仪:哈西Caliper Turbovap II。 4.4超声波发生器。 5. 试样与标准样品的制备 5.1 试样的制备 5.1.1萃取:

多环芳烃

多环芳烃(PAHs)是环境常见的污染物之一,其来源于有机物热解和不完全燃烧, 在空气、水、土壤中广泛分布。由于食品产地环境受到污染, 致使PAHs在食 品中存在,同时加工方式不同, 也会影响食品中PAHs的含量。长期食用含有PAHs的食物对健康将产生潜在威胁[2-5]。不同国家和地区, 烹饪方法和饮 食习惯不同,从食品中摄入的PAHs量也不相同。 不同食品中含有不同种类和浓度的多环芳烃,其主要来源有以下3方面: (1)自 然界天然存在的,如植物、细菌、藻类的内源性合成,使得森林、土壤、海洋 沉积物中存在多环芳烃类化合物; (2)环境污染造成的,现代工业生产和其它许 多方面要使用和产生多环芳烃类化合物;这些物质难免会有一些排放到食品的 生产环境如水源、土壤、空气、海洋中,从而对食品造成污染,这是目前食品 中多环芳烃最主要的来源;(3)食品加工和包装过程中产生的,如食品的烤、炸、熏制和包装材料、印刷油墨中多环芳烃污染,这也是食品中多环芳烃的重要来源。目前,各类食品已检测出20余种PAHs,其中以熏烤类食品污染最严重:如熏 肉吉有屈、苯并[b]荧蒽、苯并[e]芘、苯并[k]荧蒽、苯并[a]芘、1,2,5,6- 二苯并蒽、茚[1,2,3-cd]并芘等PAHs。王绪卿评价了14种熏烤肉中PAHs的污 染水平,并在19份腊昧肉中全部测出屈、苯并[e]芘、苯并[k]荧蒽,其中9份 样品苯并[a]芘量为0.34~27.56μg/kg。另据报道,尼日利亚各种熏烤鱼中均 含有PAHs。比较了现代烤炉与传统烤炉熏烤物中13种PAHs含量,前PAHs<4.5μg/kg。后者苯并[a]芘为0.2~4.1μg/kg(湿质量)。食用植物油及其加热产 物中均含有PAHs[6-7],而且加热后PAHs含量显著增加。实验表明,食用植物油 加温后B(a)P含量是加温前的2.33倍,1,2,5,6-二苯并蒽为4.17倍,而且油烟 雾中其含量更高,厨房空气气态样品中PAHs种类与含量均大于颗粒物,说明厨 房空气中PAHs可能主要是由于食品,特别是动植物蛋白以热油烹炸过程中形成。近年来在各种酒样中也发现了PAHs,但这方面研究尚待深入,Moret等在所有白 酒和啤酒中都检出苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、1,12-苯并苝、 茚[1,2,3-cd]并芘以及芴、苯并a蒽、1,2,5,6-二苯并蒽,其PAHs总量<0.72 μg/kg。目前, 各种蔬菜亦受到不同程度PAHs污染, 其来源可能是根系吸 收及叶面吸附。国际癌症研究机构(IARC,1973)曾报道西红柿中苯并[a]芘为 0.2pg/kg,王爱玲等测定白菜和西红柿中苯并[a]芘分别为1.310~12.316μ g/kg和0.841~4.335μg/kg[8]。在食品制作的过程中,有许多制作方法是不可

