1 现代电子系统的设计方法.

合集下载

现代电子电路的系统设计流程

现代电子电路的系统设计流程

现代电子电路的系统设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 需求分析与客户或项目团队沟通,了解系统的功能、性能、成本等要求。

电子EDA技术的基础知识

电子EDA技术的基础知识

电子EDA技术的基础知识现代电子设计技术的核心就是EDA技术。

EDA技术是一门综合性学科,它打破了软件和硬件间的壁垒,代表了电子设计技术和应用技术的发展方向。

本文将带你一起来了解关于EDA的分类、基本特征、应用、常用软件以及发展前景。

电子设计自动化(Electronic Design Automation)的缩写即是EDA.EDA技术是把计算机技术应用在电子设计过程的一门技术,从而实现了电子设计的自动化进行,现今EDA技术已经广泛用于电子电路的设计仿真以及集成电路版图设计、印刷电路板的设计和可编程器件的编程等工作中。

EDA技术是一门综合的学科,它代表了未来电子设计技术的发展方向,打破了软硬件之间的隔阂。

一、EDA的分类我们依据计算机辅助技术介入程度的不同,将电子系统设计分为以下三类:1.人工的设计方法此种设计方法从提出方案到验证方案等等均需要由人工来完成,并且方案的验证必须搭建实际的电路来完成验证。

这种人工的设计方法缺陷在于:开销特别大,但是效率却极低,并且周期比较长,还有一点就是现在的产品不是单单靠人工就能够完成的。

2.计算机辅助设计CAD1970年以来,计算机开始被应用于Ic版图设计以及PCB布局布线,后来发展为可对电路功能和结构进行设计,并且在原来的基础上增添了逻辑仿真、自动布局布线等等的功能。

可以这么说CAD技术的应用取得了可喜的成果。

但我们也不能过于乐观,因为各种各样的软件层出不穷,每一种设计软件只能够解决一部分的问题,这就造成了软件不能完全脱离人去设计,智能化程度不能够满足人们的需求。

3.EDA电子设计自动化1990年以后是EDA时代的到来。

伴随着电子计算机的不断发展,计算机系统被广泛的应用于电子产品的设计和电子产品的测试以及电子产品的制造等各环节当中。

由于电子产品的性能不断提高以及精密度的增加,产品的更新所需要的时间越来越短。

相应的,电子产品的设计和电子产品的测试以及电子产品的制造也必须跟上更新的步伐。

1什么是EDA技术

1什么是EDA技术

1什么是EDA技术?EDA技术是现代电子信息工程领域中一门新技术,它提供了一种基于计算机和信息技术为一体的电子系统设计方法,它的发展和推广极大地推动了电子工业的发展,已成为电子工业中不可缺少的一项主要技术。

2基于EDA技术的电子系统设计有哪些特点?以大规模可编程逻辑器件为设计载体,以硬件描述语言为系统逻辑描述的主要表达方式,以计算机和PLD实验开发系统为设计工具,通过相关的开发软件,自动完成电子系统设计,最终形成集成电子系统或专用集成芯片。

3基于可编程逻辑器件的EDA技术,主要包括哪几方面的内容?大规模可编程逻辑器件,硬件描述语言,软件开发工具,实验开发工具。

4EDA技术的发展经历了哪几个阶段?每个阶段有什么特征?CAD阶段,设计人员主要借助计算机完成PCB板的布局布线设计,简单的版图绘制,以及电路性能的模拟,逻辑仿真和预测。

CAED阶段,进行系统的设计描述综合与优化设计结果的验证,以及自动布局布线等。

ESDA阶段,ESDA工具是以系统设计为核心,不仅具有电子系统设计的能力,而且还具有高级抽象的设计构思手段。

5目前较为流行的EDA开发工具?AITERA公司的MAX+PLUS2和QUARTUS2,LATTICE公司的ispDesignEXPERT和ispLEVER,Xilinx公司的Foundation和ISE等。

6什么是可编程逻辑器件?他们有哪些类型?可编程逻辑器件是一种由用户借助计算机编程,来实现某一逻辑功能的器件。

按集成度分类:LDPLD和HDPLD,按编程工艺分类:熔丝或反熔丝编程器件,浮栅编程器件,SRAM编程器件,按基本结构分类:阵列型单元型器件,按逻辑单元分类:与或阵列宏单元查找表多路开关。

