高中物理竞赛经典方法 5极限法

高中物理竞赛经典方法 5极限法
高中物理竞赛经典方法 5极限法

五、极限法

方法简介

极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。

赛题精讲

例1:如图5—1所示,一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k ,则物块可能获得的最大动能为。

解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,小球所受合力为零的位置速度、动能最大。所以速最大时有

mg=kx ①

由机械能守恒有:mg (h + x) = E k +12

kx 2②

联立①②式解得:E k = mgh -22

m g 2k

例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短。求该直轨道与竖直方向的夹角β。

解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,求时间t 对于β角的函数的极值即可。

由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为:

a = gcos β

该质点沿轨道由静止滑到斜面所用的时间为t ,则:

12

at 2

=OP 所以:

由图可知,在ΔOPC 中有:

图5—

1

图5—2

o OP sin(90)-α=o OC

sin(90)

+α-β

所以:OP =

OC cos cos()

α

α-β②

将②式代入①式得:

显然,当cos(α-2β) = 1 ,即β =2

α

时,上式有最小值。 所以当β =

2

α

时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。

例3:从底角为θ的斜面顶端,以初速度v 0水平抛出一小球,不计空气阻力,若斜面足够长,如图5—3所示,则小球抛出后,离开斜面的最大距离H 为多少?

解析:当物体的速度方向与斜面平行时,物体离斜面最远。以水平向右为x 轴正方向,竖直向下为y 轴正方向,则由:v y = v 0tan θ = gt ,解得运动时间为t =

0v g

tan θ

该点的坐标为: x = v 0t =

20v g

tan θ,y =12

gt 2 =2

v 2g tan 2θ

由几何关系得:

H

cos θ

+ y = xtan θ 解得小球离开斜面的最大距离为:

H =

2

v 2g

tan θ?sin θ

这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。

例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为

3.0m 的墙外,从喷口算起,墙高为

4.0m 。若不计空气阻力,取g = 10m/s 2,求所需的最小初速及对应的发射仰角。

图5—

解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。

根据平抛运动的规律,水流的运动方程为:

020x v cos t 1y v sin t gt 2

=α????=α?-?? 把A 点坐标(d 、h )代入以上两式,消去t ,得:

20

v

=-

2

2gd 2(h d tan )cos -αα

=2

gd d sin 2h(cos 21)

α-α+

=

2

gd sin 2cos 2h

?αα-??

令h d

= tan θ

,则

= cos θ

,= sin θ,上式可变为:

2

0v

=

2

显然,当sin (2α-θ) = 1时,即2α-θ = 90°,亦即发射角α = 45°+2θ= 45°+12arctan h d = 45°+ arctan 43

= 71.6°时,v 0最小,且最小速度为:

v 0

例5:如图5—5所示,一质量为m 的人,从长为l 、质量为M 的铁板的一端匀加速跑向另一端,并在另一端骤然停止。铁板和水平面间摩擦因数为μ,人和铁板间摩擦因数为μ′,且μ′ μ。这样,人能使铁板朝其跑动方向移动的最大距离L 是多少?

解析:人骤然停止奔跑后,其原有动量转化为与铁板一起向前冲的动量,此后,地面对载人铁板的阻力是地面对铁板的摩擦力f ,其加速度a 1 =

f

M m

+=(M m)g M m μ++= μg 。

由于铁板移动的距离

L =

2

1

v 2a ',故v ′越大,L 越大。v ′是人与铁板一

起开始地运动的速度,因此人应以不会引起铁板运动的最大加速度奔跑。

人在铁板上奔跑但铁板没有移动时,人若达到最大加速度,则地面与铁板之间的摩擦力达到最大静摩擦μ (M + m)g ,根据系统的牛顿第二定律得:

图5—

4

图5—5

F = ma 2 + M ?0 所以:a 2 =

F m = μM m m

+g ① 设v 、v ′分别是人奔跑结束及人和铁板一起运动时的速度:

因为:mv = (M + m)v ′② 且:v 2 = 2a 2l ,2v '= 2a 1L

并将a 1、a 2代入②式解得铁板移动的最大距离: L =

m

M m

+l 例6:设地球的质量为M ,人造卫星的质量为m ,地球的半径为R 0,人造卫星环绕地球做圆周运动的半径为r 。试证明:从地面上将卫星发射至运行轨道,发射速度

并用该式求出这个发射速度的最小值和最大值。(取R 0 = 6.4×106m ),设大气层对卫星的阻力忽略不计,地面的重力加速度为g )

解析:由能量守恒定律,卫星在地球的引力场中运动时总机械能为一常量。设卫星从地面发射的速度为v 发,卫星发射时具有的机械能为:

E 1 =1

2m 2

v 发-G

Mm R ①

进入轨道后卫星的机械能为:E 2 =12

m 2

v 轨-G

Mm

r

② 由E 1 = E 2,并代入v 轨

=

v 发

=

又因为在地面上万有引力等于重力,即:G

20

Mm R = mg ,所以:

GM R = gR 0④

把④式代入③式即得:v 发

=(1)如果r= R 0,即当卫星贴近地球表面做匀速圆周运动时,所需发射速度最小为:v min

== 7.9×103m/s 。

(2)如果r →∞,所需发射速度最大(称为第二宇宙速度或脱离速度)为:v max

=×103m/s 。

例7:如图5—6所示,半径为R 的匀质半球体,其重心在球心O 点正下方C 点处,OC =38

R ,半球重为G ,半球放在水平面上,在半球的平面上放一重为

G

8

的物体,它与半球平在间的动摩擦因数μ = 0.2 ,求无滑动时物体离球心O 点最大距离是多少?

解析:物体离O 点放得越远,根据力矩的平衡,半球体转过的角度θ越大,但物体在球体斜面上保持相对静止时,θ有限度。

设物体距球心为x 时恰好无滑动,对整体以半球体和地面接触点为轴,根据平衡条件有:

G ?

3R 8sin θ =G

8

?xcos θ,得到:x = 3Rtan θ 可见,x 随θ增大而增大。临界情况对应物体所受摩擦力为最大静摩

擦力,则:

tan θm =

m

f N

= μ = 0.2 ,所以 x = 3μR = 0.6R 。 例8:有一质量为m=50kg 的直杆,竖立在水平地面上,杆与地面间静摩擦因数μ = 0.3 ,杆的上端固定在地面上的绳索拉住,绳与杆的夹角θ = 30°,如图5—7所示。

(1)若以水平力F 作用在杆上,作用点到地面

的距离h 1 =2

5

L (L 为杆长),要使杆不滑倒,力F 最

大不能越过多少?

(2)若将作用点移到h 2 =45

L 处时,情况又如何?

解析:杆不滑倒应从两方面考虑,杆与地面间的静摩擦力达到极限的前提下,力的大小还与h 有关,讨论力与h 的关系是关键。

杆的受力如图5—7—甲所示,由平衡条件得: F -Tsin θ-f = 0 N -Tcos θ-mg = 0

F(L -h)-fL = 0

另由上式可知,F 增大时,f 相应也增大,故当f

图5—

6

图5—

7

图5—7—甲

大到最大静摩擦力时,杆刚要滑倒,此时满足:f = μN

解得:F max =

mgL tan tan (L h)h θ

θ

--μ

由上式又可知,当[tan θ

μ

(L -h)-h ]→∞,即当h 0 = 0.66L 时,对F 就没有限制了。

(1)当h 1 =25

L <h 0,将有关数据代入F max 的表达式得:F max = 385N (2)当h 2 =45

L >h 0,无论F 为何值,都不可能使杆滑倒,这种现象即称为自锁。

例9:放在光滑水平面上的木板质量为M ,如图5—8所示,板上有质量为m 的小狗以与木板成θ角的初速度v 0(相对于地面)由A 点跳到B 点,已知AB 间距离为s 。求初速度的最小值。

解析:小狗跳起后,做斜上抛运动,水平位移向右,由于水平方向动量守恒,木板向左运动。小狗落到板上的B 点时,小狗和木板对地位移的大小

之和,是小狗对木板的水平位移。

由于水平方向动量守恒,有:mv 0cos θ = Mv ,即:v =0mv sin M

θ

① 小狗在空中做斜抛运动的时间为:t =02v sin g

θ

② 又:s +

v 0cos θ

?

t = vt

将①、②代入③式得:v 0

当sin2θ = 1 ,即θ =4

π时,v 0有最小值,且v 0min

例10:一小物块以速度v 0 = 10m/s 沿光滑地面滑行,然后沿光滑 曲面上升到顶部水平的高台上,并由高台上飞出,如图5—9所示。当高台的高度h 多大时,小物块飞行的水平距离s 最大?这个距离是多少?(g 取10m/s 2)

图5—8

解析:依题意,小物块经历两个过程。在脱离曲面顶部之前,小物块受重力和支持力,由于支持力不做功,物块的机械能守恒,物块从高台上飞出后,做平抛运动,其水平距离s 是高度h 的函数。

设小物块刚脱离曲面顶部的速度为v ,根据机械能守恒定律:

12m 20v =1

2

mv 2 + mgh ① 小物块做平抛运动的水平距离s 和高度h 分别为: s = vt ② h =12

gt 2③

以上三式联立解得:

当h =

20v 4g

= 2.5m 时,s 有最大值,且

s max =

2

v 2g

= 5m 。

例11:军训中,战士距墙s ,以速度v 0起跳,如图5—10所示,再用脚蹬墙面一次,使身体变为竖直向上的运动以继续升高,墙面与鞋底之间的静摩擦因数为μ。求能使人体重心有最大总升高的起跳角θ。