气相色谱_质谱法测定蔬菜中的16种多环芳烃

[作者简介] 王建华(1968-),男,博士,高级工程师,主要从事食品卫生检验研究。【化学测定方法】 气相色谱-质谱法测定蔬菜中的16种多环芳烃 王建华1,2,姜海燕3,王 惠2,王修林2 (11青岛出入境检验检疫局,山东青岛 266002;21中国海洋大学,山东青岛 266003; 31山东中粮花生制品进出口有限公司,山东青岛 266001) [摘要] 目的:研究蔬菜中多环芳烃(P AH s)残留量的气相色谱-质谱分析方法。方法:蔬菜经过环己烷提取,硫酸溶液和PS A固相萃取柱净化,用气相色谱-质谱选择离子监测模式(SI M)定性和定量检测多环芳烃。结果:16种P AH s加标回收率范围在60%~120%之间,相对标准偏差为8%~20%,检测限范围为01009~0106μg/kg。结论:本方法适合蔬菜中P AH s检测。 [关键词] 固相萃取;多环芳烃;蔬菜;气相色谱-质谱 [中图分类号] O657163 [文献标识码] A [文章编号] 1004-8685(2006)02-0197-03 环境中的多环芳烃(polycyclic ar omatic hydr ocarbons, P AH s)主要产生于矿物的不完全燃烧,部分P AH s有致畸、致癌、致突变作用,P AH s的监测已越来越受到人们的重视。目前,测定大气、水、土壤中P AH s的文献较多[1~3],蔬菜通过吸收水和大气中的粉尘而含有了P AH s,但关于蔬菜中P AH s测定方法的文献较少[3,4]。本文中,我们首次采用环己烷提取,硫酸溶液和PS A固相萃取柱组合净化,用GC-MS同时定性和定量检测蔬菜中美国EP A优先表中所列的16种P AH s。 1 材料与方法 111 仪器与试剂 Agilent6890气相色谱-5973N质谱联用仪,配7683自动进样器,分流/不分流进样口(美国Agilent公司);毛细管气相色谱柱为HP-5MS(Phenyl Methyl Sil oxane5%二苯基-95%二甲基硅氧烷,30m×0125mm×0125μm);ULTRAT URRAX 均质器(德国I K A公司);离心机(Eppendorf5810);I K A快速混匀器(德国I K A公司中国广州工厂);移液枪:012、110、10m l (法国Gils on公司);GI L S ON ASPEC XL全自动固相萃取仪(法国Gils on公司);PS A固相萃取柱(500mg,6m l,美国Varian公司)。 P AH s标准品(R iedel-dehaen公司):根据需要将10mg/L储备液用环己烷逐级稀释成工作溶液;水经m illi pore 纯水器纯化;硫酸溶液(9mol/L),取硫酸原液,用水稀释一倍。 112 样品处理 提取:称取1010g样品于50m l塑料离心管中,加入环己烷30m l均质2m in,6000r/m in离心5m in,将上清液转入125m l分液漏斗中;将残渣用20m l环己烷重复提取1次,离心后合并上清液于分液漏斗中。 净化:在分液漏斗中加入10m l硫酸溶液进行磺化,充分震荡后静置分层,弃去下层硫酸层(如有必要重复一次);然后加入1g氯化钠粉末,10m l纯水洗涤环己烷层,静置后弃去水层。 将环己烷层转入100m l鸡心瓶中,旋转蒸发至干;精确加入2m l环己烷清洗瓶壁,置于全自动固相萃取仪中,PS A柱先用5m l环己烷活化,取样品液1m l(相当于5g样品)过PS A 柱,加入15m l环己烷洗脱;将洗脱液收集到50m l鸡心瓶中旋转蒸发至干;以1m l环己烷准确定容,充分洗涤瓶壁后转入进样瓶中准备检测。 113 气相色谱-质谱测定 11311 气相色谱条件 载气:高纯氦气,恒压模式1917p si (1p si=6894176Pa),柱温程序:初始温度70℃,保持410m in,以25℃/m in的速率,升温到150℃,以3℃/m in的速率,升温到200℃,再以8℃/m in的速率,升温到280℃保持1010m in;进样量:1μl。 11312 质谱条件 离子源温度:150℃,四极杆温度:230℃,色谱-质谱接口温度:280℃;离子化方式:E I;电子能量:70e V;调谐方式:自动调谐;全扫描(S CAN)测定方式的扫描范围50~450m/z。 2 结果与讨论 211 P AH s的分离和测定 按照所列的色谱/质谱条件,用SC AN方式对16种P AH s 进行扫描,测得其总离子流图(见图1)。然后根据各待测化合物的保留时间和质谱图,确定选择离子监测(SI M)的采集时间和特征离子,并以3倍信噪比计算检测限,结果见表1。 图1 16种多环芳烃的总离子流图 11萘;21苊烯;31苊;41芴;51菲;61蒽;71荧蒽; 81芘;91苯并(a)蒽;101屈;111苯并(k)荧蒽; 121苯并(b)荧蒽;131苯并(a)芘;141茚并(123-cd); 151芘二苯并(a,h)蒽;161苯并(ghi)苝