7简述可编程逻辑器件的发展历程及其特点?可编程逻辑器件经历了从PROM,PLA,PAL,GAL到EPLD,CPLD,FPGA 的发展过程,不仅在结构工艺集成度功能速度等方面有了很大的改进,而且在稳定性可靠性灵活性上也有了显著提高。

现代数字系统设计方法和流程

现代数字系统设计方法和流程

现代数字系统的设计方法专业:电力电子与电力传动学号:212012*********姓名:刘滔摘要随着微电子技术和计算机技术的不断发展,在涉及通信、国防、航天、工业自动化、仪器仪表等领域的电子系统设计工作中,EDA技术的含量正以惊人的速度上升,它已成为当今电子技术发展的前沿之一。

现代社会电子产品更新换代的速度越来越快,传统的自下而上(Bottom-Up)的设计方法越来越适应不了这种挑战。

随着可编程逻辑器件集成规模的迅速扩大,自身功能的不断完善,以及计算机辅助设计技术的不断发展,在现代电子系统设计领域,EDA(Electronic Design Automation)技术便引起了人们的极大关注。

设计者的工作仅限于利用软件的方式来完成对系统硬件功能的描述。

相应的FPGA/CPLD器件,在EDA工具的帮助下,就可以得到最后的设计结果。

本文首先阐述了EDA技术的基本概念、发展过程和基本特征,最后着重分析EDA技术在两个不同层次上的工作流程,即电路级设计和系统级设计,引入了一种自顶向下的高层次电子设计方法。

关键词:设计方法电子系统设计EDA一、现代数字系统设计的概述EDA(Electronic Design Automation)工程是现代电子信息工程领域中一门发展迅速的新技术。

EDA的定义有广义和狭义之分,广义定义EDA包括半导体工艺设计自动化、可编程器件设计自动化、电子系统设计自动化、印制电路板设计自动化、仿真与测试故障诊断自动化等。

狭义定义的EDA就是电子设计自动化。

EDA技术主要有四个方面:1、可编程逻辑器件,即应用EDA技术完成电子系统设计的载体;2、硬件描述语言(VHDL 或者 Verilog)。

它用来描述系统的结构和功能,是EDA的主要表达手段;3、配套的软件工具。

它用来完成电子系统的智能化设计;4、实验开发系统。

在整个EDA设计电子系统的过程中,实验开发系统是实现可编程器件下载和验证的工具,现代EDA技术是20世纪90年代初从计算机辅助设计、辅助制造和辅助测试等工程概念发展而来的。

EDA简介PPT课件

 EDA简介PPT课件

.
12
6. EDA的发展趋势
• IC设计的发展方向:单片系统或称系统集成芯片, 即在一个芯片上完成系统级的集成。
• 更趋于电路行为级的硬件描述语言,如SystemC、 Superlog及系统级混合仿真工具,可以在同一个开发 平台上完成高级语言,如C/C++等,与标准HDL语言 (Verilog HDL、VHDL) 或其他更低层次描述模块 的混合仿真。
• FPGA与ASIC正在互相融合,取长补短。
• 目前,许多PLD公司开始为ASIC提供FPGA 内核。
• 现在,传统ASIC和FPGA之间的界限正变得模糊。 系统级芯片不仅集成RAM和微处理器,也集成FPGA。
.
13
二、 EDA设计流程及其工具 FPGA/CPLD设计流程
应用于FPGA/CPL.D的EDA开发流程
.
2
1. EDA技术实现目标
利用EDA技术进行电子系统设计,最后的目标 是完成专用集成电路ASIC的设计和实现。
三条实现途径: 1)超大规模可编程逻辑器件***
主流器件:
FPGA(Field Programmable Gate Array) CPLD (Complex Programmable Logic Device)
生产工艺直接相关,因此可移植性差;
(5)只有在设计出样机或生产出芯片后才能进行实测。
.
11
采用EDA技术的优点:
(1)采用硬件描述语言作为设计输入; (2)库(Library)的引入;(支持自动设计) (3)设计文挡的管理; (4)强大的系统建模、电路仿真功能; (5)具有自主知识产权; (6)开发技术的标准化、规范化以及IP核的可利用性; (7)适用于高效率大规模系统设计的自顶向下设计方案; (8)全方位地利用计算机自动设计、仿真和测试技术; (9)对设计者的硬件知识和硬件经验要求低; (10)与以CPU为主的电路系统相比,高速性能好; (11)纯硬件系统的高可靠性。