解析:人体重心最大总升高分为两部分,一部分是人做斜上抛运动上升的高度,另一部分是人蹬墙所能上升的高度。

如图5—10—甲,人做斜抛运动,有:v x = v 0cos θ,

v y = v 0sin θ-gt

重心升高为:H 1 = s 0tan θ-1

2

g (0s v cos θ)2

脚蹬墙面,利用最大静摩擦力的冲量可使人向上的动量增加,即:

Δ(mv y ) = m Δv y = Σf(t) = ΣμN(t) Δt = μΣN(t) Δt 而:ΣN(t) Δt = mv x

所以:Δv y = μv x ,人蹬墙后,其重心在竖直方向向上的速度为:

y v '= v y + Δv y = v y + μv x ,继续升高

H 2 =

2y

v 2g

'

重心总升高:H = H 1 + H 2 =

20

v 2g

(μcos θ + sin θ)2

-μs

图5—

9

图5—

10

图5—10—甲

当θ = arctan 1μ

时,重心升高最大。

例12:如图5—11所示,一质量为M 的平顶小车,以速度v 0沿水平的光滑轨道做匀速直线运动。现将一质量为m 的小物块无初速地放置在车顶前缘。已知物块和车顶之间的滑动摩擦因数为μ。

(1)若要求物块不会从车顶后缘掉下,则该车顶最少要多长?

(2)若车顶长度符合(1)问中的要求,整个过程中摩擦力共做多少功?

解析:当两物体具有共同速度时,相对位移最大,这个相对位移的大小即为车顶的最小长度。

设车长至少为l ,则根据动量守恒: Mv 0 = (M + m)v

根据功能关系:μmgl =12M 20v -1

2

(M + m)v 2

解得:l =20

Mv 2(M m)g

μ+

摩擦力共做功:W =-μmgl=-

2

0Mmv 2(M m)

+

例13:一质量m=200kg ,高2.00m 的薄底大金属桶倒扣在宽广的水池底部,如图5—12所示。桶的内横截面积S = 0.500m 2,桶壁加桶底的体积为V 0 = 2.50×10-2m 3。桶内封有高度为l=0.200m 的空气。池深H 0 = 20.0m ,大气压强p 0=10.00m 水柱高,水的密度ρ = 1.000×103kg/m 3,重力加速度取g=10.00m/s 2。若用图中所示吊绳将桶上提,使桶底到达水面处,求绳子拉力对桶所需何等的最小功为多少焦耳?(结果要保留三位有效数字)。不计水的阻力,设水温很低,不计其饱和蒸汽压的影响。并设水温上下均匀且保持不变。

解析:当桶沉到池底时,桶自身重力大于浮力。在绳子的作用下桶被缓慢提高过程中,桶内气体体积逐步增加,排开水的体积也逐步增加,桶受到的浮力也逐渐增加,绳子的拉力逐渐减小,当桶受到的浮力等于重力时,即绳子拉力恰好减为零时,桶将处于不稳定平衡的状态,因为若有一扰动使桶略有上升,则

浮力大于重力,无需绳的拉力,桶就会自动浮起,而

不需再拉绳。因此绳对桶的拉力所需做的最小功等于将桶从池底缓慢地提高到浮力等于重力的位置时绳子拉桶所做的功。

图5—

11

图5—12

设浮力等于重力的不稳定平衡位置到池底的距离为H ,桶内气体的厚度为l ′,如图5—12—甲所示。因为总的浮力等于桶的重力mg ,因而有:

ρ (l ′ S + V 0)g = mg 有:l ′ = 0.350m ①

在桶由池底上升高度H 到达不稳定平衡位置的过程中,桶内气体做等温变化,由玻意耳定律得: [p 0 + H 0-H -(l 0-l ′)]l ′ S =[p 0 + H 0-(l 0-l ′)]

lS ②

由①、②两式可得:H = 12.240m ③ 由③式可知H <(H 0-l ′),所以桶由池底到达不稳定平衡位置时,整个桶仍浸在水中。

由上分析可知,绳子的拉力在整个过程中是一个变力。对于变力做功,可以通过分析水和桶组成的系统的能量变化的关系来求解:

先求出桶内池底缓慢地提高了H 高度后的总机械能量ΔE 。ΔE 由三部分组成:

(1)桶的重力势能增量:

ΔE 1 = mgH ④

(2)由于桶本身体积在不同高度处排开水的势能不同所产生的机械能的改变量ΔE 2,可认为在H 高度时桶本身体积所排开的水是去填充桶在池底时桶所占有的空间,这时水的重力势能减少了。

所以:ΔE 2 =-ρgV 0H ⑤

(3)由于桶内气体在不同高度处所排开水的势能不同所产生的机械能的改变ΔE 3,由于桶内气体体积膨胀,因而桶在H 高度时桶本身空气所排开的水可分为两部分:一部分可看为填充桶在池底时空气所占空间,体积为lS 的水,这部分水增加的重力势能为:

ΔE 3 =-ρgHlS ⑥ 另一部分体积为(l ′-l)S 的水上升到水池表面,这部分水上升的平均高度为:

H 0-H -l 0 + l +

l l

2

'- 增加的重力势能为:

ΔE 32 = ρgS(l ′-l)[H 0-H -l 0 + l +

l l

2

'-]⑦ 由整个系统的功能关系得,绳子拉力所需做的最小功为: W T = ΔE ⑧ 将④、⑤、⑥、⑦式代入⑧式得:

W T = ρgS [(l ′-l)(H 0-l 0) +22

l l 2

'-]⑨

图5—12—甲

将有关数据代入⑨式计算,并取三位有效数字,可得:W T = 1.37×104J 例14:如图5—13所示,劲度系数为k 的水平轻质弹簧,左端固定,右端系一质量为m 的物体,物体可在有摩擦的水平桌面上滑动,弹簧为原长时位于O 点,现把物体拉到距O 为A 0的P 点按住,放手后弹簧把物体拉动,设物体在第二次经过O 点前,

在O 点左方停住,求:

(1)物体与桌面间的动摩擦因数μ的大小应在什么范围内?

(2)物体停住点离O 点的距离的最大值,并回答这是不是物体在运动过程中所能达到的左方最远值?为什么?(认为动摩擦因数与静摩擦因数相等)

解析:要想物体在第二次经过O 点前,在O 点左方停住,则需克服摩擦力做功消耗掉全部弹性势能,同时还需合外力为零即满足平衡条件。 (1)物体在距离O 点为l 处停住不动的条件是:

a .物体的速度为零,弹性势能的减小等于物体克服滑动摩擦力所做的功。

b .弹簧弹力≤最大静摩擦力 对物体运动做如下分析:

①物体向左运动并正好停在O 点的条件是:1

2

k 2

0A = μmgA 0

得:μ =

0kA 2mg

②若μ<

0kA 2mg

,则物体将滑过O 点,设它到O 点左方B 处(设OB =

L 1)时速度为零,则有:

12k 2

0A -12

k 21L = μmg (A 0 + L 1) ② 若物体能停住,则kL 1≤μmg ,得:μ≥0kA

3mg

③如果②能满足,但μ<

0kA 3mg

,则物体不会停在B 处而要向右运动。μ

值越小,则往右滑动的距离越远。

设物体正好停在O 处,则有:12

k 21L = μmgL 1,得:μ =0kA 4mg

要求物体停在O 点左方,则相应地要求μ>

0kA 4mg

综合以上分析结果,物体停在O 点左方而不是第二次经过O 点时,μ的取值范围为:

0kA 4mg

<μ<

0kA 2mg

图5—13

(2)当μ在

0kA 3mg

≤μ<

0kA 2mg

范围内时,物体向左滑动直至停止而不返

回,由②式可求出最远停住点(设为B 1点)到O 点的距离为:

L = A 0-2mg k μ= A 0-(2mg

k )(0kA 3mg ) =0A 3

当μ<

kA 3mg

时,物体在B 1点(OB 1 =

A 3

)的速度大于零,因此物体将继续向左运动,但它不可能停在B 1点的左方。因为与B 1点相对应的μ=0kA 3mg

L 1 =

0A 3

,如果停留在B 1点的左方,则物体在B 1点的弹力大于0kA

3,而摩

擦力μmg

kA 3

,小于弹力大于摩擦力,所以物体不可能停住而一定返回,最后停留在O 与B 1之间。

所以无论μ值如何,物体停住与O 点的最大距离为

A 3

,但这不是物体在运动过程中所能达到的左方最远值。

例15:使一原来不带电的导体小球与一带电量为Q 的导体大球接触,分开之后,小球获得电量q 。今让小球与大球反复接触,在每次分开后,都给大球补充电荷,使其带电量恢复到原来的值Q 。求小球可能获得的最大电量。

解析:两球接触后电荷的分配比例是由两球的半径决定的,这个比例是恒定的。 根据两球带电比例恒定,第一次接触,电荷量之比为

Q q q

-,最后接触电荷之比为

m

Q q ,有

Q q q

-=

m

Q q ,所以:q m =

Qq Q q

-

(此题也可以用递推法求解。)

例16:一系列相同的电阻R ,如图5—14所示连接,求AB 间的等效电阻R AB 。

解析:无穷网络,增加或减小网络的格数,其等效电阻不变,所以R AB 跟从CD 往右看的电阻是相等的。因此,有:

R AB = 2R +

AB AB R R R R

+,解得:R AB

图5—14

例17:如图5—15所示,一个U 形导体框架,宽度L = 1m ,其所在平面与水平面的夹角α = 30°,其电阻可以忽略不计,设匀强磁场为U 形框架的平面垂直,磁感应强度B = 1T ,质量0.2kg 的导体棒电阻R = 0.1Ω,跨放在U 形框上,并且能无摩擦地滑动。求:

(1)导体棒ab 下滑的最大速度v m ;

(2)在最大速度v m 时,ab 上释放出来的电功率。

解析:导体棒做变加速下滑,当合力为零时速

度最大,以后保持匀速运动

(1)棒ab 匀速下滑时,有:mgsin α = BIl

而I =Blv R ,解得最大速度v m =22

mgsin R

B l α?= 0.1m/s (2)速度最大时,ab 释放的电功率P = mgsin α?v m = 0.1W

针对训练

1.如图5—16所示,原长L 0为100厘米的轻质弹簧放置在一光滑的

直槽内,弹簧的一端固定在槽的O 端,另一端连接一小球,这一装置可以从水平位置开始绕O 点缓缓地转到竖直位置。设弹簧的形变总是在其弹性限度内。试在下述(a )、(b )两种情况下,分别求出这种装置从原来的水平位置开始缓缓地绕O 点转到竖直位置时小球离开原水平面的高度h 0。(a )在转动过程中,发现小球距原水平面的高度变化出现极大值,且极大值h m

为40厘米,(b )在转动的过程中,发现小球离原水平面的高度不断增大。

2.如图5—17所示,一滑雪运动员自H 为50米高处滑至O 点,由于运动员的技巧(阻力不计),运动员在O 点保持速率v 0不变,并以仰角θ起跳,落至B 点,令OB 为L ,试问α为30°时,L 的最大值是多大?当L 取极值时,θ角为多大?

图5—

15

图5—

16

图5—

17

3.如图5—18所示,质量为M的长滑块静止

图5—18

放在光滑水平面上,左侧固定一劲度系数为K且足够长的水平轻质弹簧,右侧用一不可伸长的细轻绳连接于竖直墙上,细线所能承受的最大拉力为T 。使一质量为m,初速度为v0的小物体,在滑块上无摩擦地向左运动,而后压缩弹簧。

(1)求出细线被拉断的条件;

(2)滑块在细线拉断后被加速的过程中,所能获得的最大的左向加速度为多大?

(3)物体最后离开滑块时相对于地面速度恰为零的条件是什么?

4.质量m=2.0kg的小铁块静止于水平导轨AB的A端,导轨及支架ABCD形状及尺寸如图5—19所示,它只能绕通过支架D点的垂直于纸面的水平轴转动,其重心在图中的O点,质量M = 4.0kg,现用一细线沿轨拉铁块,拉力F = 12N ,铁块和导轨之间的摩擦系数μ = 0.50,重力加速度g=10m/s2,从铁块运动时起,导轨(及支架)能保持静止的最长时间t

是多少?

图5—19 图5—20 图5—21 5.如图5—20所示,在水平桌面上放一质量为M 、截面为直角三角形的物体ABC 。AB与AC间的夹角为θ,B点到桌面的高度为h。在斜面AB上的底部A处放一质量为m的小物体。开始时两者皆静止。现给小物体一沿斜面AB方向的初速度v0,如果小物体与斜面间以及ABC与水平桌面间的摩擦都不考虑,则v0至少要大于何值才能使小物体经B点滑出?

6.如图5—21所示,长为L的光滑平台固定在地面上,平台中央放有一小物体A和B,两者彼此接触。物体A的上表面是半径为R(R L)的半圆形轨道,轨道顶端距台面的高度为h处,有一小物体C ,A 、B 、C的质量均为m。现物体C从静止状态沿轨道下滑,已知在运动过程中,A 、C始终保持接触,试求:

(1)物体A和B刚分离时,物体B的速度;

(2)物体A和B分离后,物体C所能达到距台面的最大高度;

(3)判断物体A 从平台的左边还是右边落地,并粗略估算物体A 从B 分离后到离开台面所经历的时间。

7.电容器C 1、C 2和可变电阻器R 1、R 2以及电源ε连接成如图5—22所示的电路。当R 1的滑动触头在图示位置时,C 1、C 2的电量相等。要使C 1的电量大于C 2的电量,应当()

A 、增大R 2

B 、减小R 2

C 、将R 1的滑动触头向A 端移动

D 、将R 1的滑动触头向B 端滑动 8.如图5—23所示的电路中,电源的电动势恒定,要想使灯泡变亮,可以()

A 、增大R 1

B 、减小R 2

C 、增大R 2

D 、减小R 2

图5—23

图5—24

图5—25

9.电路如图5—24所示,求当R ′为何值时,R AB 的阻值与“网格”的数目无关?此时R AB 的阻值等于什么?