16种多环芳烃的结构式版

SIGMA-ALDRICH 16种多环芳烃 中文名苊烯 荧蒽英文名 Naphthale ne (NAP) Acen aphthyle (ANY ) Acen aphthe ne Fluorene (FLU) Phenan thre n e (PHE ) An thrace ne (ANT) Fluora nthe n e 结构式分子式分子量CAS号价格(元) C10H8 128.17 91-20-3 148.59 元/0.25g 484.59 元/1g analytical standard (Fluka) 553.41 元 5000 卩g/L Analytical | standard (Supelco) C14H10 C16H10 178.23 178.23 202.25 208-96 8 83-32-9 86-73-7 85-01-8 120-12 7 544.05 元 5000 卩g/mL in methanol, analytical standard (Supelco) 276.12 元 200 卩g/mL in methanol, analytical standard (Supelco) 544.05 元 5000 卩g/mLin methanol,analytical standard (Supelco) 544.05 元 5000 卩g/mLin methanol,analytical standard (Supelco) 221.13 元/0.25g analytical standard (Cerilliant) 206-44 -0 544.05 元 5000 卩g/mLin methanol,analytical standard (Supelco)

芳烃简介

芳烃车间简介 芳烃车间是化工一厂主要生产车间之一,管理着两套芳烃抽提装置,其中芳烃抽提一套装置总投资约为八千万元,占地约为2.74万平方米,设计年加工加氢汽油10万吨,实际年加工加氢汽油8万吨,芳烃抽提一套装置于1992年9月建成试车,1994年3月开始正式生产;芳烃抽提二套装置总投资约为六千万元,占地约为1.24万平方米,设计年加工加氢汽油12万吨,实际年加工加氢汽油12万吨,芳烃抽提二套装置于1999年7月建成试车并开始正式生产;两套装置既可单独生产,也可以互相供料,根据原料供应情况灵活变化,降低能耗物耗。这两套芳烃抽提装置均采用北京石科院的技术专利,两套装置均由大庆石化总厂工程公司承包建设。 芳烃抽提装置由抽提、精馏、公用工程、罐区等部分组成,是以裂解加氢汽油为原料,采用环丁砜抽提技术(UOP抽提技术),以环丁砜为溶剂进行液液抽提,并应用萃取蒸馏和汽提蒸馏,将原料中的混合芳烃分离出来,再经普通精馏进一步分离成纯度较高的最终产品:苯、甲苯、二甲苯以及副产品:抽余油、碳九芳烃。芳烃抽提一套装置设计能耗为155千克标油/吨原料油,芳烃抽提二套装置设计能耗为147千克标油/吨原料油。两套同时运行的实际能耗为185千克标油/吨原料油。 芳烃抽提装置从2002年开始采取“两头一尾”操作方案,即开一、二套芳烃抽提系统和二套精馏系统,一套精馏不开备用的模式生产,采取这种操作方案之后,装置能耗大大下降,员工劳动强度也相对减少。经过多年的实践,能耗为140千克标油/吨原料油。 芳烃车间共有设备419台,其中动设备126台,静设备293台,占地面积20400m2,2011年10月有员工70人,生产班组6个,采取五班三倒一白班制。 1.1.3 工艺流程说明 1.1.3.1 芳烃一套装置抽提系统 (1)抽提塔T-101塔 从G1单元输送来的原料加氢汽油经累计流量表计量同时经抽余油混对后进入原料油中间罐,并由抽提进料泵抽出,经预热后由进料流量调节阀调节送入抽提塔。溶剂环丁砜分别进入抽提塔顶部和烃相进料中,在溶剂的选择溶解下,进料中的芳烃和非芳烃被分离形成比重较大的富溶剂相(溶剂和芳烃)和较轻的烃相(非芳烃),因比重不同两相形成逆向流动,富溶剂相从塔底靠自压流入提馏塔塔顶,烃相在压力的作用下从抽提塔顶压入抽余油水洗塔。 (2)抽余油水洗塔T-102塔 抽余油水洗塔有七块筛孔塔板并设有上(烃)、下(水)循环回路及循环泵,以提高洗涤效果,水洗后的抽余油含溶剂≤5mg/kg,从塔顶出来经泵打出一股回到塔下部做循环回流,一股进入抽余油中间罐TK-104,洗涤水是来自溶剂回收塔顶回流罐冷凝水,抽余油水洗塔底的水液送至水汽提塔加热成水蒸汽蒸出并用做溶剂再生塔及回收塔的汽提水蒸汽,形成洗涤水——汽提水蒸汽的闭路循环。