soc设计方法与实现

soc设计方法与实现

soc设计方法与实现SOC(系统芯片)设计是一种综合了硬件设计和软件开发的复杂系统设计。

在现代电子技术中,SOC的地位越来越重要。

它的应用范围广泛,包括嵌入式系统、移动设备、汽车电子、工业自动化等等。

SOC设计的过程主要包括以下几个步骤:1.需求分析:为了确保SOC的功能能够满足用户的需求,首先要对用户的需求进行分析,明确功能和性能指标。

2.架构设计:根据需求分析,确定硬件和软件的内容,进行系统架构设计。

确定SOC各个模块之间的通信方式以及各个模块的功能和性能指标。

3.电路设计:根据架构设计中各个模块的需求,进行电路设计。

这个过程包括电路原理图设计、电路仿真、PCB布局等等。

4.芯片设计:在电路设计的基础上,进行芯片设计。

这个过程包括RTL设计、综合、布局布线、仿真验证等等。

5.测试验证:完成芯片设计后,就要对芯片进行测试验证,以确保芯片的功能和性能指标是否达到了要求。

SOC的实现是一个综合工作,需要集成硬件和软件方面的各种技术,包括模拟电路设计、数字电路设计、嵌入式软件开发、工艺制程和封装测试等等。

在SOC的实现过程中,需要注意以下几点:1.硬件和软件的协同开发:硬件和软件开发环节必须要保持紧密的合作。

软件开发要尽早介入硬件开发的过程,以便对功能性问题进行验证和优化。

2.优化功耗和面积:在SOC设计中,功耗和面积是两个非常重要的指标。

为了满足应用场景的要求和市场需求,需要对功耗和面积进行优化。

3.技术的选择:SOC设计需要选择合适的工艺技术、模组技术和封装技术。

在不同的应用环境下,选择合适的技术能够为SOC设计提供更大的空间。

通过以上步骤的实现,SOC设计能够实现高度集成、低功耗、高性能和高可靠性的目标。

同时,我们还需要关注系统的可测试性、可维护性和可升级性等问题。

在未来的SOC设计中,我们需要持续创新和技术更新,以满足用户的需求和市场需求。

现代电子电路与系统的分析设计与实现方法

现代电子电路与系统的分析设计与实现方法

现代电子电路与系统的分析设计与实现方法现代电子电路与系统的分析、设计与实现方法是指在设计电子电路和系统时,采用的一系列技术和工具,以确保电路和系统能够达到设计要求,并满足性能、可靠性和经济性等各方面的需求。