10.如图5—25所示,A 、B 两块不带电的金属板,长为5d ,相距为d ,水平放置,B 板接地,两板间有垂直纸面向里的匀强磁场,现有宽度为d 的电子束从两板左侧水平方向入射,每个电子的质量为m ,电量为e ,速度为v ,要使电子不会从两板间射出,求两板间的磁感应强度应为多大?

11.图5—26中abcd 是一个固定的U 形金属框架,ad 和cd 边都很长,bc 边长为L ,框架的电阻可不计,ef 是放置在框架上与bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻R ,现沿垂直于框架的方向加一恒定的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以恒定力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动,求匀速滑动时的速度?

12.如图5—27所示,导线框abcd 固定在竖直平面内,bc 段的电阻为R ,其他电阻均可忽略。ef 是一电阻可忽略的水平放置的导体杆,杆长为L ,质量为m ,杆的两端分别与ab 和cd 保持良好接触,又能沿它们无摩擦地滑动。整个装置放在磁感应强度为B 的匀强磁场中,磁场方向与框面垂直。现用一恒力F 竖直向上拉ef ,当ef 匀速上升时,其速度的大小为多大?

图5—22

图5—26 图5—27 图5—28 图5—29 13.在倾角为α的足够长的两光滑平行金属导轨上,放一质量为m,电阻为R的金属棒ab,所在空间有磁感应强度为B的匀强磁场,方向垂直轨道平面向上,导轨宽度为L ,如图5—28所示,电源电动势为ε,电源内阻和导轨电阻均不计,电容器的电容为C 。求:

(1)当开关S接1时,棒ab的稳定速度是多大?

(2)当开关S接2时,达到稳定状态时,棒ab将做何运动?

14.如图5—29所示,有上下两层水平放置的平行光滑导轨,间距是L ,上层导轨上搁置一根质量为m、电阻是R的金属杆ST ,下层导轨末端紧接着两根竖直在竖直平面内的半径为R的光滑绝缘半圆形轨道,在靠近半圆形轨道处搁置一根质量也是m、电阻也是R的金属杆AB 。上下两层平行导轨所在区域里有一个竖直向下的匀强磁场。当闭合开关S后,有电量q通过金属杆AB ,杆AB滑过下层导轨后进入半圆形轨道并且刚好能通过轨道最高点D′F′后滑上上层导轨。设上下两层导轨都足够长,电阻不计。

(1)求磁场的磁感应强度。

(2)求金属杆AB刚滑到上层导轨瞬间,

上层导轨和金属杆组成的回路里的电流。

(3)求两金属杆在上层导轨滑动的最终

速度。

(4)问从AB滑到上层导轨到具有最终速

度这段时间里上层导轨回路中有多少能量转变

为内能?

15.位于竖直平面内的矩形平面导线框

abcd,ab长为l1,是水平的,bc长l2,线框的

质量为m,电阻为R ,其下方有一匀强磁场区

域,该区域的上、下边界PP′和QQ′均与ab

平行,两边界间的距离为H ,H>l2,磁场的

磁感强度为B ,方向与线框平面垂直,如图5

—30所示。令线框的dc边从离磁场区域上边界PP′的距离为h处自由下落,已知在线框的dc边进入磁场以后,ab边到达边界PP′之前的某一时刻线框的速度已达到这一阶段的最大值。问从线框开始下落到dc边刚刚到达磁场区域下边界QQ′的过程中,磁场作用于线框的安培力做的总功为

多少?

参考答案

1、(a )37.5cm ;(b )50cm <h <100cm

2、L max = 200m ;θ = 30°

3、v 0

a =

1M v 04、1.41s

5、

6、(1)(2)h -14

R ;(3)

7、D 8、BC

9、

1)R ;(10、mv 13ed ≤B ≤2mv

ed

11、22

FR

B L 12、

22

(F mg)R

B L - 13、(1)22

BI mgR sin B L ε-α;(2)加速度22

mgsin m CB L α

+

14、(1)

m

qL

(2);(3)(4)1

4mgR

15、W =322

44

m g R 2B l -mg (l 2 + h)

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

高中物理竞赛经典方法 2.隔离法

二、隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 赛题精讲 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2 , 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .12F F 2+ D .12F F 2 - 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。先以整体为研 究对象,根据牛顿第二定律:F 1-F 2 = 2ma ① 再以物体2为研究对象,有N -F 2 = ma ② 解①、②两式可得N = 12 F F 2 +,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 解析:A 的运动有两种可能,可根据隔离法分析 设AB 一起运动,则:a =A B F m m + AB 之间的最大静摩擦力:f m = μm B g 以A 为研究对象:若f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。 若μ< A B B A m m (m m )g + F ,则A 向右运动,但比B 要慢,所 以应选B 例3:如图2—3所示,已知物块A 、B 的质量分别为m 1 、m 2 ,A 、B 间的摩擦因数为μ1 ,A 与地面之间的摩擦因数为μ2 ,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N = m 2g 。