多环芳烃来源和性质

多环芳烃来源和性质 自然源 主要包括燃烧(森林大火和火山喷发)和生物合成(沉积物成岩过程、生物转化过程和焦油矿坑内气体),未开采的煤、石油中也含有大量的多环芳烃 人为源 PAHs人为源来自于工业工艺过程、缺氧燃烧、垃圾焚烧和填埋、食品制作及直接的交通排放和同时伴随的轮胎磨损、路面磨损产生的沥青颗粒以及道路扬尘中,其数量随着工业生产的发展大大增加,占环境中多环芳烃总量的绝大部分;溢油事件也成为PAHs人为源的一部分。在自然界中这类化合物存在着生物降解、水解、光作用裂解等消除方式,使得环境中的PAHs含量始终有一个动态的平衡,从而保持在一个较低的浓度水平上,但是近些年来,随着人类生产活动的加剧,破坏了其在环境中的动态平衡,使环境中的PAHs大量的增加。因此,如何加快PAHs在环境中的消除速度,减少PAHs对环境的污染等问题,日益引起人们的注意。 多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中,辛醇-水分配系数比较高。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关.随p电子数的增多和p电子离域性的增强,颜色加深、荧光性增强,紫外吸收光谱中的最大吸收波长也明显向长波方向移动;对直线状的多环芳烃,苯环数增多,辛醇-水分配系数增加,对苯环数相同的多环芳烃,苯环结构越“团簇”辛醇-水分配系数越大。 多环芳烃化学性质稳定.当它们发生反应时,趋向保留它们的共扼环状系,一般多通过亲电取代反应形成衍生物并代谢为最终致癌物的活泼形式。其基本单元是苯环,但化学性质与苯并不完全相似.分为以下几类 ⑴具有稠合多苯结构的化合物 如三亚苯、二苯并 [e,i]芘、四苯并 [a,c,h,j]葱等,与苯有相似的化学稳定性, 说明:电子在这些多环芳烃中的分布是和苯类似的。 图1x电子分布与苯类似的多环芳烃 ⑵呈直线排列的多环芳烃

第七章-多环芳烃

第七章 多环芳烃 1、 联苯及其衍生物 2、 稠环芳烃:萘、蒽、菲及其衍生物的结构和化学性质 1、 芳香体系与休克尔规则 基本要求: 1.熟练掌握稠环芳烃萘蒽等衍生物的命名。 2.熟练掌握萘的化学性质及萘环上亲电取代产物的定位规律。 3.掌握H ückel 规则,理解芳香性的概念,能应用H ückel 规则判断环状化合物的芳香性。 分子中含有多个苯环的烃称作多环芳烃。多环芳烃可分如下三种: 联苯和联多苯类:这类多环芳烃分子中有两个或两个以上的苯环直接以单键相联结。 稠环芳烃:这类多环芳烃分子中有两个或两个以上的苯环以共用两个碳原子的方式相互稠合。 多苯代脂肪类:这类多环芳烃可看作是脂肪烃中两个或两个以上的氢原子被苯基取代。 7.1联苯及其衍生物 联苯是两个苯环通过单键直接连接起来的二环芳烃。 其结构为: 联苯为无色晶体,熔点70℃,沸点254℃。不溶于水而溶于有机溶剂。因其沸点高和具有很好的热稳定性,所以工业上常用它作热传导介质(热载体)。 联苯的化学性质与苯相似,在两个苯环上均可发生磺化、硝化等取代反应。联苯环上碳原子的位置采用下列所示的编号来表示: 联苯可看作是苯的一个氢原子被苯基取代,而苯基是邻对位定位基,所以,当联苯发生取代反应时,取代基进入苯的对邻位和对位。但由于邻位上的空间位阻较大,主要生成对位产物。 7.2稠环芳烃 有多个苯环共用两个或多个碳原子稠合而成的芳烃称为稠环芳烃。简单的稠环芳烃如萘、蒽、菲等。稠环芳烃最重要的是萘。 7.2.1萘(naphthalene) 萘的结构:平面结构,所有的碳原子都是sp 2杂化的,是大π键体系。 分子中十个碳原子不是等同的,为了区别,对其编号如下: 12345 67 8 109αβααα β ββ1、4、5、8位又称为 位αβ2、3、6、7位又称为 位电荷密度αβ>

多环芳烃的分子结构

多环芳烃(PAHs)存在于工业和民用燃烧器、自动化排烟、烟草烟雾中,因有机燃料未完全燃烧而产生的,它还存在于矿物燃料、柴油燃料渗漏、杂酚油倾倒和供水管线的沥青、煤焦油的衬层中。 多环芳烃的结构如下: 多环芳烃是可引起癌症的有毒物质,是环境监测中的重要监测对象。 多环芳烃可用反相键合相柱进行分离,图6-4-62(a)为使用粗内径色谱柱的分离谱图。色谱柱为Vydac C18( 5μm,φ4.6mm*250mm),流动相为水 + 乙腈(体积比为40:60),流量1.5mL/min。图 6-4-62(b)为使用细内径色谱柱的分离谱图。色谱柱为Vydac C18( 5μm,φ2.1mm*250mm)&2633),流动相为水 + 乙腈(体积比为40:60),流量0.42mL/min。