在现代电子技术的快速发展下,电子电路和系统设计面临着越来越多的挑战,因此分析、设计和实现方法变得越来越重要。

下面是一些常用的现代电子电路与系统的分析设计与实现方法:1. 基于硬件描述语言的设计:硬件描述语言(HDL)是一种用来描述电子系统硬件行为的语言。

通过使用HDL,设计人员可以对电路进行更高层次的抽象描述,从而更容易进行电路的分析和验证。

常用的HDL包括VHDL和Verilog。

2.元件级设计:元件级设计是指在电路设计中将电路拆分为可独立分析和设计的基本元件。

通过对各个元件的分析和设计,可以实现对整个电路的分析和设计。

3.数字信号处理(DSP)技术:数字信号处理技术在现代电子电路和系统中应用广泛。

通过使用DSP技术,可以对电路中的信号进行精确和高效的处理,以满足各种应用需求。

4.模拟电路分析与设计:模拟电路的分析与设计主要涉及电路的建模、分析和优化。

通过对电路元器件的特性进行数学建模,可以对电路的行为进行准确的分析,并通过各种优化方法来改进电路的性能。

5.电磁兼容性(EMC)设计:在现代电子电路和系统设计中,电磁兼容性是一个重要的考虑因素。

通过采用适当的布线和屏蔽技术,可以有效地减少电磁干扰和抗干扰能力,提高整个电路系统的EMC性能。

6.集成电路设计:集成电路设计是指将多个电路和系统集成到同一芯片上的设计方法。

通过采用现代的集成电路设计流程和工具,可以实现高度集成、低功耗和高性能的电子系统设计。

7.系统级设计和建模:系统级设计是指对整个电子系统进行高层次的建模和设计。

通过对系统功能、性能和约束进行详细分析和建模,可以优化整个电子系统的设计过程。

8.可靠性设计与分析:在现代电子电路和系统设计中,可靠性是一个重要的考虑因素。

数字集成电路--电路、系统与设计

数字集成电路--电路、系统与设计

数字集成电路是现代电子产品中不可或缺的一部分,它们广泛应用于计算机、手机、汽车、医疗设备等领域。

数字集成电路通过在芯片上集成大量的数字电子元件,实现了电子系统的高度集成和高速运算。

本文将从电路、系统与设计三个方面探讨数字集成电路的相关内容。

一、数字集成电路的电路结构数字集成电路的电路结构主要包括逻辑门、寄存器、计数器等基本元件。

其中,逻辑门是数字集成电路中最基本的构建元件,包括与门、或门、非门等,通过逻辑门的组合可以实现各种复杂的逻辑功能。

寄存器是用于存储数据的元件,通常由触发器构成;而计数器则可以实现计数和计时功能。

这些基本的电路结构构成了数字集成电路的基础,为实现各种数字系统提供了必要的支持。

二、数字集成电路与数字系统数字集成电路是数字系统的核心组成部分,数字系统是以数字信号为处理对象的系统。

数字系统通常包括输入输出接口、控制单元、运算器、存储器等部分,数字集成电路在其中充当着处理和控制信号的角色。

数字系统的设计需要充分考虑数字集成电路的特性,包括时序和逻辑的正确性、面积和功耗的优化等方面。

数字集成电路的发展也推动了数字系统的不断完善和创新,使得数字系统在各个领域得到了广泛的应用。

三、数字集成电路的设计方法数字集成电路的设计过程通常包括需求分析、总体设计、逻辑设计、电路设计、物理设计等阶段。

需求分析阶段需要充分了解数字系统的功能需求,并将其转化为具体的电路规格。

总体设计阶段需要根据需求分析的结果确定电路的整体结构和功能分配。

逻辑设计阶段是将总体设计转化为逻辑电路图,其中需要考虑逻辑函数、时序关系、并行性等问题。

电路设计阶段是将逻辑电路图转化为电路级电路图,包括门电路的选择和优化等。

物理设计阶段则是将电路级电路图转化为实际的版图设计,考虑布线、功耗、散热等问题。

在每个设计阶段都需要充分考虑电路的性能、面积、功耗等指标,以实现设计的最优化。

结语数字集成电路作为现代电子系统的关键组成部分,对于数字系统的功能和性能起着至关重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 现代电子系统的设计方法
1.1.1 概述
无论是现代高精尖电子设备如雷达、软件无线电电台等,还是为我们所熟悉的微机、手机、VCD等现代电子装置,其核心构成都是数字电子系统。

随着微电子技术和计算机技术的发展,集成电路不断更新换代,出现了现场可编程逻辑器件,数字电子系统的设计方法和设计手段也发生了很大的变化。

特别是进入20世纪90年代以后,EDA(电子设计自动化)技术的发展和普及给电子系统的设计带来了革命性的变化,并已渗透到电子系统设计的各个领域。

传统的数字系统设计只能对电路板进行设计,把所需的具有固定功能的标准集成电路像积木块一样堆积于电路板上,通过设计电路板来实现系统功能。

利用EDA工具,采用可编程器件,通过设计芯片来实现系统功能,这样不仅可以通过芯片设计实现多种数字逻辑系统功能,而且由于管脚定义的灵活性,大大减轻了电路图设计和电路板设计的工作量和难度,从而有效地增强了设计的灵活性,提高了工作效率;同时基于芯片的设计可以减少芯片的数量,缩小系统体积,降低能源消耗,提高系统的性能和可靠性。

这种基于芯片的设计方法正在成为现代电子系统设计的主流。

现在,只要拥有一台计算机、一套相应的EDA软件和空白的可编程逻辑器件芯片,在实验室里就可以完成数字系统的设计和生产。

当今的数字系统设计已经离不开可编程逻辑器件和EDA设计工具。

现在人们可以把数以亿计的晶体管、几百万门的电路集成在一个芯片上。

半导体集成电路也由早期的单元集成、部件电路集成发展到整机电路集成和系统电路集成。

电子系统的设计方法也由过去的那种集成电路厂家提供通用芯片,整机系统用户采用这些芯片组成电子系统的“Bottom-up”(自底向上)设计方法改变为一种新的“Top-down”(自顶向下)设计方法。

在这种新的设计方法中,由整机系统用户对整个系统进行方案设计和功能划分,系统的关键电路用一片或几片专用集成电路ASIC来实现,
且这些专用集成电路是由系统和电路设计师亲自参与设计的,直至完成电路到芯片版图的设计,再交由IC工厂投片加工,或者用可编程ASIC(例如CPLD和FPGA)现场编程实现。