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

高中物理:力学模型及方法知识归纳

╰ α 高中物理知识归纳(二) ----------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用( 如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 +

F 'A 'B V 2V = ? ' A V = gR 53 ; ' A ' B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0

高中物理竞赛经典方法 7对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A ′点水平抛出所做的运动。 根据平抛运动的规律:02x v t 1y gt 2 =???=?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v 0 = 3s 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距

为d ,一个小球以初速度v 0从两墙正中间的O 点斜向上抛出,与A 和B 各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。 解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 02 0x v cos t 1y v sin t gt 2 =θ??? ?=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 20 2gd v 所以,抛射角θ =1 2 arcsin 20 2gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° =

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

高三物理巧用极限法分析临界问题(附答案)

高三物理巧用极限法分析临界问题 临界问题的分析是中学物理中较为常见,也是很多同学感到困难的问题之一,这就要求我们在教学中能不断探索这类问题的分析方法。 极限法分析临界问题,是通过分析把关键物理量同时推向极大和极小时的物理现象,从而找出解决问题的突破口的一种方法。下面通过几种情况的分析来体会: 一、关键物理量“力F ” 【例1】如图1所示,物体A 的质量为2kg ,两轻绳AB 和AC(L AB =2L AC )的一端连接在竖直墙上,另一端系在物体A 上,今在物体A 上另施加一个与水平方向成α=600角的拉力F 。要使两绳都能伸直,试求拉力F 的大小范围。(g=10m/s 2) 分析与解 如果F 很小,由竖直方向平衡知轻绳AB 中必有张力,当AC 中张力恰为零时,F 最小;如果F 很 大,由竖直方向平衡知轻绳AC 中必有张力,当AB 中张 力恰好为零时,F 最大。 设物体的质量为m ,轻绳AB 中的张力为T AB ,AC 中的张力为T AC ,F 的最小值为F 1,最大值为F 2 L AB =2L AC ,有∠CAB=600 由平衡条件有: F 1sin600+T AB sin600=mg , F 1cos600=T AB cos600 F 2sin600=mg 以上各式代入数据得:F 1=20√3/3N ,F 2=40√3/3N 因此,拉力F 的大小范围:20√3/3N <F <40√3/3N 此题也可由平衡条件直接列方程,结合不等式关系T AB >0,T AC >0求解。 二、关键物理量“加速度a ” 【例2】质量为0.2kg 的小球用细绳吊在倾角θ=600的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图2所示,不计摩擦,求当斜面体分别以(1)2√3m/s 2, (2)4√3m/s 2的加速度向右加速时,线对小球的拉力。 分析与解 很多同学看到题目就会不加分析的列方程 求解,从而出现解出的结果不符合实际。其实,如果我们 仔细审题就会发现题目设问的着眼点是加速度。当小球向 图1 图2—1

高中物理竞赛精彩试题及问题详解

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间120 分钟. 第Ⅰ卷(选择题共40 分) 一、本题共10 小题,每小题 4 分,共40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得2 分,有错选或不答的得0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说确的有 A.若甲的初速度比乙大,则甲的速度后减到0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M的笼子,笼有一只质量为m的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为F2(如图Ⅰ-3),关于F1和F2的大小,下列判断中正确的是 A.F1 = F2>(M + m)g B.F1>(M + m)g,F2<(M + m)g C.F1>F2>(M + m)g D.F1<(M + m)g,F2>(M + m)g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a、b、c代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab= U bc,实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q 图Ⅰ-3 图Ⅰ-4 图Ⅰ-2

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

舒幼生《物理竞赛培优教程》word版下载

第二节电场和电场强度 【知识要点】 从电场的观点看,电荷间的相互作用可分为两个基本问题:电荷产生电场和电场对电荷的作用. 电场强度,简称场强,是指放人电场中某一点电荷受到的电场力 F 跟它的电量q 的比值.数学表达式为 q为检验电荷, F 为q在场中受到的力.场强的方向规定为正电荷的受力方向. 只要有电荷存在,在电荷的周围就存在着电场.静止电荷在其周围的真空中产生电场,叫静电场,该电荷称为真空中静电场的场源电荷,电场对放人场中的电荷有力的作用. 在点电荷组成的电场里、任一点的场强等于各个点电荷单独存在时各自在该点产生的场强的矢量和,这就是场强叠加原理. 几种典型电场的场强: ( 1 )点电荷电场:由场强的定义和库仑定律可得,真空中点电荷的场 强分布为 ( 2 )均匀带电球壳的电场设有带电量为Q ,半径为R 的均匀带电球壳.由电场线的分布可知,只要球壳内没有电荷,壳内就没有电场线分 为0 布,即内部的场强 E 内 对于球壳外,电场线分布与点电荷Q 在球心处的电场线一样.因此 壳外的场强 E 外为 ( 3 )匀强电场 设有电荷面密度为δ的无限大带电平板,求其两侧的场强.根据场强叠加原理,空间某一点的场强,应是板上所有点电荷在该点产生场的叠加.由于平板是无穷大,根据对称性,板两侧的电场方向如图9 一 2 一 1 所示,且是匀强电场,但用叠加原理求场强的 大小要用到高等数学. 下面我们用不很严密的方法介绍一个定理,并根据它 求上述场强,先考虑点电荷,设一电量为Q 的点电荷, 则空间的场分布为