在(a)、(b)两种色谱柱上的梯度洗脱程序相同,如表 6-4-15 所示。 多环芳烃的检测可使用可变波长紫外吸收二极管阵列检测器,检测的不同多环芳烃,对应的最大吸收波长,如表 6-4-16所示。 使用UV PDAD检测器,可用于对土壤、废水和空气中的多环芳烃检测。 当样品中多环芳烃浓度很低时,如饮用水,可用荧光检测器(FD)进行监测,此时对不

同的多环芳烃,应使用的激发波长λex和发射波长λem,如表6-4-17 所示。 对土壤中的PAHs可预先用超临界流体萃取技术预处理,萃取物经ODS预柱捕集,经用1:1四氢呋喃 - 乙腈溶液洗脱后,再进行高效液相色谱分析。 对具有四个苯环的多环芳烃异构作,也可用反相键合相色谱柱分离,如图6-4-63 所示。色谱柱为.C18 (5μm,φ4.6mm*250mm),流动相为乙腈水溶液,从进样开始至30min,乙腈由70%增加至100%,使用UVD(254nm)检测。 多环芳烃混合物,同样可使用μ - Porasil硅胶吸附柱(10μm,φ3.9mm*300mm),以正己烷作流动相实现分离。

混合芳烃使用情况简介

混合芳烃使用情况简介 芳烃类化合物一直作为各大炼油厂调和高标号汽油的优良调和组份被广泛使用,中石化系统的大型炼油厂生产的93#、95#、97#等高标号汽油主要是用芳烃调和的,汽油国家标准中规定芳烃含量低于40%。其它一些地方小炼油厂调和93#汽油主要手段是(1)加入提高辛烷值的添加剂如MMT,但加入量有环保限制,不能超过每升18毫克锰。(2)加入少量MTBE提高辛烷值,但加入量也受汽油国家标准中规定的氧含量不可超过2.5%的限制。(3)也是用混合芳烃调和提高汽油辛烷值,但小炼厂本身没有生产芳烃组份的能力,向外采购也相当困难。 本公司为大型石油化工产品进出口企业,与中石化、中化工及蓝星集团有着非常良好的关系,进口了一些混合芳烃组份,可以提供给用户使用。使用后效益比较明显,特别是辛烷值不够的中小炼油厂可以消化更多的直馏汽油,减少MMT及MTBE的用量,降低使用添加剂的费用。 用法基本上有三种(1)作为催化装置反应终止剂使用,在提升管反应器顶部喷嘴打入,基本不参加反应,经过分馏塔分离得到汽油产品收率大于90%,也有少量较重的馏份会进入柴油产品中,不会影响柴油质量。(2)作为常减压装置的原料掺炼,这种方案适用于常压塔不生产容剂油,只生产汽油、柴油两个产品的装置。可以把直馏汽油全部调和到90#以上。(3)作为油库系统的调和组份直接调和93#油销售,这种方案效益最为可观,而且研究发现芳烃的调入可以大大改善乙醇汽油的稳定性。以上三种方案均已在其它炼油厂正常操作,欢迎进行技术交流及探讨,如需要实地考察可与本公司联系。

重芳烃掺炼标定报告 济南长城炼油厂 一、情况介绍 根据其他厂家的经验,为多产高标号汽油,自7月17日济南长城炼油厂常减压装置开始掺炼芳烃油,从生产情况看操作基本较平稳,在常压装置开始掺炼轻质油品,取得了较好的效果。为对该项工作进行全面分析、总结,公司有关部门与8月7日对涉及到常压装置的原料与产品进行了标定及盘点,并对7月17日—8月2日以来的常减压装置的生产情况进行了统计、分析。 二、生产情况及分析 1、生产物料平衡 油品名加工量(吨)生产量(吨) 收率% 备注 原油42683.107 掺:重油1683.205 芳烃429.175 占原油掺炼比例10% 柴油747.026 11.71 产:汽油1186.811 18.60 柴油4343.992 68.08 常重6277.829 98.39 合计6380.487 说明收率计算以总加工量为基数,含掺重油与芳烃 2、掺炼对直馏汽油产品质量的影响 为比较掺炼前后汽油性质的变化,先对前后的汽油分析数据统计如下表: 直馏汽油分析对比表

相关文档
最新文档