图1-1所示为电子系统的两种不同的设计步骤。

图1-1 “自顶向下”(左图)与“自底向上”(右图)的设计
1.1.2 ASIC技术
ASIC(Application Specific Integrated Circuits)直译为“专用集成电路”,与通用集成电路相比,它是面向专门用途的电路,以此区别于标准逻辑(Standard Logic)、通用存储器、通用微处理器等电路。

ASIC是相对于通用集成电路而言的,两者并无明显界限。

ASIC的提出和发展说明集成电路进入了一个新阶段。

通用的、标准的集成电路已不能完全适应电子系统的急剧变化和更新换代。

目前ASIC在总的IC市场中的占有率已发展到近1/3,在整个逻辑电路市场中的占有率已超过一半。

与通用集成电路相比,ASIC在构成电子系统时具有以下几个方面的优越性:
(1) 提高了产品的可靠性。

用ASIC芯片进行系统集成后,外部连线减少,为调试和维修带来极大的方便,系统可靠性明显提高。

(2) 易于获得高性能。

ASIC针对专门的用途而特别设计,它是系统设计、电路设计和工艺设计的紧密结合,这种一体化的设计有利于得到前所未有的高性能系统。

(3) 可增强产品的保密性和竞争力。

电子产品中的ASIC芯片对用户来说相当于一个“黑盒子”。

(4) 在大批量应用时,可显著降低产品的综合成本。

用ASIC来设计和生产产品大幅度减少了印刷电路板面积及其他元器件数量,降低了装配调试费用。

(5) 提高了产品的工作速度。

(6) 缩小了体积,减轻了重量,降低了功耗。

图1-2 ASIC设计的一般流程
ASIC按功能的不同可分为数字ASIC、模拟ASIC和微波ASIC;按使用材料的不同可分为硅ASIC和砷化镓ASIC。

一般来说,数字、模拟ASIC主要采用硅材料,微波ASIC主要采用砷化镓材料。

砷化镓具有高速、抗辐射能力强、寄生电容小和工作温度范围宽等优点,目前已在移动通信、卫星通信等方面得到广泛应用。

对硅材料ASIC,按制造工艺的不同还可进一步将其分为MOS型、双极型和BiCMOS型。

ASIC的设计流程如图1-2所示,为了保证设计的正确性,对每一个设计层次都要进行计算机模拟与验证。

按照设计方法的不同,设计ASIC可分为全定制和半定制两类。

全定制法是一种基于晶体管级的设计方法,半定制法是一种约束性设计方法。

约束的目的是简化设计、缩短设计周
期、提高芯片成品率。

对于某些性能要求很高、批量较大的芯片,一般采用全定制法设计,用全定制法设计时须采用最佳的随机逻辑网络,且每个单元都必须精心设计,另外还要精心地布局布线,将芯片设计得最紧凑,以期实现速度快、面积利用率高、功耗低等的最优性能。

但是,很多产品的产量不大或者不允许设计时间过长,这时只能对芯片面积或性能作出牺牲,并尽可能采用已有的、规则结构的版图。

为了争取时间和市场,也可采用半定制法,先用最短的时间设计出芯片,在占领市场的过程中再予以改进,进行二次开发。

因此半定制与全定制两种设计方式的优缺点是互补的,设计人员可根据不同的要求选择合适的设计方法。

20世纪80年代中期出现了复杂可编程逻辑器件。

复杂可编程逻辑器件是ASIC的一个重要分支,它是一种已完成了全部工艺制造,可直接从市场上购得的产品,用户只要对它编程就可实现所需要的电路功能,所以称它为可编程ASIC。

以上介绍的两类ASIC芯片都必须到IC厂家去加工制造才能完成,而采用可编程逻辑器件,设计人员在实验室即可设计和制造出芯片,而且可反复编程,修改错误,这就大大地方便了设计者。

可编程逻辑器件发展到今天,其规模越来越大,功能越来越强,价格越来越便宜,相配套的EDA软件越来越完善,因而深受设计人员的喜爱。

目前,在电子系统的开发阶段的硬件验证过程中,一般都采用可编程逻辑器件,以期尽快开发产品,迅速占领市场。

等大批量生产时,再根据实际情况转换成前面三种方法中的一种进行“再设计”。

相关文档
最新文档