现取以Q 为球心,R 为半径作一球面,则Q 发出的电场线全部穿过这个面.像这样穿过一个面的电场线总数叫做穿过这个面的电通量,用 符号Φ表示.对于点电荷 由上式可知电通量与所取的面无关,即取任一面,只要这个面内包含Q ,通过此面的电通量为4πk Q . 推论 1 若所取的面不包含Q ,则通过此面的电通量为零. 推论 2 通过任意一个闭合曲线的电通量等于该面所包围的电荷电量的代数和的 4 π倍. 推论2通常叫高斯定理,利用高斯定理可以很方便地求出许多对称场的场强分布.如无限大平板,我们可以取关于板对称的圆柱体面,如图所示,设圆柱面的横截面半径为r ,高为l ,则 因此,电荷面密度为,的无限大带电平板两侧的场强为 E = 2πkδ 【例题分析】 例 1 如图9 一 2 论所示,电荷均匀分布在半球面上, 它在这半球面的中心O 处的电场强度等于E0,( l )证明 半球面底部的平面是等势面;( 2 )两个平面通过同一直径, 夹角为 a ,从半球中分出一部分球面.试求所分出的这部分球面上的电荷在O 处的电场强度 E . 分析与解 (l )证明一个平面是等势面一般有以下两条思路: a .根据电势叠加原理求出各点的电势,判断是否相等; b .根据场强叠加原理求出各点的场强,判断场强方向是否垂直平面. 设想有另一个完全相同的半球面与此半球面构成完整的球壳,则球壳及其内部各点电势都相等.根据对称性可知上、下两个半球壳分别在底面上各点引起的电势是相等的,再由电势叠加原理可知,当只有半球壳存在时,半球壳在底面上各点引起的电势也是相等的,而且电势是两个球壳的一半.场强是矢量,场强叠加比电势叠加要复杂.此题直接在底面上计算场 强较困难.我们可用反证法来说明场强方向一定垂直底面.假 定半球壳在底面产生的场强不垂直底面,则当把半球壳补完 整时,两半球壳在底面产生的合场强也不垂直底面,这与球 壳是等势体相矛盾.因此,假设不成立. ( 2 )由对称可知,E0的方向如图9 一 2 一 3 所示, 同样我们可知分出两部分的电场强度E1、E2,由矢量图可 得

极限思维法、特殊值法、量纲法、等解高中物理选择题

高中物理“超纲”选择题解题方法 1.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量的单位,解随某些已知量变化的趋势,解在一定特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。 举例如下:如图所示,质量为M、倾角为θ的滑块A放于水平地面上。把质量为m的滑块B放在A的斜面上。忽略 一切摩擦,有人求得B相对地面的加速度a = M+m gsinθ,式中g为重力加速度。 M+msin2θ 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。 他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都 是“解可能是对的”。但是,其中有一项是错误 ..的。请你指出该项。 () A.当θ=0?时,该解给出a=0,这符合常识,说明该解可能是对的 B.当θ=90?时,该解给出a=g,这符合实验结论,说明该解可能是对的 C.当M≥m时,该解给出a=gsinθ,这符合预期的结果,说明该解可能是对的

D .当m ≥M 时,该解给出a =sin g θ ,这符合预期的结果,说明该解可能是对的 2.某个由导电介质制成的电阻截面如图所示。导电介质的电阻率为ρ、制成内、外半径分别为a 和b 的半球壳层形状(图中阴影部分),半径为a 、电阻不计的球形电极被嵌入导电介质的球心为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极。设该电阻的阻值为R 。下面给出R 的四个表达式中只有一个是合理的,你可能不会求解R ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,R 的合理表达式应为 ( ) A .R= ab a b πρ2) (+ B .R= ab a b πρ2) (- C .R=) (2a b ab -πρ D .R= ) (2a b ab +πρ 3.图示为一个半径为R 的均匀带电圆环,其单位长度带电量为η。取环面中心O 为原点,以垂直于环面的轴线为x 轴。设轴上任意点P 到O 点的距离为x ,以无限远处为零电势,P 点电势的大小为Φ。下面给出 Φ的四个表达式(式中k 为静电力常量),其中只有一个是合理的。你 可能不会求解此处的电势Φ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,Φ的合理表达式应为 ( ) I

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

相关文档
最新文档